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Self-regulation versus social 
influence for promoting 
cooperation on networks
Dario Madeo* & Chiara Mocenni   

Cooperation is a relevant and controversial phenomenon in human societies. Indeed, although it 
is widely recognized essential for tackling social dilemmas, finding suitable policies for promoting 
cooperation can be arduous and expensive. More often, it is driven by pre-established schemas based 
on norms and punishments. To overcome this paradigm, we highlight the interplay between the 
influence of social interactions on networks and spontaneous self-regulating mechanisms on individuals 
behavior. We show that the presence of these mechanisms in a prisoner’s dilemma game, may oppose 
the willingness of individuals to defect, thus allowing them to behave cooperatively, while interacting 
with others and taking conflicting decisions over time. These results are obtained by extending the 
Evolutionary Game Equations over Networks to account for self-regulating mechanisms. Specifically, 
we prove that players may partially or fully cooperate whether self-regulating mechanisms are 
sufficiently stronger than social pressure. The proposed model can explain unconditional cooperation 
(strong self-regulation) and unconditional defection (weak self-regulation). For intermediate self-
regulation values, more complex behaviors are observed, such as mutual defection, recruiting 
(cooperate if others cooperate), exploitation of cooperators (defect if others cooperate) and altruism 
(cooperate if others defect). These phenomena result from dynamical transitions among different 
game structures, according to changes of system parameters and cooperation of neighboring players. 
Interestingly, we show that the topology of the network of connections among players is crucial when 
self-regulation, and the associated costs, are reasonably low. In particular, a population organized on 
a random network with a Scale-Free distribution of connections is more cooperative than on a network 
with an Erdös-Rényi distribution, and, in turn, with a regular one. These results highlight that social 
diversity, encoded within heterogeneous networks, is more effective for promoting cooperation.

Cooperation in human populations is a fundamental phenomenon, which has fascinated many scientists working 
in different fields, such as biology, sociology, economics1–6, and engineering7–9. In biology it has been pointed out 
that the emergence of cooperation may be favored by the presence of kin selection, based on the altruistic behav-
ior among relatives10,11. Additionally, many theoretical approaches to understand the evolution of cooperation 
among non-relatives are based on direct reciprocity; in this case it is assumed that individuals can adopt com-
plex strategies that take into account the past history of their interactions with other individuals12,13. Although 
the previous ones are powerful mechanisms for the evolution of cooperation, they don’t cover peculiar aspects 
of human behavior. Indeed, the evolution of cooperation leads to reputation building, morality judgement and 
complex social interactions with ever increasing cognitive demands14. These mechanisms are known as indi-
rect reciprocity15,16. Other approaches for explaining the emergence of cooperation are based on the presence of 
norms in a society17,18, punishment19–24, synergy and discounting25, social diversity26 and positive interactions27. 
Also imitative processes, based on conformity, have been found to be effective in the promotion of cooperation 
within a population28.

All the aforementioned approaches are based on mathematical models which assume that interactions among 
players, as well as the update rules of strategies, e.g. when switching between cooperation and defection, are sto-
chastic, and the time evolution of players behavior is described by random variables, e.g. birth-death mecha-
nisms12 or payoff optimization through imitation29. Specifically, in these models individuals are constrained to 
choose between cooperation (C) and defection (D) in a prisoner’s dilemma scenario. Accordingly, the replicator 
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equation is a widely used mathematical model, which represents a deterministic setting ruling the time evolution 
of the probability distribution of strategies over a well-mixed infinite population30,31. However, when dealing with 
real systems, cooperation may gradually evolve starting from discrete (C or D) or fuzzy (intermediate values 
between C and D) initial conditions. In this regard, the continuous prisoner’s dilemma has been proposed as a 
representative model able to account for different levels of cooperation3,32,33.

