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Abstract

In social mammals, kinship is an important factor that often affects the interactions among individuals

within groups. In primates that live in a multilevel society, kinship may affect affiliative patterns be-

tween individuals at different scales within the larger group. For this study, we use field observations

and molecular methods to reveal the profiles of how kinship affects affiliative behaviors between indi-

viduals in a breeding band of wild golden snub-nosed monkeys (Rhinopithecus roxellana). We use a

novel nonparametric test, the partition Mantel test, to measure independently the correlation between

kinship and each of three affiliative behaviors. Our results show that more closely related females are

more likely to groom each other. Average relatedness between adult females within the same one-

male unit (OMU) is higher than that between adult females from different OMUs. We suggest that

closely related females may reside in the same OMU in order to attain inclusive fitness benefits, and

that kinship plays an important role in maintaining the social structure of this species.

Key words: golden snub-nosed monkey, kinship, affiliative behavior, partition mantel test.

High kinship among individuals is known to facilitate positive social

interactions in a variety of animal taxa such as insects (Foster et al.

2006), amphibians (Blaustein and Waldman 1992), reptiles (Davis

2012), birds (Nam et al. 2010), and mammals (Mateo 2002).

According to kin selection theory, positive kin bias among individuals

can evolve via inclusive fitness (Hamilton 1964). Many nonhuman

primate species have complex social structures based on variable hier-

archies within each group, which are often established through social

ties via the implementation of different strategies and behaviors

(Morin and Goldberg 2004). Such species are thus ideal model sys-

tems for investigating the role of relatedness among individuals, and

how this helps maintain a stable social structure within groups.

Within nonhuman primates positive social interactions, which

are typically regarded as affiliative behaviors, are generally classified

as grooming, close proximity distances, food sharing, and agonistic

support (Strayer and Harris 1979; Sussman et al. 2005). Affiliative

behaviors account for >80% of the time that primates spend on so-

cial activities (60 primate species from 28 genera) (Sussman et al.

2005). This suggests that affiliative behaviors play an important role

in the formation of social alliances among individuals, and are im-

portant for maintaining complex primate social systems. Other stud-

ies have found that behaviors associated with affiliation also reduce

competition within groups by increasing the likelihood of groups ac-

cessing resources, ease social tensions after fighting with each other
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and other groups (Mitani and Watts 2010), and maintain or im-

prove social status within a group (Surbeck and Hohmann 2011),

each of which may increase the reproductive rates of some individ-

uals (Pope 2000; Surbeck and Hohmann 2011).

Previous studies on kinship in primates were often conducted via

long-term recording of individual specific behaviors in the field and

focused mainly on terrestrial species, rather than those that are pri-

marily arboreal such as colobine monkeys (Silk 2002). The disad-

vantage of such an approach is that kinship determined solely from

field observation may be inaccurate, due to environmental vari-

ations and vegetation barriers, and a lack of standardization in the

methods used among researchers. Thus, molecular methods have

been used in addition to the data obtained from ‘traditional’ field

work in order to efficiently and correctly measure kinship between

individuals (Widdig et al. 2002). For instance, Widdig et al. (2002)

measured the pairwise kinships between 91 female rhesus macaques

Macaca mulatta based on data from 15 microsatellite loci and field

records of patterns of several social behaviors. Gagneux et al.

(1999) genotyped 11 microsatellite loci from a total of 21 chimpan-

zees Pan troglodytes to identify which female chimpanzee had off-

spring fathered by a male from a different group. Silk et al. (2006)

amplified 14 microsatellite loci from baboons Papio cynocephalus

to successfully identify the paternities of 286 individuals.

The golden snub-nosed monkey Rhinopithecus roxellana is a colo-

bine monkey species endemic to the broadleaved and mixed temperate

mountain forests of central and southwestern China (Li et al. 2003).

