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ScienceDirect
Sender–receiver (S–R) systems abound in biology, with

communication systems sending information in various forms.

Information theory provides a quantitative basis for analysing

these processes and is being applied to study natural genetic,

enzymatic and neural networks. Recent advances in synthetic

biology are providing us with a wealth of artificial S–R systems,

giving us quantitative control over networks with a finite number

of well-characterised components. Combining the two

approaches can help to predict how to maximise signalling

robustness, and will allow us to make increasingly complex

biological computers. Ultimately, pushing the boundaries of

synthetic biology will require moving beyond engineering the

flow of information and towards building more sophisticated

circuits that interpret biological meaning.
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Introduction
There is an intrinsic drive for biological entities to

cooperate and coordinate responses to environmental

queues. From DNA replication to bacterial quorum sensing,

through to bird flock behaviours, and even in human econ-

omical structures, biological systems organise behaviours via

communication. Signals by themselves do not usually con-

tain any meaning, i.e. supplying useful patterns, materials or

energy. Rather, meaning appears only when the agents

involved in communication interpret the information. But

how can we in the life sciences quantify this information?

The mathematical formulation of communication sys-

tems and information was laid down by Claude Shannon

in a landmark 1948 paper [1]. Shannon showed that
www.sciencedirect.com 
axiomatic rules describe and predict communication be-

tween a sender and a receiver, establishing limits in

mutual information transfer imposed by the channel in

which a message is transmitted. The beauty of Shannon’s

work is that it applies to any system that can be abstracted

to a sender–receiver (S–R) topology.

S–R systems use the ‘bit’ as the unit of information, and

this is the ratio of the probability of a state, given that a

signal has been received, versus the probability of a state

without a signal. In other words, the quantity of infor-

mation in a signal can be measured by the shifts in state

probabilities. However, some researchers argue that it is

equally important to have a measure for the context or

‘meaning’ of a signal as well as the quantity [2].

In this review, we will focus on studies relating to S-R

systems with cells and biomolecules as the information

processing agents. We will outline recent developments

that allow biologists to quantify signalling, and how this is

giving us a first glimpse into Shannon’s predictions in

biological systems (Figure 1).

First, we will look at S–R systems where the signal is

transmitted through direct contact (intra- or inter-cellu-

lar). Next we will consider systems with signal trans-

mission through external media, including diffusion

processes, complex multicellular information processing

and pattern formation. The most important advance is

that new studies are using the tools of synthetic biology to

build S–R systems from the bottom-up. While synthetic

biologists aim to harness the power of biological systems,

the insights we gain into cellular communication may

allow us to move from the concept of information into

engineerable definitions of ‘meaning’.

Single proteins contain internal information
channels
Perhaps the simplest biological S–R system involves the

allosteric communication of domains within a single

protein. In a remarkable study, researchers visualised

the communication channel within the Fyn SH2 domain,

showing a noisy protein conformation ‘wire’ linking the two

sides of the protein [3��] (Figure 2). By combining struc-

tural modelling and information theory, they showed how

this channel transferred SH2 binding information towards

theSH3andkinasedomains. Going onelayerofcomplexity

further, they later explored Shannon’s mutual information

transfer in a protein signalling cascade: the p27 regulatory

pathway [4]. By quantifying engineeringproperties, suchas
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Figure 1
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Sender–Receiver (S–R) systems occur at all levels of biology. (a) The schematic visualises these layers of communication as a multi-level jigsaw puzzle,

working between factors such as proteins, cells and organs. In principle, Shannon’s information theory can be used to quantify the information flow in all

such S–R systems. The Proteins image, Alpha-Amanitin–RNA polymerase II complex, is licensed under Public domain via Wikimedia Commons. (b) Inputs

from the sender (S) vary in terms of dose (e.g. chemical concentration), type of biomolecule (e.g. AHL, volatile Aldehyde, Dopamine, or even DNA

fragments) and the rate of production. The channel is the medium of information transfer. The channel capacity C (measured in bits per second) is

modulated by the equation shown; bandwidth B is the range of frequency allowed by the channel (the change in concentration of molecules; Hz) and S and

N are signal and noise respectively. The receiver (R) mediates signal reception via cognate receivers like cell surface receptors. A modulation system like a

cell signalling pathway links the signal to the interpreter (e.g. a responsive promoter for gene expression) resulting in extraction of the ‘meaning’ in the

signal. The outputs, such as gene expression, are measured relative to space, time and input dose responses.
channel noise and channel capacity, they could identify

protein concentrations for optimum switching and signal-

ling. Applying information theory clearly has the potential

to give us new quantitative insights in biology [5,6].

