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ABSTRACT – Objective: To explore the clinical validity of elastic deformation of optical coherence
tomography (OCT) images for data augmentation in the development of deep-learning model for detec-
tion of diabetic macular edema (DME). Methods: Prospective evaluation of OCT images of DME
(n = 320) subject to elastic transformation, with the deformation intensity represented by (σ ). Three sets
of images, each comprising 100 pairs of scans (100 original & 100 modified), were grouped according to
the range of (σ ), including low-, medium- and high-degree of augmentation; (σ = 1-6), (σ = 7-12), and
(σ = 13-18), respectively. Three retina specialists evaluated all datasets in a blinded manner and designated
each image as ’original‘ versus ’modified‘. The rate of assignment of ’original‘ value to modified images
(false-negative) was determined for each grader in each dataset. Results: The false-negative rates ranged
between 71-77% for the low-, 63-76% for the medium-, and 50-75% for the high-augmentation categories.
The corresponding rates of correct identification of original images ranged between 75-85% (p>0.05) in the
low-, 73-85% (p>0.05 for graders 1 & 2, p = 0.01 for grader 3) in the medium-, and 81-91% (p<0.005)
in the high-augmentation categories. In the subcategory (σ = 7-9) the false-negative rates were 93-83%,
whereas the rates of correctly identifying original images ranged between 89-99% (p>0.05 for all graders).
Conclusions: Deformation of low-medium intensity (σ = 1-9) may be applied without compromising OCT
image representativeness in DME.

INDEX TERMS Data augmentation, OCT, deep learning, DME, elastic deformation.

Clinical and Translational Impact Statement—Elastic deformation may efficiently augment the size,
robustness, and diversity of training datasets without altering their clinical value, enhancing the development
of high-accuracy algorithms for automated interpretation of OCT images.

I. INTRODUCTION
In the developed world, diabetic retinopathy is a lead-
ing cause of preventable blindness among the working
age population [1]. Of an estimated 425 million people
with diabetes worldwide, nearly 10% are afflicted with a

vision-threatening disease, with diabetic macular edema
(DME) being the leading etiology [2]. Left untreated, DME
is associated with an increased risk for irreversible central
visual loss [3], hence the importance of early detection and
treatment [4]. This condition is characterized by abnormal
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retinal thickening, a cystic pattern of intraretinal fluid accu-
mulation, and intraretinal lipid or protein deposition which
can be detected on ophthalmoscopic examination of the mac-
ula. Optical coherence tomography (OCT)-derived measures
are the standard of care in the diagnosis of DME and in
monitoring of therapeutic effects [5]. The multitude of mor-
phological information provided by OCT in eyes with DME
has advanced our understanding of this medical condition,
because it enabled better detection and quantification of the
macular thickening [6]. More importantly, it demonstrated
that macular edema extends to additional features beyond
mere retinal fluid [7]. Indeed, DME is a complex clini-
cal entity with various morphological characteristics that
should be considered to choose the appropriate therapeutic
approach and understand its potential benefits. The analysis
of OCT and identification of its related pathological features
is complex and requires highly trained retina experts. Manual
interpretations are extremely time consuming, with variable
repeatability and interobserver agreement.

Computer-Aided Diagnosis (CAD) systems can facilitate
interpretation of medical images, with rising global interest.
In recent years, deep-learning models have been applied
in CAD, leading to meaningfully improved results and
higher ability to automatically detect abnormalities on med-
ical images [8]. Deep-learning, a class of machine-learning
inspired by the neuronal layers that constitute the human
brain, has generated a revitalization in the fields of artificial
intelligence and computer-aided vision. It utilizes multiple
layers of neural networks to receive, process and extract
features with various levels of abstraction from the data input
without the need of manual feature engineering. Convolu-
tional neural networks (CNN) is a special type of neural
networks which is typically applied for image analysis tasks
because it preserves the spatial relationship between pixels.
In the field of retinal imaging, several studies based on CNN
have already shown good performance on OCT images to
classify retinal diseases such as diabetic retinopathy [9], [10]
and age-related macular degeneration [11], [12], and to iden-
tify their features [13], [14]. It is expected that deep-learning
methods will continue to be applied for the development
of computational OCT-based diagnostic tools for DME and
additional macular conditions.