The social structure of R. roxellana is characterized by the multilevel

society, which is organized into four nested levels of social associations:

unit, band, herd, and troop. More specifically, units can be further div-

ided into: (1) one-male units (OMU), consisting of a single adult male

and 1–7 adult females with their immature ones including infants, and

(2) all male units (AMU), which consist of multiple young ‘bachelor’

males yet to secure reproductive opportunities and some adult males

that have been usurped from OMUs. Bands can also be divided into ei-

ther: (1) breeding bands (BB) (each an association of several OMUs),

and all-male bands (AMB) (each an association of several AMUs). An

AMB will usually be closely associated with a BB. Collectively, an

AMB, a BB and several solitary males aggregate to form a herd (Qi

et al. 2014), the size of which commonly exceeds 100 individuals

(Zhang et al. 2006). Neighboring herds periodically fuse to form a

troop (Qi et al. 2014). Males leave their natal OMU before reaching

sexual maturity and join an all-male band. Some females stay in their

natal OMU and produce offspring. However, most females disperse

into other OMUs within the same breeding band, or occasionally, into

a neighboring breeding band (Qi et al. 2009). Most social activities

occur among individuals within the same unit. The behavioral patterns

of the individuals from different OMUs include playing among juven-

iles, and aggression among adults (Zhang et al. 2008).

Golden snub-nosed monkeys are mainly arboreal, making it diffi-

cult to measure kinship between individuals via behaviors associated

with kinship through field observations alone. Therefore, direct genetic

evidence is also required to obtain kinship measurements between pairs

of individuals. Furthermore, due to the long-term provisioning of food

to the study breeding band, different behavioral patterns and associ-

ations among individuals can be relatively easily quantified.

There were two main aims in this study: (1) to determine the role

of kinship among adult females in maintaining social cohesion

within golden snub-nosed monkey OMUs; and (2) to determine if

kinship among females is positively associated with the likelihood of

occurrence of social affiliative behaviors.

Materials and Methods

Study site
Our study site is located near to YuHuang Miao Village, in the

ZhouZhi National Nature Reserve (ZNNR, 108�14’ – 108�18’E,

33�45’ – 33�50’N), on the northern slope of the Qinling Mountains.

This region has a temperate climate and ranges in altitude from

1400 to 2890 m above sea level (Figure 1). The annual average tem-

perature is 10.7 �C, and its annual average rainfall is 894 mm

(Li et al. 2000).

The Nancha River separates the two monkey troops present in

our study site: the East Ridge Troop (ERT), which is comprised of

the HSG and GTS herds, and the West Ridge Troop (WRT), which

is consisted of the GNG and DJF herds. This study only involved the

GNG herd, which has been studied for the last 16 years using partial

food provision in order to enable close observation. In the summer

and in the autumn, the WRT mainly occupies areas characterized by

high densities of trees, which sometimes makes behavioral observa-

tions difficult. Our field work was thus mainly conducted in winter

and spring, when temperatures are often low and the ground is cov-

ered with snow. The study was conducted from October 2012 to

June 2013, when the breeding band of the GNG herd comprised of

13 OMUs and 71 adult individuals. We focused on the adult females

in four OMUs because their compositions were more stable during

the observation period than the other OMUs. The unit compositions

and sampling information are presented in Table 1. The adult indi-

viduals from other OMUs were also sampled so as to accurately esti-

mate the allele frequencies and relatedness coefficients among

OMUs.

Behavioral observations
Adult females were observed with both focal animal sampling and

scan sampling methods (Altmann 1974), and using both continuous

recording (all-occurrence recording) and instantaneous sampling

methods (Martin and Patrick 2006). Each of twenty-one females

from four OMUs (PK, HB, SH, RX) were randomly selected and

observed continuously for a period of three hours. Affiliative behav-

ior patterns of the females, such as grooming another female, prox-

imity to another female and approaching or being approached by

another female, were recorded. Two focal females were monitored

during each observation day. If the target female moved out of view,

or if most of the OMU members of the target female moved away, a

new target female was chosen to follow for 3 h. Both focal-animal

behavioral sampling and continuous (all-occurrence) recording

methods were used to record grooming and approach behaviors.