Artificial stimulation of nervous systems to
transmit information
Communication by direct contact occurs both within and

between cells, and neurons were the first cells to be

described as senders and receivers of information. Early

experiments, such as stimulating and recording electrical

signals through single neurons in the Aplysia deplians giant

cell [7], eventually led to modern techniques in electro-

physiology. Combined with recent genetic tools [8–10], and

imaging techniques such as confocal fluorescence micro-

scopy, fMRI BOLD (blood oxygenation level-dependent

magnetic resonance imaging) and CLARITY [11], a full

connectivity map of the brain is within our reach.

The development of optogenetics ([12], reviewed in [13])

allows stimulating a single neuron with light in one region of

the brain. By stimulating the cortex, and measuring a distal
Current Opinion in Biotechnology 2015, 31:101–107 
receiver response in the thalamus, particular network beha-

viours have been observed, such as signalling delays [14]. It

is fascinating to imagine how the application of quantitative

information theory approaches to these S–R systems will

reveal new insights into the transmission of thought.

Optogenetic techniques are also being used to map

the neuronal networks responsible for locomotion, by

targeting glutamatergic neurons [15,16]. It is possible,

in principle, to stimulate spinal chord neurons (senders)

to elicit a response in motor neurons (receivers). Thus,

the tantalising prospect of being able to programme

movement genetically emerges [17].

Understanding neural S–R systems, and their reciprocal

signalling with the body, is already opening new fields in

medicine. Murakami and colleagues [18] demonstrated

that inducing electrical signals in mouse soleus muscles

can open the brain–blood barrier to immune system T cells.

Furthermore, Torres-Rosas et al. activated the sciatic nerve

and dramatically reduced the levels of autoinflamatory

cytokines in a sepsis model mouse [19�]. Engineering
www.sciencedirect.com
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Figure 2

(a)

(b) (c)

co
m

m
un

ic
at

io
n 

ch
an

ne
l

SH2/SH3 connecting loop

Peptide binding site

Current Opinion in Biotechnology

An information channel within a single protein. (a) A recent study [3��] visualised the communication channel within the Fyn SH2 domain, linking a

peptide binding site (blue), and an SH2/SH3 connecting loop for Fyn kinase (green). The change in mutual information upon binding is measured

between each pair of residues (white nodes). Adjacent residue pairs with significant changes in mutual information are represented as black or red

lines. The largest changes, shown in red, are observed between residues forming a connected path from the peptide binding region to the connecting

loop region. Thus, information theory reveals the major communication path. (b) and (c) are two structural views, highlighting the positions of the

residues involved in the binding region and loop region (b) or the communication channel (c). The peptide (including the phosphorylated tyrosine) is in

dark purple (top), the peptide binding site is in blue and the connecting loop is in green (bottom). Images kindly provided by Dr. Jesper Ferkinghoff-

Borg and Dr. Joost Schymkowitz.
electrochemically-coupled S–R systems is only just begin-

ning and has great potential for both biomimetics and

synthetic neural networks.

Developmental signalling can occur with
direct cell-cell contacts
Developmental patterning provides us with a huge range of

S–R systems to explore, and direct cell-cell communication
www.sciencedirect.com 
is exemplified by the Notch–Delta system found in most

multicellular organisms (reviewed in [20]). By acting in

both cis and trans, these cell membrane receptors direc-

tionally shape pattern formation [21]. The receptors are

providing new tools for synthetic biology, such as engin-

eering trigger waves for intercellular information propa-

gation, by transplanting Notch–Delta systems into naive

cells [22].
Current Opinion in Biotechnology 2015, 31:101–107
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The gap between nearby intercellular and distal multi-

cellular communication is filled by organisms such as the

fungus Physarum Polycephalum, which communicates with

long protoplastic tubes to send signals between cells [23].

Strikingly, the organisation of tubes optimises resource

distribution [24,25], and the electric potential recorded

between joined cells resembles brain waves [26]. Infor-

mation transfer in Physarum involves multiple mechan-

isms: feeding protoplastic arms with fluorescent beads has

revealed a peristaltic mechanism for signal transport [27].

