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1 | INTRODUCTION

Currently in otolaryngology, histology, microarray, and bulk
RNA-sequencing (RNA-Seq) methodologies are used on patient

| Michael Hoa MD

Abstract

Objectives: Single-cell RNA sequencing (scRNA-Seq) is a new technique used to
interrogate the transcriptome of individual cells within native tissues that have already
resulted in key discoveries in auditory basic science research. Rapid advances in scRNA-
Seq make it likely that it will soon be translated into clinical medicine. The goal of this
review is to inspire the use of sScRNA-Seq in otolaryngology by giving examples of how it
can be applied to patient samples and how this information can be used clinically.
Methods: Studies were selected based on the scientific quality and relevance to scRNA-
Seq. In addition to mouse auditory system (inner ear including hair cells and supporting
cells, spiral ganglion neurons, and inner ear organoids), recent studies using human pri-
mary cell samples are discussed. We also perform our own analysis on publicly available,
published scRNA-Seq data from oral head and neck squamous cell carcinoma (HNSCC)
samples to serve as an example of a clinically relevant application of sScRNA-Seq.
Results: Studies focusing on patient tissues show that scRNA-Seq reveals tissue het-
erogeneity and rare-cell types responsible for disease pathogenesis. The heterogene-
ity detected by scRNA-Seq can result in both the identification of known or novel
disease biomarkers and drug targets. Our analysis of HNSCC data gives an example
for how otolaryngologists can use scRNA-Seq for clinical use.

Conclusions: Although there are limitations to the translation of scRNA-Seq to the
clinic, we show that its use in otolaryngology can give physicians insight into the tis-
sue heterogeneity within their patient's diseased tissue giving them information on
disease pathogenesis, novel disease biomarkers or druggable targets, and aid in

selecting patient-specific drug cocktails.
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biopsy samples to diagnose disease including microbial infections,
human papilloma virus, genetic disorders such as neurofibromato-
sis type Il, and various head and neck cancers like head and neck
squamous cell carcinoma (HNSCC). These methodologies can be
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biased in their investigation of tissues and are limited by extremely
low sensitivity, antibody or probe availability, and averaging of gene
expression across the tissue of interest, ignoring tissue and cellular
heterogeneity.? For example, the use of bulk RNA-Seq in tumor diag-
nostics can obscure the importance of tumor heterogeneity and rare
cell types to tumor biology and disease prognosis.?

Single-cell RNA-Seq (scRNA-Seq) is a powerful new method that
allows users to obtain the transcriptome of individual cells. This tech-
nology avoids the cell averaging seen in bulk RNA-Seq allowing for
novel discoveries in tissue heterogeneity and biology at single-cell res-
olution.®>” The use of scRNA-Seq in auditory basic science research
has proven important in deciphering cellular heterogeneity of inner
ear tissues and is just beginning to provide answers to questions
regarding development of diverse cell types in this organ, how this
heterogeneity relates to auditory function, and how we can use this
information to understand auditory disease and mechanisms for hearing
restoration. The explosive use of scRNA-Seq in auditory research has
resulted in several new discoveries in the field of otolaryngology.82° In
endolymphatic sac, scRNA-Seq showed that mitochondrial-rich cells
were likely responsible for the pathogenesis of enlarged vestibular aque-
ducts.? Two recent studies used scRNA-Seq on spiral ganglion neurons
(SGN) to detect four subpopulations, including three novel SGN sub-
types, differing in their expression of novel marker genes and in sound
intensity-specific activation'®?° that underlie the clinical phenomenon
of “hidden hearing loss.” Another study used scRNA-Seq of cells from
the organ of Corti to prove that cochlear hair cells not only differentiate
from progenitor supporting cells but also from nonsensory cell types.®
We provide a selected list of sScRNA-Seq studies done in the mouse that
are relevant to hearing for further review (Table 1). Although most
scRNA-Seq experiments related to otolaryngology are currently con-
ducted on mice in basic science laboratories (Table 1), with the increas-
ingly low-cost and new high-throughput scRNA-Seq technologies, this

exciting tool can be readily applied to human tissue to generate new dis-
coveries in human biology and may soon be translated to clinical otolar-
yngology. Human vestibular and cochlear tissues, while both difficult
and unethical to obtain from healthy patients, are frequently discarded
as a result of standard transcranial surgical approaches to resections of
acoustic neuromas, for example.?*?? With collaborations between
treating surgeons and surgeon-scientists, sequencing of human inner
ear tissue and other more easily obtained pathologic tissue, including
acoustic neuromas, HNSCC, vocal cord polyps, and recurrent respiratory
papillomas, could deliver valuable information on human cell types
responsible for disease and possible druggable targets within these cell
types.tt

A few studies have used scRNA-Seq on human otolaryngologic

C,>%2% sinus mucosa,?’ and mela-

patient samples including HNSC
noma.?® These, as well as studies in other human tissues,??° have
shown the utility of this method in human clinical samples. These
studies have generated excitement for the use of scRNA-Seq in
unraveling tissue heterogeneity with the hope of using this informa-
tion to provide care that is tailored to each patient,®! but for this goal
to be attained physicians need be aware of how this technology may
be applied to their clinical practice and the potential novel diagnostic
information and therapeutic options it might provide in the
future.®2%% Here we give a brief overview of scRNA-Seq methodol-
ogy, suggest potential clinical applications for scRNA-Seq in otolaryn-
gology, and comment on potential limitations for its clinical use.