The initiator and receiver of each interaction, the duration of each

interaction and the behaviors exhibited after the initial approach,

were recorded. The scan sampling and instantaneous recording

methods were used for recording proximity behavior, which

involved the recorded individuals near to the focal adult female. The

definitions of grooming, approach, and proximity are defined as

follows.

Grooming one adult female grooms another adult female,

including picking out small objects (e.g., dirt or parasites) from the

hair or the skin of the individual being groomed. Any parasites that

were removed were either put into the mouth of the groomer if

removed by the hands of the groomer or were directly removed by

the groomer with its mouth (Li et al. 2002).

Approach one focal female moved towards another female, from

a distance of >1 m to a distance of �0.5 m. The individual to which
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the focal individual moved did not move its location within 10 s of

the event.

Proximity the distance between the two female individuals, not

including their tails, is less than two adult-individual female body lengths.

Molecular methods
Hair and fecal samples were collected noninvasively for genetic ana-

lysis. A stick with adhesive at each end and food bait in the center

was used to collect hair, which was then stored in the laboratory at

room temperature after being dried with silica gel. Fresh fecal sam-

ples were collected and stored in DETs solution (20% DMSO,

0.25 M sodium–EDTA, 100 mM Tris–HCl, pH 7.5, and NaCl to sat-

uration) at �20 �C.

The DNA samples extracted from hairs were processed with pro-

teinase K digestion in a PCR compatible buffer (Allen et al. 1998);

those from feces were extracted with QIAamp DNA Stool Mini Kits

(Qiagen, Germany). Nineteen highly polymorphic microsatellites

were amplified from each sample (Huang et al. 2016a), which were

sent to Shanghai Sangon Biotech for genotyping. In order to prevent

genotyping errors, such as false alleles and/or allelic dropouts

(Taberlet et al. 1996), homozygote genotypes were clarified by repli-

cation at least seven times, while all heterozygotes were clarified by

at least three separate reactions (Taberlet et al. 1996). Alleles were

segregated with an ABI PRISM 3100 Genetic Analyser, and their

sizes, relative to an internal standard (ROX-labeled HD400), were

determined with GeneMapper V3.7 (Applied Biosystems). MICRO-

CHECKER V2.2.3 (van Oosterhout et al. 2004) was used to check

microsatellite data for scoring errors, allelic dropouts, and null

alleles.

We calculated the genetic diversity parameters for each locus

using CERVUS V3.0 (Kalinowski et al. 2007). A Hardy–Weinberg

equilibrium test was performed with GENEPOP V4.3 (Rousset 2008),

and sequential Bonferroni correction was used to adjust each

P-value for multiple tests. Loci in Hardy–Weinberg disequilibrium

were excluded from further analysis. The relatedness coefficient was

estimated with Lynch and Ritland’s (1999) estimator with null allele

correction (Huang et al. 2016b). The null allele frequency was

estimated by Kalinowski and Taper’s (2006) estimator in

POLYRELATEDNESS V1.6 (Huang et al. 2016 b). A linkage disequilib-

rium test was performed with GENEPOP V4.3 (Rousset 2008) to avoid

inference of linked loci, and each locus was weighted conservatively

for relatedness estimation by 1/(nþ1), where n is the number of

linked loci (determined by FDR corrected Q<0.05).

The relatedness between each pair of individuals was calculated,

and each dyad was classified into one of the five categories: male–

male (MM), female–female within the same unit (FFW), female–fe-

male between units (FFB), female–male within the same unit

(FMW), and female–male between units (FMB). To test if kinship

affects the likelihood of association between dyads, we assessed the

relatedness between female–female dyads (FFW versus FFB) and fe-

male–male dyads (FMW versus FMB) with a matrix permutation

test because dyadic data are not independent (Guo et al. 2015). In

order to determine the correlation between kinship and each behav-

ior, we selected female dyads from the four observed units to gener-

ate a 21�21 pairwise relatedness matrix.