This capability has been translated into computer algo-

rithms to model dynamical transport networks [28,29].

Furthermore, Physarum is a robust organism which can

grow on many different substrates, making it a good

candidate for development of synthetic biosensors [30].

Overall, such systems may provide an intriguing scaffold

for engineering contact-based S–R systems and studying

them on a quantitative basis.

Synthetic bacterial S–R systems employ
signal diffusion for patterning
Contactless S–R systems, with diffusing biochemical

signals, have been a major focus of research in synthetic

biology and have been reviewed extensively elsewhere

[31,32]. The first example of a synthetic S–R system

involved a pulse generating response in E. coli [33�].
Sender cells secreted the quorum-sensing signalling

molecule acyl-homoserine lactone (AHL) while receiver

cells activated a feed-forward transcription factor net-

work to create a transient pulse of GFP expression.

Thus, the simple diffusing signal created dynamic

spatiotemporal patterns of gene expression. Later studies

demonstrated elegant stripe or band-patterning systems,

also using quorum-sensing signalling components [34��].
Quorum sensing S-R systems have even been coupled to

cell motility [35�], thus achieving self-organisation of

highly regular stripe patterns. Self-organising systems

do not always need spatial S–R signalling, and a recent

band-forming system relied entirely on a temporal cue

[36].

Our own work took a systematic approach to explore

band-patterning S–R networks [37��]. By exploring the

3-node network ‘design space’ exhaustively, we found

that only a finite number of mechanisms can achieve

stripe formation (Figure 3); we built all of these different

mechanisms on a single flexible, synthetic biology scaf-

fold, while developing an engineering method to ensure

that networks function by a particular mechanism. Con-

trolling mechanism precisely is essential to further pro-

gress in synthetic biology.

The examples above are based on one class of signalling

agent: small diffusible chemical molecules. The infor-

mation content of the molecules themselves is rather low,

and the message conveyed is encoded in the amount of
Current Opinion in Biotechnology 2015, 31:101–107 
signal transferred. In an important conceptual leap, Ortiz

and Endy are exploring methods of information transfer

via DNA sequences encoded in the bacteriophage M13

[38]. Such methods have the potential for complex, high-

content information transfer.

Bidirectional communication: from artificial
ecosystems to synchronised oscillators
Two-way communication, also employing diffusing sig-

nals between cells, has led to investigations of the com-

putational potential of artificial ecosystems. For example,

Brenner et al. achieved an AND-gate logic in E. coli,
where signals from two complementary cell types had to

accumulate to give an output, in the context of a coop-

erative microbial biofilm [39�]. A similar system, invol-

ving obligatory cooperation in yeast, explored the range of

conditions that give rise to sustainable two-way codepen-

dence [40].

Predator-prey systems exhibit different two-way com-

munication, involving negative feedback cycles, and have

been built synthetically in E. coli, using microchemostats

[41]. Synthetic ecosystems have even used bacterial and

mammalian cell mixtures, leading to social behaviours

like commensalism, ammensalism, mutualism, parasit-

ism, and predator–prey oscillations [42].

Oscillatory systems, employing delayed negative feed-

back, are a favourite engineering target for synthetic

biology, but a recent study elegantly employed an extra

S–R layer to synchronise the oscillations in a population of

bacterial cells [43]. An AHL system coupled cells to each

other, ensuring that their oscillations occurred in phase.

Coupling synthetic gene networks to intracellular S–R

systems can lead to ‘sociability’ and reinforced population

behaviours [44].

Eukaryotic S–R systems: synthetic
communication and patterning circuits
Synthetic biology in yeast, plants and mammals is some-

times seen as playing catch-up with its bacterial counter-

part, but there is notable progress in engineering S–R

systems. The first synthetic, eukaryotic cell-cell com-

munication system was in yeast and employed a plant

signalling hormone from Arabidopsis (cytokinin) to make

positive feedback circuits [45�]. Two-way communication

has also been engineered in mammalian cells, using L-

tryptophan and acetaldehyde as signalling molecules

[46��]. This system coupled the communication to a

timed phenotype: the maturation of blood cells by growth

factors.