Moreover, the presence of graphs of connections among players is typical for real populations, where asym-
metric relationships are frequently observed. The evolution of strategies on graphs has been investigated in several 
studies34–42. Among them, the replicator equation on regular infinite graphs, embedding network reciprocity, has 
been developed and analyzed in15,43,44. Interestingly, the population structure can be assumed to be the result of 
reputation-driven mechanisms, thus inducing feedbacks favoring the cooperation among individuals45.

Recently, the equation for evolutionary game on networks (EGN) has been introduced46,47 for modeling the 
deterministic dynamics of a finite networked population of individuals able to choose strategies in a continuous 
set. In this framework, people continuously interact over time with all their neighbors, and thus they are able to 
learn from their environment, composed by friends, colleagues, relatives, and so on. The tools introduced in these 
papers allow to analyze the dynamics of any single player, and to study more heterogeneous situations, where the 
initial configuration of the individuals includes partial cooperation. At the same time, the presence of a network 
of connections among the members of the population introduces some constraints influencing their interactions 
with neighbors.

In this paper, in order to study the global or partial emergence of cooperation in human societies, we propose 
to extend the EGN equation described above by introducing self-regulating processes. In cell communication, for 
example, self-regulation refers to several control mechanisms, such as signal pathways48 and quorum sensing49, 
aimed to maintain the healthy state of living systems. Specifically, inspired by9,50, where the importance of internal 
mechanisms in animal societies is discussed, an additional term is added to the EGN equation, accounting for 
the presence of feedbacks, acting at the level of any single individual. This integration is in agreement with the 
fact that “humans seem to have an innate tendency to cooperate with one another even when it goes against their 
rational self-interest51”. This characteristic is also recognized as a key factor for explaining the human response 
to monetary rewards or punishments, where the self-interest is not the only mechanism for decision making52.

However, self-regulating mechanisms, encoded by this innate tendency to cooperate, may be in conflict with 
social pressure. In fact, the presence of conflicts in human decision processes is widely recognized, as reported by 
Bear and Rand53: “In many situations, intuitive and deliberative processes can favor different decisions, leading to 
inner conflict: Rather than being of a single mind, people are torn between competing desires”.

The extended EGN allows us to study theoretically the emergence of cooperation as the result of the conflict 
between spontaneous internal factors and social pressure perceived by the members of a social interconnected 
system. The influence of the network topology is also investigated by extensive simulations.

The model
Consider a social interconnected system defined by a finite population of players = …v N{1, , } connected 
through an undirected graph with adjacency matrix aA { }v w,= . A is a symmetric N N×  matrix where =a 1v w,  
if player v is connected to player w, and 0 otherwise. The degree k av w

N
v w1 ,= ∑ =  of player v corresponds to the size 

of his neighborhood. At each time instant, an individual v will play kv continuous prisoner’s dilemma games with 
his neighbors, thus choosing his own level of cooperation, indicated by ∈x [0, 1]v . Pure strategies C and D corre-
spond to =x 1v  and x 0v = , respectively. The replicator dynamics describing this mechanism for two strategies is 
incorporated by the EGN equation46,47, which can be expressed as: 

φ
= −

∂
∂

x x x
x

(1 ) ,
(1)v v v

v

v


where the function vφ  represents the payoff of player v over the network, thus accounting for the sum of all out-
comes of the kv two-players games played by v with neighbors (refer to the SI document for further details): 

a x xx( ) ( , ),
(2)v

w

N

v w v w
1

,∑φ φ=
=

where the vector x x xx [ , , , ]N1 2= …  represents the strategy profile of the whole population, while x x( , )v wφ  is 
the payoff earned by player v against w when they use strategies xv and xw, respectively. In the specific case of the 
continuous prisoner’s dilemma game33, the payoff function φ is the following: 

x x R T P S x x S P x T P x P( , ) ( ) ( ) ( ) ,v w v w v wφ = − + − + − + − +

where R is the reward for mutual cooperation, T  is the temptation to defect when the opponent cooperates, S is the 
sucker’s payoff earned by a cooperative player when the opponent is a free rider, and P is the punishment for 
mutual defection. The social dilemma arises when the temptation to defect is stronger than the reward for coop-
eration (T R> ), and the punishment for defection is preferred to the sucker’s payoff ( >P S). Moreover, P is lower 
than R. Without loss of generality, we assume R 1=  and =P 0, thereby normalizing the advantage of mutual 
cooperation over mutual defection29. Under these assumptions, >T 1 and S 0< , and the payoff function φ reads 
as follows: 

x x T S x x Sx Tx( , ) (1 ) (3)v w v w v wφ = − − + + .
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Therefore, the derivative of φv with respect to xv, introduced in (1), is: 

∑ ∑φ φ∂
∂

=
∂

∂
= − − + .