Behavioral analyses
We calculated the proximity index (PI) (Matsumura and Okamoto

(1997) for the three affiliative behavior patterns measured. This

index is defined as the ratio of the numbers scanned between the

two individuals (A and B) to the total number of the scans involving

A or B. To standardize all behavioral data, we extended the proxim-

ity index to an all-occurrence recording method. For example, the PI

for grooming is the ratio of twice the total time that A and B

groomed each other to the total time that A or B initiated and

received grooming. Similarly, the PI for approaching is the ratio of

twice number of approaches between A and B to the total

approaches that either A or B initiated and received.

The PI is also dependent on the size of the unit, for this study the

OMU. For example, assuming a certain behavior occurs randomly

among individuals, and each individual has the same probability of

exhibiting the behavior, thus, the expected PI between any two
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Figure 1. Map of the study site: Yuhuangmiao Village, Zhouzhi National Nature Reserve, Shaanxi Province, China. The shadows show the home ranges of the

GNG and DJF herds.

Table 1. Unit composition and sampling information of the GNG

herd

Age–sex classes OMU

PK HB SH RX JB BX FZ WX SQ LD ZB HT SX

Adult male 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1 1/1

Adult female 7/7 6/6 5/5 3/3 2/3 4/4 3/3 4/4 2/3 3/4 7/7 5/5 4/4

Juvenile 4 4 3 2 2 2 1 3 2 3 4 3 2

The first numbers in the cells of adult male and adult female are the number

of individuals sampled and the second numbers are the number of individuals

within OMU.
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individuals is 1/(n � 1), where n is the total number of individuals

(adult females) within the unit. Therefore, this value between indi-

viduals in a larger unit would be smaller, and a larger PI may not

imply a closer relationship. Thus, we had to standardize PI for each

of the OMUs by subtracting the mean and then divided by the stand-

ard deviation (the Z-score) of the PI for each unit.

Because affiliative behaviors mainly happened within OMUs, we

excluded those interactions between individuals from different

OMUs. Three 21�21 Z-score matrices were then obtained. The

corresponding elements for individuals from different OMUs and

those on diagonals within each matrix were left blank.

Statistics
Our dyadic data are not independent because some dyads share the

same individuals. Taking geographic distance as an example, follow-

ing the change in the coordinates of one location, all distances of

other locations relative to the original location will change.

Therefore, linear regression cannot be applied to these matrices—

this method assumes all observations are independent. In this case,

the Mantel test (Mantel 1976) is usually used to measure the degree

of association between two distance matrices. This randomly per-

mutes one of the two matrices, and calculates the probability of the

correlation coefficient between the two matrices after permutation

is greater than the original value with a Monte-Carlo algorithm.

Although we can estimate the pairwise relatedness between indi-

viduals within or between OMUs based on molecular data, the

proximity index can only be calculated for individuals within a same

OMU. Therefore, for dyads between individuals in different OMUs,

the corresponding proximity index is invalid. Based on the Mantel

test, we overcame this problem by developing a novel nonparametric

test, the partition Mantel test, to test the correlation between the re-

latedness matrix and each Z-score matrix. The individuals within

the same unit are randomly permuted, and the blank elements (i.e.,

the diagonal elements and the elements of the individuals from dif-

ferent OMUs) are not used in the calculation for correlation between

matrices. Similarly, the probability of the correlation between two

matrices after permutation is greater than original value is calcu-

lated. Significance values are thus one-tailed.