One of the major challenges to the development of any
deep-learning based image analysis is the need of large
training datasets, which are sets of example images used to
construct and fit the algorithm. In the case of supervised
learning, annotated images are needed for the algorithm
training. To date, only few large public OCT datasets from
multiple imaging devices are widely available [15]. More-
over, the extraction of sufficiently-large dataset of macular
images and human reading for their manual annotation is
time-consuming and requires high-level expertise in retinal
medicine and detailed interpretation of OCT imaging. Strate-
gies have been developed to overcome this challenge and
counter the effect of limited datasets comprising small num-
bers of annotated images, to enable effective training of CNN.

FIGURE 1. Elastic transformation of optical coherence tomography (OCT).
An OCT image from an eye with diabetic macular edema (DME) was
subjected to varying intensities of elastic deformation, ranging between
σ = 0 (no deformation) to σ = 24. The grid is added to better visualize the
configuration and magnitude of the applied transformation.

Among these, data augmentation is commonly employed.
Data augmentation provides an effective approach to artifi-
cially expand and diversify an existing dataset without the
need to acquire new images, by applying transformations on
original ones. Some of the most popular data augmentation
approaches include basic transformations such as random
flipping, rotating, scaling, shifting, noising, and others. These
elemental conversions are vastly used given their proved
efficacy in improving performance [16].

A higher-level technique for data augmentation involves
the introduction of random elastic deformations, in which the
shape, geometry, and size of the object can be modified, often
in a complex manner (Figure 1). Implementation of elastic
deformations consists of several separate steps and there-
fore can be more variable than basic transformations. Elastic
deformation has the characteristic of affecting the intrastruc-
tural information of an image. In medical imaging, living
human objects are inherently subject to naturally-occurring
transformations which can be extrapolated to elastic defor-
mations for the purpose of data augmentation for training
datasets. This allows the model to better generalize and
accurately identify anatomical structures, even when they
appear differently due to factors like patient movement or
physiological changes. To date, however, the most appropri-
ate application of elastic deformation on retinal images for
training data has not been determined.

Here, we explored this approach in the development of
deep-learning model for automated detection of DME in
OCT images. Specifically, we set to determine the degree of
elastic deformation which could be applied to OCT images
from eyes with DME without compromising their realism or
clinical aptness.

II. METHODS
A. DATASET
The study protocol was approved by the Institutional Review
Board of the Rambam Health Care Campus, Haifa, Israel,

488 VOLUME 11, 2023



D. Bar-David et al.: Elastic Deformation of OCT Images of DME for Deep-Learning Models Training

FIGURE 2. Applying realistic elastic deformation on OCT images. (a) an original OCT scan. (b) The displacement field
consists of displacement vectors that define for each pixel in the original OCT image the distance and direction of
displacement from the initial position to the final position. (c) The displacement vectors applied on the 2D OCT image
result in the modified OCT image.

TABLE 1. Baseline characteristics of the study participants NPDR: Non
proliferative diabetic retinopathy, PDR: Proliferative diabetic retinopathy,
CRT: Central retinal thickness.

and adhered to the tenets of the Declaration of Helsinki.
A database was gathered comprisingmacular spectral domain
(SD)-OCT images from patients treated at the Retina Ser-
vice of the Department of Ophthalmology, Rambam Health
Care Campus, Haifa, Israel, between 2016 and 2019. Eli-
gible participants for the study were patients affected by
DME (Table 1) from whom the images were acquired as
part of their routine clinical care. Images from 320 patients
(320 eyes) manifesting either non-proliferative or prolifera-
tive diabetic retinopathy in all severity grades were randomly
selected for the study.