To make this review as clinically relevant as possible, we will
focus on reviewing studies that have been conducted in human sam-
ples relevant to otolaryngology. While many laboratories are focusing
on optimizing sequencing for human samples such as cochlear and
vestibular tissues, currently it is much easier to obtain human tumor
samples and the only published scRNA-Seq studies of human tissue

C,23'25'26

relevant to otolaryngology use HNSC melanoma,?® or chronic

TABLE 1  Selected list of scRNA-Seq studies from the mouse inner ear

Study Tissue? Cell isolation scRNA-Seq technology
Burns et al® Early postnatal cochlear SE, utricular SE, cochlear SC Fluidigm C1 Smart-seq
Yamashita et al® Postnatal and adult cochlear SE Chromium (10x Genomics) Drop-Seq
Chessum et al*® Early postnatal IHC Chromium (10x Genomics) Drop-Seq
Mclnturff et al*4 Early postnatal and adult utricular HC Fluidigm C1 Smart-seq
Hoa et al*® Adult cochlear SC Fluidigm C1 Smart-seq
Ranum et al*® Early postnatal through adult cochlear IHC, OHC, SC Micropipette Smart-seq2
Tang et al'” mESC-derived inner ear organoids Chromium (10x Genomics) Drop-Seq
Sun et al® Adult SGN Gemcode (10x Genomics) Drop-Seq
Shrestha et al*’ Adult SGN Micropipette Smart-seq2
Petitpré et al®® Postnatal and adult SGN FACS Smart-seq
Sherrill et al® Early postnatal SGN Fluidigm C1 Smart-seq
Korrapati et al'* Adult SV Chromium (10x Genomics) Drop-Seq
Honda et al*? Embryonic, early postnatal, adult ES Fluidigm C1 Smart-seq

Abbreviations: ES, endolymphatic sac; HC, hair cells; IHC, inner hair cells; mESC, mouse embryonic stem cells; OHC, outer hair cells; SC, cochlear
supporting cells; scRNA-Seq, single-cell RNA sequencing; SE, sensory epithelium; SGN, spiral ganglion neurons, SV, stria vascularis.

2All the above studies were conducted using mouse tissue.
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rhinosinusitis?” samples. We use these studies as examples of the use
of scRNA-Seq as a research tool in otolaryngology and its potential
clinical applications. We perform our own scRNA-Seq analysis
(methods available in Data S2) of a publicly available HNSCC data set
as an example of how this technique may impact clinical care in the
future (Data S1).

2 | scRNA-Seq WORKFLOW

To give clinicians a general understanding of scRNA-Seq concepts, we
provide a brief overview of the scRNA-Seq experimental workflow to
inform the discussion of potential applications of this technology in
otolaryngology. While a comprehensive review of this complex pro-
cess is not provided here, the experimental design and analysis of
scRNA-Seq data have been extensively reviewed elsewhere and we
point interested readers that would like to learn more about the
details of designing scRNA-Seq experiments to the reviews men-
tioned within our discussion.3**¢ Most scRNA-Seq protocols follow a
similar sequence of reactions (Figure 1) including tissue dissociation to
generate a single-cell suspension, cell isolation (Figure 1A), mRNA
capture and barcoding (Figure 1B), library preparation (Figure 1C),
followed by next-generation sequencing (NGS) (Figure 1D).*” Single-
nucleus RNA-Seq (sNuc-Seq) protocols have also recently been devel-
oped to isolate single nuclei from difficult to dissociate or archived
patient samples.*® From a single-cell or nuclei suspension, most meth-
odologies require each cell or nucleus to be captured and isolated for
barcoding and pooling. Cell isolation methods have been reviewed
previously including a review by Qi et al on designing scRNA-Seq
experiments for head and neck cancer.3*3> Briefly, isolation of cells
into wells or microwells of a plate can involve limiting dilution, laser
capture microdissection, micropipette isolation, fluorescence-
activated cell sorting (FACS), or in situ barcoding including split-pool
barcoding methods.***° Isolation of cells can also be accomplished
using microfluidics that either use circuits to distribute cells into
nanowells (ie, Fluidigm C15%) or isolate cells into nanoliter oil-based
droplets (ie, 10x Genomics Chromium®?). Most methods, after
isolating cells into either plates (ie, STRT-Seq,53 CEL-Seq2,54 and
SMART-Seq2°°) or droplets (ie, inDrops,>® Drop-seq,®” 10x Genomics
Chromium?®2), require cell lysis to release mRNA molecules. Oligonucle-
otide primers with barcodes and oligo-dT sequences are added to cap-

ture the 3’-end mRNA poly-A tail, give each mRNA a cell-type-specific

barcode, and amplify mRNA. Within these primers, some methods also
contain a unique molecular identifier (UMI) that labels each mRNA as a
unique molecule. Recent developments in scRNA-Seq methodologies
have eliminated the need to isolate single cells or nuclei by using split-
pool barcoding.**>° This method allows multiple cells to be placed in
individual wells containing unique barcodes and through multiple
mixing, well distributions, and barcoding reactions each mRNA within
each cell receives a unique cell-specific barcode. While this technique
allows for sequencing of hundreds of thousands of cells, including mul-
tiple tissue samples and fixed cells or nuclei, the large number of mixing
reactions and pipetting required consumes valuable time and may per-
turb the native transcriptome, so precious tissue may not be amenable
to this technique.