Results

Behavioral data
We studied a total of 21 females from four OMUs, the compositions

of which were stable during the observation period. We made 877

grooming events measurements, 2,127 for of proximity and 431 for

“approach”. The proximity indices (PI) of these three affiliative be-

haviors (grooming time, and frequencies for both proximity and

“approach”’) for 49 female–male dyads within the same units were

calculated and are presented in Table 2.

Genetic diversity
We used 68 independent genetic samples (17 hair and 51 feces) for

microsatellite analysis (the sampling ratio was 95.8%). In order to

reliably estimate allele frequency, we sampled and genotyped more

adult individuals in the breeding band, which contained a total of 71

adults. DNA extracts were amplified at 19 microsatellite loci. The

characteristics of these loci are presented in Table 3. The number of

alleles per locus ranged from 3 to 5, averaging 3.95. The observed

heterozygosity ranged from 0.226 to 0.776, with an average of

0.578. The expected heterozygosity ranged from 0.245 to 0.765,

0.582 on average. The polymorphic information content (PIC)

ranged from 0.229 to 0.729, 0.518 on average. Allelic richness

ranged from 1.324 to 4.246, 2.562 on average Table 3.

Relatedness analyses
For the genotypes at 19 microsatellite loci from 68 individuals, re-

latedness coefficients (r) were estimated using Lynch and Ritland’s

(1999) estimator. The means and standard errors of this coefficient

for each of the five categories are shown in Figure 2. The relatedness

coefficient between females within the same OMU (�r ¼0.045,

n¼106) is significantly greater than that between different OMUs

(�r¼�0.010, n¼1,379, P<0.001), while the difference in the re-

latedness coefficients between female–male dyads within the same

OMU (�r ¼�0.026, n¼55) and female–male dyads between OMUs

is not significant (�r¼�0.012, n¼660, P¼0.098). This shows that

Table 2. The descriptive statistics of kinship and affiliative behav-

iors within OMUs

Behavior Count Time Unit #dyads Mean Std Min Max

Grooming 248 12.10 h PK 21 0.132 0.121 0.000 0.423

255 13.54 h HB 15 0.189 0.113 0.000 0.372

259 13.12 h SH 10 0.244 0.085 0.092 0.378

90 4.92 h RX 3 0.465 0.283 0.176 0.740

Proximity 862 PK 21 0.159 0.076 0.027 0.328

600 HB 15 0.188 0.095 0.023 0.329

538 SH 10 0.250 0.079 0.113 0.370

115 RX 3 0.492 0.133 0.357 0.623

Approach 115 PK 21 0.159 0.072 0.034 0.343

145 HB 15 0.191 0.121 0.016 0.415

116 SH 10 0.246 0.076 0.143 0.372

42 RX 3 0.522 0.247 0.276 0.840

Table 3. Characteristics of the 19 microsatellite loci used to assess

the genetic structure of 68 individuals of R. roxellana

Locus k T% HO HE PIC Ar FIS P

D10s1432 5 98.5 0.567 0.534 0.476 2.147 �0.062 0.483

D10s2483 4 100 0.544 0.617 0.544 2.609 0.118 0.251

D10s676 3 91.2 0.484 0.402 0.328 1.673 �0.203 0.342

D12s375 3 92.6 0.540 0.551 0.449 2.227 0.020 0.898

D14s306 4 98.5 0.776 0.680 0.621 3.128 �0.141 0.199

D16s540 3 98.5 0.433 0.499 0.425 1.996 0.132 0.431

D19s1034 4 97.1 0.606 0.605 0.523 2.529 �0.003 0.958

D19s248 3 100 0.677 0.607 0.538 2.546 �0.114 0.507

D19s582 4 92.6 0.619 0.577 0.531 2.361 �0.074 0.469

D21s2054 3 98.5 0.508 0.529 0.423 2.123 0.041 0.055

D3s1766 4 100 0.632 0.627 0.556 2.681 �0.008 0.580

D6s1050 4 98.5 0.642 0.654 0.581 2.888 0.018 0.424

D6s493 5 97.1 0.712 0.765 0.729 4.246 0.069 0.347

D6s501 4 98.5 0.612 0.597 0.512 2.478 �0.026 0.671

D7s1804 4 91.2 0.226 0.245 0.229 1.324 0.078 0.371

D7s2204 5 100 0.677 0.714 0.669 3.496 0.053 0.333

D7s820 5 98.5 0.672 0.719 0.672 3.560 0.066 0.721

D9s252 4 92.6 0.508 0.518 0.475 2.074 0.019 0.179

TPOX 4 95.6 0.569 0.610 0.542 2.565 0.067 0.498

Average 3.95 96.8 0.578 0.582 0.518 2.562 0.009