= =x
a x x

x
a T S x S( , ) [(1 ) ]

(4)
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 Unlike the standard replicator equation, which deals with the distribution of strategies over a well mixed popu-
lation of players, indistinguishable from one another except for the strategy chosen, the EGN equation (1) is a 
system of ODEs, each one describing the strategy evolution of a single player v, able to appraise whether a change 
of his strategy xv produces a variation of his own payoff φv. Notice that, since in (1) − ≥x x(1 ) 0v v , the sign of xv 
depends only on the term φ∂ ∂x/v v, which involves the states xw of all neighbors, rather than the current state xv of 
player v himself. Then, if this term is positive (negative), player v would like to increase (decrease) his level of 
cooperation xv. Of course, when it is null, player v has no incentives to change his mind. In the strict formulation 
of the prisoner’s dilemma game, unilateral defection is preferred to mutual cooperation, i.e. >T 1, and mutual 
defection overcomes unilateral cooperation, i.e. S 0< 29,30,54. Consequently, in (1), φ∂ ∂ ≤x/ 0v v , then ≤x 0v , 
showing that the level of cooperation eventually decreases over time towards full defection.

The willingness to pursue cooperation as a greater good may follow from internal mechanisms correlated to 
personal awareness and culture51, contrasting with the aforementioned selfish processes, which ultimately lead to 
defection. Reasonably, these mechanisms depend on the current strategy xv of player himself, and act as inertial 
terms, which reduce the rational temptation to defect. Inspired by the behavior observed in animal societies9,50, 
we consider an internal mechanism, named self-regulation, defined by the term f x( )v v vβ− , where f x( )v v  accounts 
for self-regulation itself, and βv measures its strength. Self-regulation is meant to balance the external mechanisms 

x/v vφ∂ ∂ , which in turn indicate the effects of social influence. Notice that, for β = 0v , the standard EGN equation 
is recovered.

The extended Self-Regulated EGN equation, hereafter called SR-EGN, is reported in Fig. 1. A natural way for 
defining the function fv is to model the self-regulation term as a virtual game that each individual plays against 
himself, a self-game. For this reason, the game can be a Prisoner’s dilemma game, characterized by the same 
parameters T  and S: 

f x T S x S( ) (1 ) (5)v v v= − − + .

In the SR-EGN equation, positive values of βv cause an “aware resistance” against the temptation to defect, thus 
activating a conflict between internal and external mechanisms. Negative values of vβ  are not considered since 
they foster the defective prisoner’s dilemma dynamics. The interplay between social influence and self-regulation 
constitutes an intuitive explanation of the theoretical results formally proved in the SI document and hereafter 
schematically presented.

Results
It is worthwhile to notice that SR-EGN equation can be rewritten as follows: 

˙ ¯ β= − − − + − − − +x x x k T S x S T S x S(1 ){ [(1 ) ] [(1 ) ]}, (6)v v v v v v v

where x k a x(1/ )v v w
N

v w w1 ,= ∑ =  represents the equivalent player, which incorporates the average decisions of the 
neighbors of player v. Since the SR-EGN depends on the difference of terms (4) and (5), their comparison allows 
us to evaluate the relationship between social influence and self-regulation by means of self-regulation strength 

vβ  and degree kv of player v. We prove the following result.
Main result 1. If for each player self-regulation is stronger than connectivity,  kv vβ > , then the fully cooperative 

configuration x [1, 1, , 1]ALLC
= …∗  is an attractor for the system dynamics, while at the same time total defec-

tion x [0, 0, , 0]ALLD
= …∗  is repulsive.