All images were acquired with a HRA+OCT Spectralis
OCT device (Heidelberg Engineering GmbH 69121 Heidel-
berg, Germany) using a 49-line raster macula scan. From
each subject, a single cross-sectional macular (2D) image
encompassing the foveal center was selected. A trained oph-
thalmologist reviewed the images at baseline to assure all
indeed manifested features typical for DME, including reti-
nal thickening with intraretinal cystic or non-cystic fluid,
as well as subretinal fluid, hyperreflective foci, vitreomacular

interface abnormalities and ellipsoid zone and external lim-
iting membrane disruption. The original images (1008 ×

596 pixels, including the Scanning Laser Ophthalmoscope
Infrared image and B-scan) were de-identified and cropped to
a size of 496× 352 pixels (containing only the B-scan) which
is suitable for the computational model while preserving the
original image resolution and avoiding loss of relevant infor-
mation. The image dimensions remained at 496 × 352 pixels
through the framework. The dataset utilized in this study has
been released and is publicly available.

B. ELASTIC DEFORMATION
Previously reported distortion approaches [17], [18] seem
improper for retinal imaging since they involve local dis-
placement which can introduce overlap and discontinuity of
the retinal layers. We therefore applied a more global elastic
deformation which affects a relatively large area of the image,
leaving the image overall smooth and continuous.

The elastic deformation process of a 2D OCT scan consists
of three main steps.

First, a 2D grid composed of n by m discrete cells is
generated to set the value and position of the control points
that determine the surface shape. Each cell is assigned with
arbitrary values (ûj, v̂j) which express the horizontal and ver-
tical magnitude of deformation applied onto this region. The
grid size is set empirically (m = n= 3) in order to create a
relatively global transformation such that the deformation of
each cell affects a significant part of the image. The values
of each cell

(
ûj, v̂j

)
are randomly sampled from a normal

distribution of mean µ = 0 and a standard deviation σ exper-
imentally set:

χ ∼ N
(
µ = 0, σ 2

)
(1)

This 3 × 3 grid fully covers the area of the 2D OCT scan.
The second step is to generate the horizontal and vertical

displacement fields u(x, y) and v(x, y) (Figure 2) which lies
on the control points value (ûj, v̂j). The components of the
displacement vector (ui, vi) are determined by the application
of a bicubic spline interpolation between the values (ûj, v̂j) of
the 3 × 3 grid. As a result, a continuous displacement field
is formed consisting of displacement vectors indicating the
distance and direction from the initial to the final position of
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FIGURE 3. Categories of elastic transformation of optical coherence tomography (OCT) images of diabetic macular edema
(DME). Four ranges of deformation intensity: low-, medium-, high-, and extreme-level of deformation, indicated by increasing σ

values, were applied on original OCT images. The higher σ value is, the greater distortion in the image becomes more apparent.

each pixel of the 2D OCT image. Finally, the displacement
field is applied on the 2D OCT image by shifting each pixel
intensity to its new position using bilinear interpolation.(

x′

i, y
′

i
)

=
(
xi + ui, yi + vi

)
(2)

where (ui, vi) are the components of the displacement vector,
and (x ′, y′) and (x, y) are the pixels positions in the modified
and original image, respectively.

The σ value indicates the intensity of the deformation.
As shown in Figure 1, when the standard deviation σ is low,
the randomly generated grid values are close to zero and con-
sequently the displacement field is small resulting with low
deformation. For increasing σ values, the randomly generated
grid values are larger and consequently the displacement
field is significant resulting with more readily apparent defor-
mation. The code implementation for this study has been
released and is publicly available.