After RNA is barcoded, it is reverse transcribed into cDNA and
cDNA is amplified by polymerase chain reaction or in vitro transcrip-
tion. In most cases, amplified cDNA from each cell is then pooled for
preparation of sequencing libraries where cDNA molecules are frag-
mented and adaptor sequences are added for further amplification and
sequencing. Methods utilized for library preparation from amplified
cDNA are varied and reviewed elsewhere including a review dedicated
to discussing the details of current methods for library preparation by
Head et al.3*® One clinically important distinction between library
preparation methods is that various methodologies result in 3'-end,
5'-end, or full-length sequencing data.>#%° Most droplet-based proto-
cols are biased to sequencing of the 3’-end of mRNA resulting in loss
of genetic information from the 5-end®”%8; however, some plate-based
techniques, like SMART-Seq2, use template switching during reverse
transcription to amplify the full length strand of mRNA allowing for the
detection of different mRNA isoforms, splicing variants, single-
nucleotide polymorphisms, and variant mutations that would go
undetected with 3'-end enriched sequencing.>®

Plate-based techniques, due to lower cell numbers, allow for
extremely high sensitivity and read depth (number of genes detected
per cell) and this incredible depth of sequencing makes these tech-
niques clinically useful for precious patient samples of low cell number;
however, the low throughput and high cost per cell make them less
clinically feasible. In contrast, due to the microscopic size of the drop-
lets created by microfluidics, the reagent cost drops significantly and
with no limit on the number of droplets created, the throughput is
much higher; however, the read depth is usually lower than plate-based
methodologies because a larger number of single-cell libraries can be
pooled and loaded on the same sequencing lane. The Chromium

FIGURE 1

Diagram of scRNA-Seq, single-cell RNA sequencing (scRNA-Seq) workflow. A, Single-cell isolation involves generation of a single-

cell suspension. Cells are isolated by microdissection and micropipette, microfluidic circuits, droplets, or split pool barcoding. After single-cell
isolation, cells are compartmentalized into wells or droplet for library preparation depending on the scRNA-Seq platform that is used. B, mMRNA
capture and barcoding involves cell lysis releasing mMRNA which is barcoded and reverse transcribed into cDNA. Polymerase chain reaction or in
situ transcription is used to amplify cDNA, C, library preparation involves pooling and fragmentation of cDNA and addition of adaptors used

for, D, next-generation sequencing. mRNA reads are aligned to known genes and genes are mapped back to their cell of origin. To quantify gene
expression, a matrix with cells on the x-axis and genes on the y-axis is generated with read counts for each gene. This matrix is then used for, E,
bioinformatic analysis including: quality control, filtering of unhealthy cells, normalization and scaling of mRNA read counts, principal component
analysis to determine genes responsible for the most variation between cells, dimensionality reduction, unbiased clustering, followed by data

visualization
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(10x Genomics) is becoming the gold-standard microfluidic device
because of its unprecedented throughput, speed, and low cost per
cell.>? This parallels our group's experience in transitioning from circuit-
based to nanoliter droplet-based microfluidic single-cell RNA-Seq sys-
tems.*>*> The ability to sequence a greater number of cells allows for a
more comprehensive picture of the transcriptomic profile as typically
only 5% to 15% of the mRNA within a given single cell are captured,®”
making high-throughput technologies an attractive platform for clinical
use. Table 2 compares different single cell capture platforms. For a
more in-depth review of the intricacies of designing a single-cell experi-
ment and selecting the appropriate platforms readers are pointed to
excellent reviews by Nguyen et al** and Lafzi et al.>’

To analyze scRNA-Seq data, computational bioinformatic analysis
is necessary to convert gene expression matrices (Figure 1E) into a
more interpretable graphic format. Normalization, quality control mea-
sures, dimensionality reduction, and unbiased clustering algorithms
are applied to cluster cells by their potential cellular identity. Seurat
(https://satijalab.org/seurat/) is a commonly used bioinformatics pipe-
line for scRNA-Seq data analysis and visualization that outputs plots
depicting clusters of cells grouped together based on similarities in
their gene expression®®>? (Figure 1E). These plots aid in characterizing
tissue heterogeneity by identifying novel and known cell types as well
as detecting expression of genes that are unique to a specific cell type
or unknown to be previously expressed by a certain cell type within a
given tissue. For a thorough description of computational analysis for
complex scRNA-Seq data, we encourage readers to see reviews by
Hwang et al,*® Shafer,*® and Chen et al.*®