These stability and instability properties of ∗xALLC and ∗xALLD have been formally proved by using linear stability 
theory (see Theorems 3 and 4 of the SI document). Stronger results highlight the relationship among global 

Figure 1.  SR-EGN equation. Strategy dynamics of player v (green node) is ruled by the SR-EGN equation 
(green box). It includes two terms: the social influence term x/v vφ∂ ∂  (blue box) and the self-regulation term fv vβ  
(orange box). The arrows represent the interactions of player v with neighbors (blue) and with himself (orange).
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stability of ∗xALLC, initial conditions, and payoffs T 1>  and <S 0. To this aim, it is useful to introduce the param-
eter ρ ≥ 1: 

ρ =
− −
− −

.
T S
T S

max{ 1, }
min{ 1, } (7)

 When the effect of T  is enough stronger than S, the game is driven by the temptation to defect (T-driven). 
Accordingly, in this case T S(1 )/ρ = − . On the other hand, when the effect of S is stronger than T , then the game 
is driven by the fear to be betrayed (S-driven). In this case, S T/(1 )ρ = − . In both T-driven and S-driven cases, 
ρ ≥ 1. Further details can be found in the SI document. The parameter ρ is involved in the following results con-
cerning the global stability of xALLC

∗  and ∗xALLD. The proofs, based on finding suitable nonlinear functions satisfy-
ing the Lyapunov stability theory, are given in Theorems 5 and 6 of the SI document.

 Main result 2. If, for each player v , β ρ> kv v   , then  ∗xALLC   is a global attractor for any initial strat-
egy  ∈x (0) (0, 1]v , thus all members of the population will be eventually cooperators.

 Main result 3. If, for each player v   , β ρ< k /v v , then  ∗xALLD  is a global attractor for any initial strat-
egy  ∈x (0) [0, 1)v , thus all members of the population will be eventually defectors.

Therefore, under stronger conditions than the one assumed in Main result 1, ∗xALLC is globally attractive and 
xALLD

∗  is globally repulsive.
The previous results are related to the global emergence of cooperation, arising when all members of a net-

worked population turn their strategies to cooperation. However, cooperation can partially emerge; for example, 
some players may exhibit partial levels of cooperation.

Let w k{ : }w wβ ρ= >C  be the set of players which satisfy Main result 2, thus, if ∈v C, then +∞ =x ( ) 1v  for 
any initial condition ∈x (0) (0, 1]v . Let w k{ : 0 / }w wβ ρ= ≤ <D  be the set of players satisfying Main result 3. If 
v D∈ , then x ( ) 0v +∞ = , independently on the initial condition ∈x (0) [0, 1)v . The dynamics of individuals in 
both these sets are also independent on the behavior of any other player of the population.

Interestingly, a richer set of unexpected behaviors is observed for the uncertain players, belonging to the set 
w k k{ : / }w w wρ β ρ= ≤ ≤U , for which it is not guaranteed that x ( ) 1v +∞ = , nor +∞ =x ( ) 0v . The dynamics of 

these individuals has been investigated by means of extensive numerical experiments.
First of all, in Fig. 2 some prototypical examples of the asymptotic dynamics and the corresponding flows of 

uncertain players are reported. The solutions have been obtained by solving the ODE system (6) through an 
explicit Runge-Kutta (4,5) formula55. This numerical method has been used for all simulations reported in this 
paper. In the subplots 2A.1, 2B.1, 2C.1 and 2D.1, assuming that the equivalent player reached a fully cooperative 
( =x 1v ) or fully defective (x 0v = ) steady state, and for a constant value of kv, the value of xv  is drawn with differ-
ent colors, according to the values of βv and xv. In the same figures, the attracting (black circles) and repulsive 
(white circles) steady states of xv are depicted. One can notice that in a T-driven prisoner’s dilemma game (sub-
plots 2A.1 and 2B.1) there are repulsive partially cooperative equilibria xv

∗. These equilibria separate the phase 
space as thresholds, thus giving rise to a bistable dynamics leading player to full cooperation or full defection, for 
any initial condition x x(0) (0,1)\{ }v v∈ ∗ . Existence and feasibility of partially cooperative equilibria are discussed 
in Theorems 1 and 2 of the SI document. Moreover, by increasing xv from 0 to 1, the green area reduces, thus 
decreasing the probability for individuals to be cooperative.