Engineering networks inspired by embryonic develop-

mental patterning is also a growing field within mamma-

lian synthetic biology. Tetracycline gradient band-pass

receiver systems [47] have been followed by fully geneti-

cally-encoded S–R systems [48]. In the latter study,
www.sciencedirect.com
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Figure 3
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An systematic ‘network atlas’ approach finds all 3-node receiver networks that respond to a sender morphogen gradient by making a central stripe

[37��]. (a) �3000 transcription activator-repressor networks were explored computationally, using 100,000 parameter sets, to see which would form

stripes in response to a monotonic gradient of arabinose (ara). The green node (GFP) had to be OFF at high and low concentrations of arabinose (input

to the red node) and ON at middle concentrations. The resulting 109 solutions (grey nodes) are organised by relative complexity, with four ‘stalactites’

indicating the minimal mechanisms for stripe formation (large circles). These mechanisms are all incoherent feedforward loops (I1,I2,I3,I4) and can be

reduced even further to an archetypal 2-node network, Izero (I0). (b) All minimal networks were constructed synthetically in E. coli. Lawns of bacteria on

Petri dishes were tested against morphogen gradients from central paper disks (senders containing arabinose; white circles). All networks successfully

exhibited stripe behaviour (green GFP rings). Importantly, the networks use distinct mechanisms and stripe-forming dynamics (i.e. they cannot be

interconverted into each other merely by altering rate constants, etc.). The approach demonstrates the stripe forming capability of the entire incoherent

network family.
diffusing activators and inhibitors, based on growth fac-

tors, were used to communicate and control gene expres-

sion over fields of cells, in 3D collagen cell culture. In

principle, these components can be rewired to build many

different pattern-forming network motifs [49,50].

The next frontier: logic gates and distributed
computing
Connecting sender–receiver systems in parallel yields

combinatorial increases in complexity, and current efforts

are exploring the possibility of building computational

functions from communicating cells. An elegant trick to

reduce the number of ‘wiring’ components for sending,

receiving and processing signals, is to distribute tasks in

consortia of different genetically-modified cells [51]. In

this way, single cells perform simple robust functions,

using a few well-characterised components, such as
www.sciencedirect.com 
bacterial repressor proteins. The components can be

reused in different logical gates or circuits — one per

cell — so that the cell mixtures coordinate to process the

information flow. Perhaps it is no accident that such work

has come from researchers who were among the first to

develop information theory in the context of genetic

networks [52].

Cellular consortia have proved to be an efficient way of

engineering complex tasks that are not easily solvable

using single cells [42,53], including a 1-bit adder with carry
function [51]. There has also been significant progress in

the amount of complexity that can be engineered within

the single cells, with logic gates such as NOR being

achieved in bacteria [53]. Importantly, NOR gates are

‘functionally complete’ and can be layered to achieve any

computational operation; this opens up many engineering
Current Opinion in Biotechnology 2015, 31:101–107
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possibilities. For practical reasons, robustness in output

can be increased at a population level by coupling the

cell consortia using S–R systems with AHL signalling

molecules.

The frontier of synthetic S–R systems is getting more and

more diverse with the latest systems combining cell-cell

communication and doped amyloid fibre formation [54].

Hence, communication systems are being coupled to self-

assembling electrically conducting nanosystems, result-

ing in a convergence of biology, electronics and compu-

tation.

Conclusion
Synthetic biology builds systems in order to understand

them. Synthetic S–R systems are no exception, potentially

giving insights into processes as diverse as spatiotemporal

patterning, cellular computing through signalling, and

neurological calculations. Moreover, the application of

information theory puts biological communication on a

quantitative footing, providing objective insights into

how cell systems process signals. Such analyses could

transform the way we think about the performance of real

biological S–R systems, such as neurons in the brain.

Moving beyond the quantitation of information, key

qualitative questions remain about how ‘meaning’ is

transferred along with information. This is not merely

an abstract question; synthetic biology can engineer

reliable information transfer, but how would such systems

encode or process higher order meaning, such as the

difference between to ‘I must’ and ‘I want to’? Simple

IF-THEN logic does not suffice. To harness essential

features of biology, synthetic biologists somehow need to

wire components to encode choice and reward, perhaps

by including feedbacks in system resource allocation.

We still do not know how to engineer higher order

meaning, such as desire or fear. While information theory

clearly has a part to play in increasing our engineering

capability, we also need to develop a functional phi-

losophy of meaning.
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