C. EVALUATION OF THE DEFORMATION
Three sets of images, each comprising 100 pairs of scans, i.e
100 original and 100modified, were grouped according to the
intensity of the elastic deformation applied. The range of the
deformation (σ ) selected for each category was 1-6, 7-12, and
13-18, for the low-, medium- and high-degree of augmenta-
tion, respectively (Figure 3). A fourth set of images, including
20 pairs of images subject to extremely high augmentation
σ range 19-24, served as control. Three retina specialists
with an extensive clinical experience (more than 10 years) in
the management of macular diseases and analysis of clinical
OCT imageswere recruited as graders for an evaluation study.

In the first step of the study, each grader independently
evaluated the 640 OCT images and was asked to determine
whether they were original images or potentially deformed
ones. To facilitate the process, a graphical user interface was
implemented, where the image is displayed on the screen
and the user can select one of two possible choices: Original
or Modified. The 640 images from the four categories of
deformation level were shuffled and displayed in a random
order. The reviewers were able to go forward or backward
without time limit to evaluate each image. To get the most
objective answers, the reviewers were not provided with any
information on the percentage of original scans in the dataset,
nor were they informed on the degrees of elastic deformation
employed.

Next, following examination of the results obtained at
the first grading step, to refine the maximal deformation
level which was deemed realistic by the clinical graders,
a second study step was undertaken. A new range of data
augmentation level (σ ) was selected based on smaller bins
of the intermediate range of deformations, namely (σ = 7-9)
and (σ = 10-11), and a different set of OCT images, includ-
ing 100 pairs of images (100 original and 100 modified
counterparts) was designed for each new subcategory. The
3 clinical readers independently graded the new datasets and
were asked to determine whether each of the images could
be acceptable as a representative image of DME, in their
opinion.

D. SAMPLE SIZE CALCULATION AND STATISTICAL
ANALYSIS
Data were analyzed by the StatSoft Statistica software, ver-
sion 10 (StatSoft, OK, USA).
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The following assumptions and criteria defined a ‘‘realis-
tic’’ intensity of deformation:

1) A minimum of 60% rate of designation of augmented
(modified) images as ‘original’ (false-negatives) served as a
criterion to define a ‘‘realistic’’ intensity of deformation. This
criterion corresponds to a delta of 10% from chance desig-
nation (50%) by the graders. That is, this rate corresponds
to a higher chance of designating an augmented image as
‘original’ than labeling it as ‘modified’.

2) The original (non-modified) images served as the
‘standard’ comparison group representing ‘‘real-life’’ non-
modified images recognition. We assumed that at least 85%
of the ‘standard’ images will be correctly assigned as ‘orig-
inal’ (true-negatives), accounting for anticipated confusion
error during the rating of the random images presented in the
sets.

3) For each grader (and each set/category of deformation),
a non-significant difference in true-negatives and false-
negatives rates was mandatory in order to define a ‘‘realistic’’
intensity of deformation.

4) For each grader and each set, both criteria 1 and 3 had to
be met. To this end a non-inferiority sample size calculation
was performed yielding the following null hypothesis: If there
is a true difference in favor of an ‘original’ image recogni-
tion [standard group] of 5%, then 192 images (96 images
per group) are required to be 80% confident (β = 0.8) that
the upper limit of a one-sided 95% confidence interval
(α = 0.05) will exclude a difference in favor of the stan-
dard group of more than 20%. Based on this assumption,
200 images were included in each set of deformation category
(100 non-modified and 100 modified counterparts). Propor-
tions of true-negatives and false-negatives were compared by
chi-square test. A two-sided p value of less than 0.05 was
considered significant.