The time courses xv of player v (red line) interacting with unconditional defective or unconditional coopera-
tive equivalent players xv (blue line), are depicted in the second and third columns of Fig. 2, where, for example, 
we observe the onset of reciprocity mechanisms, for which v defects if his neighborhood defects (subplot 2A.2) or 
v cooperates if his neighborhood cooperates (subplot 2B.3). Interestingly, also anti-reciprocal behaviors arise: v 
may cooperate if others defect, as shown in subplot 2A.3. In this case, the absence of cooperators in the neighbor-
hood to be exploited, makes v aware on the importance of being cooperative. On the contrary, the abundance of 
cooperators in the neighborhood may lead player v towards defection, in order to exploit nearby players 
(subplot 2B.2).

For the S-driven games (subplots 2C.1 and 2D.1), the partially cooperative steady states xv
∗ are attractive, thus 

ensuring that players U∈v  will reach at least a partial level of cooperation. Interestingly, since the punishment 
effect is strong, the presence of cooperators in the neighborhood facilitates the convergence to a cooperative state. 
Specifically, if xv moves from 0 (subplot 2C.1) to 1 (subplot 2D.1), the probability for a player to be cooperative 
increases. Subplots 2C.2–2C.3, and 2D.2–2D.3 depict some examples of the time course of the solutions when 
playing against unconditional defective or unconditional cooperative equivalent players. Reciprocity mechanisms 
are observed also for the S-driven case, for example, defector-defector (subplot  2C.2), partially 
cooperator-cooperator (subplot 2D.2), cooperator-cooperator (subplot 2D.3). Finally, Fig. 2C.3 shows an 
anti-reciprocal behavior, where v partially cooperates when the neighborhood defects.

In addition to the local dynamics of players, the global behavior of the system is studied by investigating the distri-
bution of cooperation over the whole population. To this aim, extensive simulations have been run using random net-
works with Erdös-Rényi and Scale-Free degree distributions. For each model, 500 networks of N 1000=  nodes have 
been generated, with average degree k 10= . The the SR-EGN equation has been simulated with random initial condi-
tions, assuming that all individuals share the same self-regulating factor β β=v . In Fig. 3 the resulting percentages of 
full defectors (red areas), partial cooperators (orange areas) and full cooperators (yellow areas) at steady state are 
reported for both the T-driven and S-driven games and different values of {0, , 20}β ∈ … . Color intensities are used to 
distinguish the sets D U,  and C: dark red areas indicate the individuals in class D and dark yellow the individuals in 
class C. As expected from the theoretical results, increasing β produces an increase of the number of cooperators.
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Anyway, Fig. 3 clearly shows that uncertain individuals v U∈  are also able to cooperate (light yellow areas), 
partially cooperate in the S-driven game (orange areas in subplots 3B and 3D) or defect (light red areas), thus 
showing that cooperation is possible also for lower values of β. This is very important in real applications, because 
the high values of β required by the theoretical results are usually associated to high costs for the individuals.

Finally, we notice that this phenomenon is stronger for the Scale-Free than for the Erdös-Rényi networks, thus 
suggesting that the heterogeneity of a network is highly effective in promoting cooperation. Furthermore, the 
average convergence speed of the system to a steady state, reported by blue lines in Fig. 3, changes with β. In par-
ticular, it decreases for small βs, due to the transition from all defectors to a mixed situation, where cooperators 
and defectors coexist. Finally, when the number of cooperators dominate the population, the speed increases 
again.