3 | CLINICAL APPLICATIONS OF scRNA-
Seq FOR OTOLARYNGOLOGY

scRNA-Seq techniques have already advanced the field of auditory
research by identifying heterogeneity of cell types within the inner
ear, including those involved in hair cell regeneration, hidden hearing
loss, and the pathogenesis of enlarged vestibular aqueducts®2° and
are becoming more widespread in their utilization in human tis-
sues. 2325266061 Eostering awareness of this technique and its appli-
cations for basic biological discovery in diseases managed by
practicing otolaryngologists may assist with diagnosis, prognosis, and

potentially personalized treatment recommendations in future clinical

TABLE 2  Brief comparison of single-cell RNA sequencing platforms
Platform inDrop Drop-Seq 10x Chromium
Type Microfluidic Microfluidic Microfluidic
Cost per cell $0.05 $0.06 $0.50
Cells per run Up to 40 000 10 000 500-80 000
Average read depth 30 000-60 000 30 000-60 000 30 000-60 000
Read length 3’ bias 3’ bias 3’ bias
Barcode and unique Yes Yes Yes

molecular identifier

practice. To demonstrate these clinical applications, we will use three
examples of diseases related to otolaryngology where scRNA-Seq has
already been applied to human samples including chronic sinusitis, oral
HNSCC, and melanoma; but we encourage otolaryngologists to think
about how scRNA-Seq can be applied to their disease of interest as
we walk through its potential applications.

3.1 | Detecting tissue heterogeneity to understand
disease pathogenesis

Diseases, like head and neck squamous cell carcinoma, are composed
of a complex group of heterogenous cell types, consisting of both
native and disease causing, in this case cancer causing, cells as well as
cells within the microenvironment, including immune cells, extracellu-
lar matrix, fibroblasts, stem cells, and vasculature, which all communi-
cate to play a role in tumorogenesis.®?%* Cellular heterogeneity in the
setting of cancers of the head and neck and in the setting of chronic
inflammation such as chronic rhinosinusitis has been implicated in dis-
ease maintenance or recurrence, patient variability in drug efficacy,
and the failure of clinical drug trials.®>¢® As an example, understanding
the interplay between diseased and native cell types, such as the case
between tumor cells and native cell types (ie, fibroblasts, immune
cells) in the tumor microenvironment (TME), will improve the knowl-
edge base surrounding cancerous cell types and their interplay with
the microenvironment. Using unbiased clustering of each individual
cell followed by cell type identification of each cluster by expression
of known marker genes, scRNA-Seq data can distinguish disease-
causing cells from native tissue and reveal complex heterogeneity

within diseased tissue samples.?42>

3.11 | Heterogeneity of malignant tumor cells

Several scRNA-Seq studies on human tumor samples have identified
tumor heterogeneity by demonstrating subpopulations within malig-
nant tumor cells.®”7° By interrogating the gene expression programs
within malignant cell populations of 18 metastatic melanomas, a land-

18 identified the existence of a

mark scRNA-Seq study by Tirosh et a
subpopulation of malignant cells with a high level of AXL cell surface

receptor tyrosine kinase program expression, a set of genes related to

C1 Fluidigm SMART-Seq CEL-Seq STRT-Seq
Microfluidic into plate Plate-based Plate-based Plate-based
$4.70 $1 $3.50 $50
94-800 1-1 000 94-800 96

over 3 million over 2 million 170 000 2 40 000
Full length or 3’ bias Full length or 3’ bias 3’ bias 3’ bias

No No Yes Yes
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drug resistance and melanoma cancer stem cell (CSC) maintenance.
The AXL-high subpopulation signature could not be detected in bulk
RNA-Seq data from melanoma tumors which proves the utility of
scRNA-Seq in identifying heterogenous cells responsible for the path-
ogenesis of metastasis and intrinsic drug resistance. With the avail-
ability of AXL inhibitors such as BGB324 that show efficacy in
decreasing human soluble AXL levels and treating human-derived

spheroid melanoma tumors,”*72 detection of this signature by
scRNA-Seq in tumors of the head and neck may help identify which
patients would respond best in human clinical trials. The influence of
tumor heterogeneity on disease pathogenesis has also been demon-
strated in oral HNSCC by Puram et al?® in the first scRNA-Seq study
relevant to otolaryngology. Clustering of malignant cells from
10 HNSCC showed that malignant cells clustered based on patient, as
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FIGURE 2 Example of our new analysis of sScRNA-Seq, single-cell RNA sequencing (scRNA-Seq) data from Puram et al*® head and neck

squamous cell carcinoma (HNSCC) using Seurat. A,B, Unbiased clusteri

ng of cells from 10 HNSCC patients. Dotted circles represent clusters of

cells from the same cell type. Cell types were determined by cluster-specific expression of known cell-type markers. Seurat identified