E. DEEP LEARNING EXPERIMENT
To critically examine the value of data augmentation for the
performance of the deep-learning model, we performed a
validation study on a segmentation task. Our deep learning
experiment was run on a segmentation task rather than a clas-
sification one, because manual annotation of medical images
required for segmentation training is a time-consuming and
costly process, and such available datasets are even more
scarce. A total of 70 macular OCT volume scans were ran-
domly collected from 70 DME patients manifesting a broad
range of disease features and severity levels who were not
included in the previous experiment. From each volume scan,
a single cross-sectional image of the macula was manually
segmented by a trained ophthalmologist. The dataset was split
as follows: 50 manually-segmented images for training of the
model for the segmentation task, and 20 for validation. For the
segmentation architecture, we implemented the U-net [19]
convolutional neural network. The network receives an OCT
image and generates a segmentation map in which every pixel
is assigned with a label indicating whether it is part of an
intraretinal fluid cyst. A common metric, the dice score, was

FIGURE 4. Pairwise comparison of the number of modified images
labeled ‘original’ (blue columns) and the original images labeled ‘original’
(grey columns) by the three graders for the Low-, Medium-, and High-
levels of image data augmentation.

used to compare the model output against a reference mask
to evaluate the accuracy of the segmentation.

Next, we evaluated the performance of the deep-learning
segmentation network while applying elastic deformation on
the training data. We employed four training strategies: the
baseline, in which the original images were used without
transformation, and three groups in which elastic deformation
was applied, with the range of intensity devised based on our
results, meaning (σ = [1-9], [10-18], [19-24]). This approach
enabled to determine the training dataset parameters which
provided the optimal outcome from the deep-learning seg-
mentation model.

III. RESULTS
A. DEFORMATION INTENSITY EVALUATION
To evaluate the realistic value of the images displaying
varying intensities of deformity, we compared the rate of
labelling original images as ‘original’ and modified images
as ‘original’ (false-negative) by the graders in each category
of augmentation level. The readings obtained from the three
experts in each category are summarized in Figure 4.
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FIGURE 5. (a) Probability of detection of modified OCT images in the
different categories of deformation intensity. For each grader, the
calculated p-value for proper designation of original images as ‘original’
(true-negative) versus designation of modified images as ‘original’
(false-negative) is shown. When p-value = 1, the grader labeled an equal
number of original and modified images as ‘original’. Smaller p-values
indicate lower rates of designation of modified images as ‘original’.
P-values smaller than 0.05 (red line) denote a statistical significance that
the grader identified a difference between original and modified images.
(b) examples for images uniformly designated by all 3 graders in each
category of augmentation.

Among the 3 graders, the rates of labelling modi-
fied images as ‘original’ (false-negative) (Supplementary
Table 1) ranged between (71-77%) for the category of
low augmentation, (63-76%) for the medium augmenta-
tion, and (50-75%) for the high-augmentation category,
indicating overall decreasing alleged realism of the modi-
fied images with higher level of distortion. In comparison,
the corresponding rates of correctly identifying original
images as ‘original’ (true-negative) ranged between (75-85%,
p>0.05 for all graders) for low augmentation category,
(73-85%, p>0.05 for graders 1 & 2, p = 0.01 for grader
3) for the medium augmentation category, and (81-91%,
p<0.005 for all graders) for high augmentation category.
Thus, the frequency of proper identification of original
images as ‘original’ remained similarly high for all cate-
gories of image distortion, whereas the realistic value of
the modified images decreased with increasing deforma-
tion. Specifically, for the low augmentation category, there
was no significant difference between the ‘original’ images
true-negative and the ‘modified images’ false-negative rates
for all graders (Figure 5), indicating that low levels of distor-
tion did not compromise the apparent realism of the modified
images. For the medium category, only one grader (grader 3)

FIGURE 6. Pairwise comparison of the number of modified images
labeled ‘original’ (blue columns) and the original images labeled ‘original’
(grey columns) by the three graders for the two new subcategories of the
medium augmentation range (σ = 7-9 and σ = 10-11).

was significantly less likely to designate modified images
as ‘original’, whereas for the other 2 graders the frequency
of labeling modified images as ‘original’ was comparable
to the frequency of designating original images as ‘orig-
inal’. In contrast, for the high augmentation category, all
graders showed a higher frequency of appropriately iden-
tifying original images as ‘original’ (true-negatives) than
modified images as ‘original’(false-negative). In the control
set (extremely high augmentation, σ range 19-24), the rates of
labellingmodified images as ‘original’ (false-negative) by the
3 graders were 20-65% compared to 75-100% (true-negative)
rate for the ‘original’ counterparts (p≤0.008 for all graders).