Game transitions.  A significant result of this study is that self-regulation induces game transitions, resulting 
from changes in the structure of the underlying games. To explain this phenomenon, we calculate the equivalent 
game of player v and we find that parameter ρ, player’s degree kv, self-regulating strength βv, as well as the strategy 
of the equivalent player xv, are responsible for these transitions (see the SI document for technical details).

Figure 2.  Flow and dynamics. The value of the derivative xv is plotted as a function of xv and βv, with =k 10v , 
together with attractive (black) and repulsive (white) steady states. For a T-driven game ( =T 3, S 1= −  and 
ρ = 2), the time derivatives of xv for a generic player connected only to full defectors ( =x 0v ) and only to full 
cooperators ( =x 1v ) are shown in (A.1,B.1), respectively. Similarly, (C.1,D.1) show the time derivatives of xv 
for a S-driven game ( =T 2, S 2= −  and ρ = 2), assuming a neighborhood of full defectors and full cooperators, 
respectively. Vertical dashed lines are drawn for β ρ= k /v v  and β ρ= kv v , thus separating the regions D, U and 
C. Some examples of the time courses of x t( )v  (red) and of x t( )v  (blue) for a player v U∈  are depicted in A.2, 
B.2, C.2 and D.2 for kv vβ < , and in A.3, B.3, C.3 and D.3 for β > kv v.
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A short recap on two strategy games is useful. Four game typologies are possible: PD game, where defection 
is the only dominant strategy; Stag Hunt game (SH), where cooperation (defection) is the best response to coop-
eration (defection); Chicken game (CH), where cooperation is the best response to defection, and vice versa; 
Harmony game (HA), where cooperation is the only dominant strategy.

In the SR-EGN equation, player v is an unconditional defector when β ρ< k /v v . Indeed he belongs to D and 
his equivalent game is still a PD. On the other hand, player v is an unconditional cooperator when kv vβ ρ> . In 
this case, he belongs to C, and the equivalent game played by player v is now HA. Notice that in both situations, 
the equivalent game does not depend on the behavior of the equivalent player xv.

In the intermediate region U, the dynamics of player v is uncertain, and transitions may dynamically occur 
since the equivalent game is also influenced by the behavior of the neighboring players. In the T-driven case, when 

ρ β< <k k/v v v, as xv decreases, the temptation of v to defect is reduced, and thus transitions from PD to SH 
games are observed. Instead, for increasing values of xv, transitions from SH to PD occur. Similarly, when 

β ρ< <k kv v v , as xv decreases, the fear of player v to be betrayed is reduced, thus transitions from SH to HA 
games are observed. Conversely, for increasing values of xv, transitions from HA to SH arise. For the S-driven case, 
when k k/v v vρ β< < , the observed transitions are from PD to CH games when the equivalent player xv increases 
his cooperation. Indeed, this raise is able to inhibit the player v’s fear to be betrayed. Finally, when β ρ< <k kv v v , 
v moves from a CH to a HA game as xv increases; the transition is due to the inhibition of the temptation of v to 
defect. All the described phenomena dynamically occur, provided that cooperation xv varies enough.

These results are summarized schematically in Fig. 4, confirming the anti-reciprocal (reciprocal) behaviors 
already discussed for the T-driven (S-driven) case.

Additionally, we remark that the parameter ρ plays a role for the emergence of cooperation in the group of the 
uncertain players. Indeed, the size ρ ρ−k ( 1/ )v  of the interval U Uβ ρ ρ= ∈ =v k k{ : } [ / , ]v v v v  is larger as ρ 
increases, thus favoring the onset of game transitions and concurring to explain better the results shown in Fig. 3, 
for which the cooperation depends mainly on uncertain players.