25 independent clusters of similar cells, A. Each cell was colored by the patient of origin with malignant cell clusters consisting of cells from the
same patient while tumor microenvironment (TME) cells consisted of cells from multiple HNSCC patients, B. TME cells are demarcated by the
dotted outlines while the malignant cells are denoted by the absence of the dotted outlines, B. C, Unbiased clustering of only the malignant cells
from the HNSCC data. Cells were colored by the patient of origin. This analysis shows that malignant cells cluster by patient. D, Unbiased

clustering of all cells from HNSCC patient T25 showing that malignant
1-3 outlined in solid grey). Cancer associated fibroblasts (CAF) are outl
HNSCC data. Cells are colored based on cell-type identity demonstrati

cells are distributed in multiple clusters or subpopulations (malignant cells
ined in dotted black. E, Unbiased clustering of only the TME cells from the
ng TME heterogeneity
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we confirmed in our own analysis of their published data set using
Seurat®®>? (Figure 2A-C). This suggests that clonal evolution of
HNSCC malignant cells is unique to each patient and each tumor
should be treated therapeutically as such. As in melanoma, malignant
HNSCC cells did contain groups of cells with shared gene expression
profiles or subpopulations, including one expressing high levels of
extracellular matrix genes that also expressed markers related to a
partial epithelial-to-mesenchymal transition (EMT). The authors sug-
gest that it is possible this partial-EMT expressing subpopulation is
responsible for causing invasion and lymph node metastasis in
HNSCC.” To confirm the presence of malignant intratumoral hetero-
geneity in HNSCC, we performed our own scRNA-Seq unbiased clus-
tering analysis of cells from one HNSCC patient, T25, which displayed
three subpopulations of malignant cells within one tumor that varied

in their gene expression (Figure 2D).

3.1.2 | Heterogeneity of cells in the
microenvironment

Single-cell profiles obtained from tumor tissue will consist of not only
individual malignant tumor cells but also cells from the TME, which con-
sists of blood vessels, immune cells, fibroblasts, signaling molecules, and
extracellular matrix that surrounds malignant cells, allowing for identifi-
cation of heterogeneity within these cell types. Detection and interro-
gation of TME subpopulations within multiple tumor types allows for
insight into potential stroma-tumor communication programs that may
be playing a role in disease pathogenesis.?>’#”> In contrast to malig-
nant HNSCC cells that clustered by patient, the study by Puram et al?®
found that HNSCC TME cells were not patient-specific and clustered
based on cell type as we also confirmed in our own analysis showing
that each TME cluster (Figure 2E) consisted of cells from multiple
patients (Figure 2B). Interestingly, HNSCC fibroblasts displayed vast
heterogeneity including two subpopulations that expressed genes affili-
ated with cancer-associated fibroblasts (CAF) (Figure 2E). Genes that
were highly differentially expressed in CAF included mesenchymal and
transforming growth factor-beta (TGF-B) signaling genes whose expres-
sion was shared by the malignant HNSCC partial-EMT subpopulation,
suggesting that CAF-malignant cell signaling may be involved in pro-
moting invasion and metastasis in HNSCC. Since most HNSCC tumors
contain similar TME subpopulations, these cells could represent shared
disease pathogenesis between all HNSCC patients that could be
targeted by a similar drug program.

The sensitivity of scRNA-Seq to detect TME heterogeneity also
allows for the detection of rare cell types such as stem- or progenitor-

707677 or rare immune cell

74,75,78,79

like cells responsible for disease maintenance
subpopulations involved in evasion of the immune response.
Ordovas-Montanes et al?’ performed scRNA-Seq on ethmoid sinus tis-
sue samples from patients with chronic rhinosinusitis with (CRWNP) or
without (CRsNP) nasal polyps and performed trajectory analysis on
individual basal epithelial cells to computationally determine a potential
pathogenic developmental cell state in CRwWNP. Trajectory analysis

examines gene expression and places cells along a developmental

timeline based on unique gene expression. Their analysis showed that
most basal cells in CRWNP are stuck in a progenitor state expressing,
among other genes, increased Whnt-signaling genes that could poten-
tially be responsible for polyp development. Another rare cell type that
can be detected by scRNA-Seq are CSC, which have been shown to
play a role in the creation of HNSCC heterogeneity, resistance to drug
therapy, disease recurrence, and metastasis making the elimination of
these cells critical to eradicating residual disease in HNSCC.° In sup-

port of this, Puram et al®®

were able to detect varying levels of epithe-
lial gene expression within malignant HNSCC subpopulations reflecting
variable levels of epithelial differentiation. Various biomarkers to iden-
tify CSC have been suggested®® and we demonstrate how CSC may be
identified within scRNA-Seq data using these known markers in one
HNSCC patient, T25 (Figure 3). Other clinically relevant rare TME sub-
populations that were detected by Puram et al>® in HNSCC and Tirosh
et al?® in melanoma were CD4+ T-regulatory cells and exhausted T cells
(Figure 2E), which likely inhibit the antitumor immune response and
prevent the efficacy of immune-modulating therapy.