Thus, application of low levels of elastic deformation
(σ = 1-6) did not compromise the OCT image representa-
tiveness in the case of DME. Higher levels of deformation
(σ ≥ 13) resulted in unrealistic images which were more
readily interpreted as modified by the clinical graders.

B. REFINING DEFORMATION INTENSITY RANGE
For the category of medium intensities of deformation
(σ = 7-12), the frequency of detection of distortion varied
among the graders, indicating inconclusive realism of the
modified images. Therefore, we refined the maximal defor-
mation level which could be interpreted as realistic within
this range. Two new datasets consisting of smaller bins of
the deformation values of the of medium range (σ = 7-9 and
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σ = 10-11) were selected. The experiment was reiterated
using the same methodology outlined above (i.e., a set of
100 modified and 100 ‘original’/unmodified images for each
new category). The results are presented in Figure 6.
For the lower subcategory (σ = 7-9), the rates of labelling

modified images as ‘original’ (Supplementary Table 2)
among the 3 graders ranged between (83-93%). In compar-
ison, the corresponding rates of correctly identifying original
images as ‘original’ ranged between (89-99%, p>0.05 for
all graders). Hence, the frequency of correct identification of
original images as ‘original’ (true-negative) was comparable
to the rate of classification of modified images as ‘origi-
nal’ (false-negative) for each grader (p = 0.43-0.55 for all
graders). In contrast, in the higher augmentation subcategory
(σ = 10-11), all 3 graders were significantly more likely
to correctly identify modified images, indicating unrealistic
clinical suitability of these images.

Overall, the graders did not significantly detect modified
images manifesting deformation in the range (σ = 0-9).

C. DEEP LEARNING EXPERIMENT
As shown in Supplementary Figure 1, in comparison
with the baseline, all magnitudes of elastic deformation
improved the dice score. However, the low medium intensity
(σ = 1-9) enabled better segmentation than (σ = 10-18) or
(σ = 19-24). Thus, the generalization capacity is compro-
mised when the intensity of the elastic deformation is too
high.

IV. DISCUSSION
The primary importance of data augmentation for the devel-
opment of deep-learning models is to provide the algorithm
with richer training datasets. In addition, data augmentation
can enhance our ability to meet one of the main method-
ological challenges currently restricting the development of
deep-learning models for OCT data by addressing the lack
of large image datasets required for training [20]. The avail-
ability of numerous and diversified examples was shown to
be vital for optimizing the training process of deep-learning
models and reducing overfitting. Previous studies applied
data augmentation mainly through basic transformations to
increase the training dataset up to several times the original
one without acquiring new images, and reported better per-
formance [18], [21], [22], [23]. The deformation approach is
a keymethod of image data augmentation which can facilitate
the learning process and improve its performance. In this
paper, we aimed to determine the maximal degree of elastic
deformation which could be employed while maintaining
the clinical realistic value of OCT images in the case of
DME. To our knowledge, this is the first report exploring
the quantitative parameters of elastic deformations of OCT
macular images and validating the clinical representativeness
of such transformations by retina specialists.