The role of network structure.  As aforementioned, the network structure plays a significant role for the 
emergence of cooperation. Fig. 5 shows the average cooperation of the whole population, calculated as 

Figure 3.  Average distribution of strategies and convergence speed. Four different setups are considered: Erdös-
Rényi for T-driven (A) and S-driven (B) games, and Scale-Free for T-driven (C) and S-driven (D) cases. 500 
graphs with N 1000=  nodes and average degree =k 10 have been generated for each topology. For different 
values of the parameter β β= ∈ …{0, , 20}v  and using random initial conditions in the set (0, 1), the SR-EGN 
equation is simulated until a steady state is reached. The values of T  and S are the same as in Fig. 2. The average 
distribution of strategies of the whole population is shown for defectors (red), partial cooperators (orange), and 
cooperators (yellow). The blue lines represent the convergence speed, experimentally estimated as the inverse of 
the time required to reach the steady state.
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= ∑ ∑ ∞= =x x ( )
NI i

I
v
N

v
1

1 1

, where =I 500 is the number of random instances of the experiment, which include 
network generation and initial conditions. In all simulations, 5vβ β= = . The behavior of x is reported in the 
subplots 5A (T-driven) and 5B (S-driven), by varying k in {2, 4, , 12}… , for regular (magenta), Erdös-Rényi 
(green) and Scale-Free (blue) networks. Subplots 5C and 5D report the average cooperation xU of the subpopula-
tion of uncertain players v ∈ U.

Interestingly, except for very small values of k, random networks, and especially the Scale-Free networks, 
foster cooperation more than regular ones. This fact is more relevant for the subset of uncertain players (sub-
plots 5C and 5D), suggesting that these players have a crucial role for cooperation.

The presented model allows to study the dynamics of every member of the population, thus enabling to 
observe whether an individual is changing opinion over time. Moreover, we are interested in understanding the 
relationship between the dynamics of each individual and that of his equivalent player, thus highlighting different 
possible behaviors, such as mutual defection, recruiting (cooperate if others cooperate), exploitation of coopera-
tors (defect if others cooperate) and altruism (cooperate if others defect). In order to quantify the difference 
between the level of cooperation of player v and the average cooperation of his neighbors at steady state, the fol-
lowing indicator is introduced: 

c x x( ) ( ) (8)v v v= ∞ − ∞ .

Figure 4.  SR-EGN equation: schematic representation of game transitions.

Figure 5.  Average cooperation vs. average degree. The average cooperation level x of the whole population at 
steady state is reported for T-driven (A) and S-driven (B) games as a function of the average degree 

∈ …k {2, 4, , 12}¯ . The population is composed by =N 1000 players and it is organized over regular (magenta), 
Erdös-Rényi (green) and Scale-Free (blue) random networks. Similarly, in (C,D) the average cooperation Ux  of 
the subpopulation of players Uv ∈ , is depicted. The values have been averaged over 500 simulations for each 
network topology and for each game. In all cases, β β= = 5v . The values of T  and S are the same as in Fig. 2.
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 If c 0v  , the player exhibits mutual behavior. On the contrary, for cv sufficiently different from 0, we observe 
opposite behaviors. Specifically, if c 0v > , then player v shows altruism, since his level of cooperation is higher 
than the average of his neighbors, while c 0v <  indicates exploitation of cooperators.

Under the same experimental setup used for Fig. 5, Fig. 6 reports a dot for each player, representing the com-
bination of the value cv (x-axis) and his degree kv (y-axis). Moreover, the color of each dot corresponds to the 
degree kv of player v, thus allowing to distinguish between cooperative players in class C (green dots), uncertain 
players in class U (blue dots) and defective players in class D (magenta dots). The self-regulation parameter β is 
set to 10 for all players. The black lines in Fig. 6 represent the distribution over the whole population of the indi-
cator cv. Players exhibiting mutual behavior are mainly present in the S-driven games, as reported by black lines in 
subplots 6B and 6D. In the T-driven case, the population mainly shows oppositing behaviors, and it is split into 
two groups composed by altruistic and selfish players, respectively (subplots 6A and 6C). It is worthwhile to 
notice that altruistic players ( >c 0v ) belong to classes C and U, thus showing a low/intermediate level of connec-
tivity within the network, while selfish players (c 0v < ) belong to class D, where the connectivity is high. 
Moreover, while the distribution of cv values is symmetric with respect to 0 for the Erdös-Rényi networks, as 
shown in subplots 6A and 6B, it is asymmetric when the network of connections is Scale-free, as reported in sub-
plots 6C and 6D. In fact, Scale-free networks include a higher number of altruistic players as they present a high 
number of lowly connected players, which concur to activate reciprocal mechanisms.