3.2 | Using heterogeneity detected by scRNA-Seq
for diagnostic and prognostic evaluation

3.2.1 | Identification of disease biomarkers

Obtaining single-cell profiles from patient biopsy samples, for example
HNSCC tumors or sinus mucosa, may aid in a more sensitive diagnosis by
allowing physicians to identify unique cell-type-specific signatures or bio-
markers for disease subtyping.?” Disease subtyping is crucial in tumor
diagnostic and prognostic decision making in HNSCC8? and a few studies
have shown that scRNA-Seq-derived signatures that account for tumor
heterogeneity can more accurately classify tumor subtypes.4””# Conven-
tional bulk RNA-Seq analysis has classified HNSCC into four subtypes
based on molecular gene signatures: basal, classical, atypical, or mesen-
chymal 82 By scoring each HNSCC cell in their scRNA-Seq data based on
expression levels of previously defined HNSCC subtype signatures,

Puram et al?®

showed that malignant HNSCC cells only mapped to basal,
classical, or atypical signatures and the mesenchymal subtype was not
present in any HNSCC malignant cells. However, the mesenchymal sub-
type scored highest in fibroblasts of the TME suggesting that this subtype
truly represents HNSCC with high levels of TME gene expression
highlighting the need for tumor classification systems, potentially based
on compiled scRNA-Seq data that account for tissue heterogeneity.
Investigating gene expression within heterogenous cell clusters
detected by scRNA-Seq can be used to identify cell-type-specific known
or novel biomarkers associated with tumor metastasis, prognosis, and
survival.”®778384 pyram et al?® showed the novel partial-EMT signature
detected in a subset of malignant cells was present in existing bulk
RNA-Seq HNSCC tumor data and the levels of expression of this signa-
ture were associated with invasion, metastasis, and poor prognosis. Cur-
rently, most head and neck cancer patients undergo aggressive nodal
dissection, a procedure associated with significant morbidity, based on

unreliable markers such as tumor size or grade.8>®® Determining the
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FIGURE 3 Cancer stem cell (CSC) markers present in head and neck squamous cell carcinoma (HNSCC) patient T25. The level of expression
of different CSC markers are indicated on the t-distributed stochastic neighborhood embedding (tSNE) plot of all HNSCC cells from patient T25
(Figure 2D). Cells that express CSC genes are colored in gradations of purple depending on their expression level, with blue representing the
highest expression level. Malignant clusters (solid grey outline in Figure 2D) vary in their expression of CSC markers and some markers are also
expressed in cancer-associated fibroblasts (CAF) (dotted black outline in Figure 2D)

I?7 were also able to track changes in basal-cell

presence and extent of the partial-EMT signature in HNSCC patients Ordovas-Montanes et a

could aid in weighing the risks of nodal dissection in patients with lower
risk of metastasis. Here we also show that recently published HNSCC

survival,8”

prognostic  signatures  associated with  decreased
metastasis,®® and lack of response to radiotherapy®? can be detected in
single cells from HNSCC patient T252° (Figure 4). Further characteriza-
tion of all head and neck tumors using scRNA-Seq could reveal other
novel signatures associated with prognosis, drug response, or survival.
scRNA-Seq may also detect cell-type-specific gene expression asso-
ciated with the severity of disease. For example, Ordovas-Montanes

et al?’

was also able to detect a novel cell-type-specific change dis-
tinguishing between severe CRWNP and less severe CRsNP. They found
high interleukin (IL)-4/1L-13 expression within secretory epithelial cells
from patients with severe disease and interferon (IFN)-alpha/IFN-
gamma expression in less severe disease. Not only does this represent a
cell-type-specific drug target, but also detection of the severe disease
program by scRNA-Seq in chronic rhinosinusitis (CR) patient biopsies

could influence treatment decisions including surgical intervention.

transcriptomes before and after treatment with an IL-4Ra inhibitor.
While many polyp-specific genes were downregulated in disease-
causing basal cells, they also identified a basal-cell polyp-specific pro-
gram that did not change with treatment revealing a drug-resistant signa-
ture that could be interrogated for new druggable targets. This
demonstrates how scRNA-Seq can also be conducted before and after
treatment to monitor drug response, emergence of resistance, and iden-

tify markers of these events.

3.3 | Personalized therapy selection based on
scRNA-Seq data
3.3.1 | Patient-specific drug selection

Heterogeneity detected by scRNA-Seq can also be used to generate
novel or look for known biomarkers for drug sensitivity or resistance
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FIGURE 4 Known prognostic markers present in head and neck squamous cell carcinoma (HNSCC) patient T25. Feature plots of the original
clustering from patient T25 (Figure 2D). Cells that express known metastatic, A, poor survival, B, or radiation sensitivity, C, marker genes are
colored in gradations of purple depending on their expression level, with blue representing the highest expression level

that will aid in selecting which patients should be treated with specific
drugs.8>7%%1 While drug targets can been analyzed in cohorts of
scRNA-Seq samples, there is a need for analysis of heterogeneity at
the level of individual tumors to aid in patient-specific drug selection,
enrollment of patients in clinical trials, and analyzing ablation or alter-
ation of specific cell types before and after drug treatment.”2%4
Immunotherapy with immune checkpoint inhibitors or small-molecule
immune modulators is currently an active area of research in head and
neck cancer and many clinical trials are aimed at using these drugs to

subvert tumor-induced immunosuppression.®>?> As mentioned, both

melanoma and HNSCC scRNA-Seq studies revealed the presence of
rare exhausted CD8+ T cells and developed an exhausted T-cell signa-
ture; however, both authors found that each patient varied in their
number of exhausted T cells and their expression of known exhaus-
tion markers including receptors that inhibit the T-cell immune
response.>>?® For example, in one melanoma tumor expression of
coinhibitory CTLA4 receptor was absent from the exhausted T-cell
population; however, this patient had previously been treated with
CTLA4 inhibitor, ipilimumab, and subsequently became resistant.?®