In practical application of data augmentation, it is impor-
tant to utilize a method which potentially represents a
clinical equivalent and maintains the realistic value of the

medical images, because this approach can directly affect the
algorithm output. The retina is a biological membrane with
biomechanical properties allowing it to stretch and deform
in response to various forces. Processes such as accumu-
lation of intraretinal or subretinal fluid, traction exerted by
the adjacent vitreous or epiretinal fibrocellular proliferation,
can all lead to abnormalities in the shape and configuration
of the retina. Moreover, the elastic qualities of the retina
permit reversibility of such resulting deformations, allowing
the affected tissue to regain its contour upon resolution of the
adverse mechanism. DME often manifests with a spectrum of
clinically observable changes in the geometry and structure
of the macula which are pliable in nature. Thus, application
of elastic transformation was inferred as a valid approach for
data augmentation in the case of macular images from eyes
with DME. To this end, it was interesting to note that although
infrequently so, some of the original OCT images in our study
were designated as ‘modified’ by all 3 graders. We postulate
that naturally occurring DME-related deformations in the
macular contour were interpreted in some cases as displaying
‘‘distortion’’ in the readers opinion and have accounted for
such discrepancies.

We found that for low levels of deformation (σ = 1-6),
3 clinical graders were unable to significantly distinguish
between original and modified OCT images showing various
morphological manifestations of DME. Therefore, this range
of deformation can be applied without meaningfully compro-
mising OCT image representativeness in the case of DME.
Higher levels of deformation (σ ≥ 13) resulted in unrealistic
images which were frequently recognized as modified by the
graders. For the range of medium intensities of deformation
(σ = 7-12), the rate of proper detection of artificial distortion
varied among the graders, indicating inconclusive realistic
value of the modified images. To refine the range of deforma-
tion intensity according to clinical adequacy in the medium
category, we adopted an approach comparable to the bisection
method. The interval was bisected into two subintervals, i.e.
(σ = 7-9) and (σ = 10-11). In the lower range of deformation
intensities (σ = 7-9), modified images were interpreted as
original at a similar rate to that of original images, suggest-
ing that this range of deformation indeed did not interfere
with the representativeness of OCT images. In contrast,
in the higher subgroup of deformations (σ = 10-11) mod-
ified images were significantly detected by all 3 graders.
We therefore concluded that the overall range of elastic defor-
mation which could be applied to OCT images from eyes
with DME without compromising their representativeness is
(σ = 0-9). To support our conclusion, we performed a deep
learning validation experiment which showed that the low
medium intensity (σ = 1-9) enabled better segmentation than
(σ =10-18) or (σ =19-24). While our primary focus in this
study was to propose a data centric approach for data aug-
mentation inOCT datasets and explore its clinical validity, the
deep learning experiment corroborated the conclusion. Future
studies could consider conducting additional deep learning
experiments using different datasets, investigating alternative
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model architectures, and addressing other tasks to further
analyze the effect and effectiveness of elastic deformation on
OCT.

V. CONCLUSION
Medical imaging entails a visual representation of a unique
anatomy or function of organs and tissues. Each artificial
transformation of the image can alter its realism and impede
its clinical representativeness, thus potentially leading to non-
realistic or erroneous diagnosis. Such considerations become
particularly relevant while employing elastic deformations as
data augmentation techniques for training of deep-learning
based algorithms. Our study involved three retina specialists
with extensive experience in the interpretation of clinical
OCT scans and their implementation in daily management of
a wide-ranging population of patients with various macular
disorders, including DME. Moreover, for the present study
each grader evaluated over 640 images from a diverse group
of patients manifesting a broad spectrum of disease character-
istics and severity levels (Table 1). Thus, the comprehensive
dataset employed in our study supports good generalizabil-
ity of our results, suggesting that elastic deformation in the
range (σ = 0-9) could be applied to OCT images from the
general population of DME patients. Beyond this range of
deformation, artificially modified images may fail to reliably
represent the morphological variability naturally evident in
such eyes and consequently can adversely affect the learning
process.

Our results confirmed that application of elastic defor-
mations on OCT images of DME is a valid strategy for
data augmentation which did not affect their realistic value.
We identified a range of intensity of elastic deforma-
tions which we suggest could be extrapolated for use in
deep-learning based detection of additional retinal patholo-
gies manifesting similar features and shared phenotypes.
Future studies will further validate this assumption.
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