Joining the results of Figs. 2, 3, 5 and 6, we conclude that some individuals are more sensitive and aware of their 
internal mechanisms, thus becoming cooperative for lower self-regulating factors, and exhibiting a more altruistic 
behavior. In particular, for the S-driven game, these receptive individuals catalyze the others to cooperate.

Discussion
This paper proposes the analysis of the interplay between social influence and self-regulating mechanisms in 
continuous models describing the strategic interactions among the members of a networked population. The 
EGN equation has been appropriately extended to account for a self-regulation feedback, thus giving rise to the 
SR-EGN equation, which activates stable processes opposing the natural tendency towards defection, typical of 
the prisoner’s dilemma game. Theoretical results ensure that cooperation globally emerges in the extended model, 
whether self-regulation is stronger than social pressure. Similarly, low self-regulation will let defection spreading 
out all over the population.

The theoretical results presented in this study are based on the stability analysis of steady states, representing 
the full or partial cooperative or defective asymptotic behavior of the individuals. The time required for the indi-
viduals to reach cooperative states has been also investigated.

From a practical perspective, we found that for intermediate levels of self-regulation, cooperation may par-
tially emerge as the result of different mechanisms: cooperative reciprocity, which activates a recruiting process, 
and cooperative anti-reciprocity (altruism) arising from the awareness of individuals. These results are coherent 

Figure 6.  Selfishness and altruism within heterogeneous populations. Using the same experimental setup 
developed for Fig. 3, for each player, we report a dot representing the value cv (x-axis) and his degree kv (y-axis). 
The color of each dot indicates the degree kv of player v, thus allowing to distinguish among classes C (green 
dots), U (blue dots) and D (magenta dots). The self-regulation parameter β is set to 10 for all players. The black 
lines represent the distribution (%) of the indicator cv over the whole population.
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with the occurrence of game transitions. Numerical simulations show that the recruiting process is mostly driven 
by lowly connected neighbors, while awareness mechanisms are prominently caused by highly connected neigh-
bors. Coherently, we find that the Scale-Free topologies are the most cooperative. Indeed, on one hand, they nat-
urally present a high number of lowly connected players, which concur to activate reciprocal mechanisms, while 
the typical presence of highly connected players (hubs) activates the anti-reciprocal mechanisms. On the other 
hand, the Erdös-Rényi topologies are less cooperative since they present approximately the same number of lowly 
and highly connected neighbors. Additionally, the regular networks are in general the least cooperative since the 
distinction between lowly and highly connected players vanishes. Hence, it can be concluded that cooperation is 
more likely in heterogeneous network structures.

We want also to highlight that the presence of self-regulation mechanisms entails some costs, which can be 
reasonably proportional to parameter β. This means that a policy based on the theoretical results reported in this 
work guarantees that a certain amount of people will unconditionally cooperate, and that, at the same time, they 
will produce higher costs for the society. The good news is that the same level of cooperation can be achieved by 
using lower values of β, relying on the spontaneous emerging and learning processes of recruiting and awareness, 
thus reducing significantly the social impact. Heterogeneous populations connected by a Scale-Free connection 
structure are able to additionally foster the emergence of this “low-cost” cooperation.

In the present work a homogeneous assignment of game parameters T  and S to each member of the population 
is assumed. This choice is motivated for easing the understanding of the self-regulating mechanisms. Anyway, the 
SR-EGN equation naturally incorporates the possibility of assuming more heterogeneous setup, such as 
opponent-specific payoffs, as well as different self-game structures. Future efforts will be devoted to investigate 
these cases.
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