Identification of T-regulatory and T-exhausted subpopulations
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through scRNA-Seq can lead to the creation of novel drug-response
biomarkers or potential new drug targets within these cell types.
Detecting biomarkers from single-cell TME profiles of head and neck
tumor patients may aid in determining which patients will respond
best to immune checkpoint inhibitors or should be considered for var-
ious immunotherapy clinical trials.

Cell clusters generated from scRNA-Seq data can also be ana-
lyzed for expression of known drug targets to determine if or which
cell types express certain drug targets and how effective the drug
might be in targeting all diseased subpopulations and/or pathogenic
TME cells. We show how this can theoretically be done on a patient-
specific basis by using the HNSCC data from patient T25 and dis-
playing the cells that express the targets of current drugs used to treat
HNSCC (Figure 5).8%7¢ For example, epidermal growth factor receptor
(EGFR) is the target of EGFR inhibitors such as cetuximab, and this

(A) Strong drug targets in T25

ERCC1 EGFR

tSNE_2

20 10 0 10 20 20 10 0 10 20

TuBB3

gene is expressed in malignant cells from patient T25 suggesting that
these cells are likely susceptible to this drug. Ideally, if a given drug
does not target all subpopulations of malignant cells or a particularly
pathogenic cell type of the TME such as CAF or CSC, then other drug
targets could be identified within these populations and these drugs
could be added to the drug cocktail until all cells are targeted.

One potential agnostic approach to finding new druggable targets
in malignant subpopulations or TME cells is to look for the presence
of genetic targets of FDA-approved drugs or small molecules within
clusters derived from scRNA-Seq data that could be repurposed for
use in head and neck cancer or other otolaryngologic disease.”” A
new database called Pharos describes 20 000 gene/protein targets
and the availability of FDA-approved drugs or small-molecule ligands

t.98

for each target.”® To demonstrate a possible use of this resource, we

used the batch search option to search for druggable targets within
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FIGURE 5

Drug targets for commonly used and new head and neck squamous cell carcinoma (HNSCC) drugs used to treat HNSCC in patient

T25. Feature plots of the original clustering from patient T25 (Figure 2D). Cells that express drug target genes are colored in gradations of purple
depending on their expression level, with blue representing the highest expression level. Drug target gene is written in the black in the plot title
and the drug that targets it is written at the bottom of the plot in red. A, Drugs that show strong cell-type-specific target expression in patient
T25. B, Drugs that show nonspecific or weak target expression in patient T25
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the top marker genes from HNSCC patient T28's one malignant and
two CAF clusters (Figure 6). We found 67 genes that could be
targeted with FDA-approved drugs in the malignant population, 28 in
the first CAF subpopulation, and 19 in the second CAF subpopulation
(full data in Table 3). Interestingly, some drug targets overlapped
between these populations suggesting shared signaling between
malignant and TME cells that could be targeted by a single drug. Of
note, while we only analyzed a single patient's tumor sample, this
methodology could be applied across all 18 HNSCC and 5 lymph node
samples in this cohort to make a more informed judgment on effective
drug combinations for HNSCC and effect on patient outcomes.
However, these data demonstrate the potential use of scRNA-Seq

cluster expression profiles to identify previously approved drugs and
available small molecules that could have activity against specific cells
for the treatment of refractory disease or generating data for new

clinical drug trials.

34 |

Limitations of scRNA-Seq in clinical medicine

While scRNA-Seq will help in the transition towards personalized
medicine, challenges with its translation to the clinic remain including
lack of large cohorts of scRNA-Seq human patient samples, cost,
user-friendliness, and tissue preservation. The use of scRNA-Seq on
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FIGURE 6

Potential drug targets and drugs that inhibit them for each malignant cell and cancer-associated fibroblast (CAF) cluster in head

and neck squamous cell carcinoma (HNSCC) patient T28. A, Unbiased clustering of HNSCC cells from patient T28. Potential cell-type specific
drug targets are shown under each cluster. Example antagonistic drugs that target each malignant and CAF cluster are shown. B, Feature plots of
the original clustering of HNSCC patient T28 showing cells that cluster specific drug target genes colored in gradations of purple depending on

their expression level, with blue representing the highest expression le
and are shown in Figure 6A. Full drug target data are available in Table

vel. The drugs that target these genes are written in color under each plot
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individual patient tumors to inform drug selection is currently possible
as we described above and as reported in a recent case study using
scRNA-Seq of skin and blood samples from a patient with refractory
drug-induced hypersensitivity syndrome to identify patient-specific
drug targets and successfully repurpose tofacitinib to treat this diffi-
cult case.”® While both our findings and the findings from case reports
would need to be extended by performing studies on larger cohorts
to make conclusions about prognostic outcomes from this type of
drug selection, they demonstrate that individualized drug selection
based on sequencing from a single patient sample is feasible and has
been successful. More of these types of studies are needed to con-
clude that personalized drug selection and drug repurposing using
scRNA-Seq results in better patient outcomes.””

The cost of scRNA-Seq varies based on the chosen methodology
and depends on the cost of equipment, reagents, and sequencing. For
any platform, a higher number of cells results in higher costs. The
costs of isolation and sequencing per cell have dropped significantly,
but the throughput of sequencing machines has also increased, so the
cost per run with more cells remains high. Most isolation platforms are
also only available at basic science laboratories and would require a
large upfront investment to purchase for hospital use.

In addition to cost, analysis of scRNA-Seq data requires users to
have basic bioinformatic knowledge and coding skills; however, user-
friendly bioinformatic pipelines such as the gene expression analysis
resource (gEAR) (https://umgear.org/), and scRNA-Seq workbench
created to facilitate data sharing and visualization, are currently avail-
able. Further standardization of these pipelines will be necessary for
clinical use. Tissue preservation is also an issue due to fragility and the
small amount of time that cells remain viable. Procurement of tumor
biopsies and surgical specimens may not always be predictable or fast
and, currently, the use of frozen tissue samples or methanol tissue fix-
ation’® on scRNA-Seq platforms is in its infancy; however, a few
options to aid in tissue preservation are available. Temporary tissue
stabilization buffers, PrepProtect (Miltenyi Biotec) or RNAlater
(Thermo Fisher Scientific), can preserve cells for sequencing for
48 hours. While these methods may not be compatible with scRNA-
Seq if used in combination with sNuc-Seq experiments, which have
the advantage of lysing cells and only sequencing mRNA from the
nucleus,'®® RNALater tissue preservation of fresh or frozen patient
samples can result in useful data.'®? Cell lysis used in sNuc-Seq allows
for potentially more efficient cell type delineation including even the
most interdigitated cell types and minimizes the skewing effect of
degraded mRNA or
data.11:60:61.100.102 These advantages potentially make sNuc-Seq an

cell-stress response genes on the
excellent option for precious patient samples including human vestib-

ular and cochlear tissues.

4 | CONCLUSIONS

Despite these limitations and the lack of widespread clinical availability,
the rapid advances in scRNA-Seq throughput and bioinformatic pipe-
lines are making the ability for clinicians to perform scRNA-Seq on

patient tissue a reality in the next few years. We have described how
this technology applied to three different otolaryngologic diseases, CR
and head and neck cancers HNSCC and melanoma, can make otolaryn-
gologists more aware of the cellular heterogeneity within their patients’
diseased tissue. Further analysis of tissue heterogeneity across human
patient samples can help otolaryngologist understand basic human biol-
ogy and disease pathogenesis, make diagnostic and prognostic deci-
sions, and select personalized drug therapy combinations.

We demonstrate the feasibility and importance of conducting
scRNA-Seqg on human patient samples to generate new insight into
healthy and diseased tissue biology and the possibility for this tech-
nigque to move patient care further into the era of precision medicine
where treatment can be tailored to a patient's unique transcriptome.
Currently, a human single-cell atlas project is underway with the goal
of creating single-cell profiles for every normal and pathologic cell in

103 It is not difficult to imagine a time where physi-

the human body.
cians could conduct scRNA-Seq on each pathologic patient sample
and compare it to the normal transcriptome within this atlas to deter-
mine which cells are diseased and how other patients with similar
diseased-cell transcriptomes responded to various treatments.

We hope to inform otolaryngologists of the potential of this tech-
nique to further our practice in the future and inspire ideas for how
they may use it now to gain insight into both healthy and diseased tis-
sues that may have dramatic impacts on clinical care. Because there
have been so few scRNA-Seq studies of human samples in our field,
we argue for immediate use of scRNA-Seq on more otolaryngologic
patient samples to not only aid in more sensitive diagnosis and
drug selection, but also to contribute single-cell profiles to a larger
database like the single-cell atlas which will help identify new disease
biomarkers associated with prognosis, subtypes, or drug resistance.
This technique can be applied immediately to human auditory hair
cells and spiral ganglion neurons to characterize human deafness
genes and the cell types that express them. scRNA-Seq can also be
readily applied to characterize benign and malignant tumors of the
head and neck, such as HNSCC and vestibular schwannomas, to iden-
tify tumor heterogeneity among cohorts of patients as these patholo-
gies stand to benefit the most from identification of new druggable
targets, selection of more effective drugs, or selection of patients for
clinical trials to optimize the balance between medical and surgical
treatments. As this technique becomes more readily available, other
otolaryngologic problems may also be answered. These uses will not
only increase our understanding of the cellular diversity involved in
these diseases, but also have the potential to change the way we diag-

nose, monitor, and treat patients in the field of otolaryngology.
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