Header row description: k is the number of alleles, T% is the genotyped per-

centage, HO and HE are the observed and expected heterozygosities, PIC and

AR are the polymorphic information content and allelic richness, respectively,

P is the significance of a HWE test.
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females within an OMU are more closely related to each other

than the overall level of relatedness between females within the

breeding band Figure 2.

Kinship and behavior
We found significant correlations between relatedness and affiliative

behaviors (Table 4). For grooming there was a significant positive

correlation with the relatedness coefficient (partition Mantel test,

r¼0.359, P¼0.004, Figure 3A). We also found a significant but

weaker positive trend between the relatedness coefficient and prox-

imity (partition Mantel test r¼0.227, P<0.05, Figure 3B). There

was a marginally nonsignificant positive correlation between r and

approach in adult female dyads (r¼0.197, P¼0.057, Table 4,

Figure 3A-3C).

Discussion

We examined the effects of kinship on grooming, proximity and ap-

proach behaviors in golden snub-nosed monkeys, and found that

adult females within an OMU are more closely related than those of

the same age-sex class between OMUs (Figure 2). This suggests that

females with higher kinship are more likely to reside within the

same OMU. Indeed, conflicts between the members of different

OMUs in R. roxellana are common (Tan et al. 2003) and female al-

liances are known to play an important role during such conflicts

(Guo et al. 2007; Xi et al. 2008). This implies that kinship among fe-

males makes a significant contribution to OMU cohesion, resulting

in female kin alliances in R. roxellana. This may allow kinship-

based alliances to compete more effectively for limited resources

(Guo et al. 2007) and defend a territory from other OMUs (Zhang

et al. 2006). Similar female–female alliances in other primate species

with similar social systems have been shown to be important for ac-

cess to food and in conflicts with other OMUs, such as in geladas

(Dunbar 1993; Dunbar and Dunbar 1975; Kawai et al. 1983), alli-

ances that may have evolved via kin selection (Iwamoto 1993).

We also found that grooming and proximity behaviors occupied

most of the times spent on social activities by adult females within

an OMU, and these two types of affiliative behaviors occurred more

frequently between closely related females than other females

(Figure 3). These results are consistent with the predictions of kin-

selection; the closer the genetic relationship between individuals, the

higher the likelihood that affiliative behaviors will be exhibited.

Similar patterns of the behavior are also present in ring-tailed lemurs

Lemur catta (Sbeglia et al. 2010), white-faced capuchin monkeys

(Cebus capucinus) (Perry et al. 2008), and yellow baboons Papio

cynocephalus (Silk et al. 2004, 2006).

However, our data show that approach behavior was only weakly

associated with kinship among female R. roxellana (Figure 3). Kinship

may thus be less important in determining approach behaviour than

for the other two affiliative behaviors that we measured.

Although grooming and proximity between individuals are both

significantly positively correlated with kinship, their coefficients of

determination are small (Table 4), and the grooming times and

proximity frequencies of two individuals varies greatly despite simi-

lar levels of kinship (Figure 3). Additionally, the relatedness coeffi-

cients between individuals also vary, even though they exhibit

similar affiliative behaviors.
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Figure 2. Mean value and standard error of relatedness for each dyad cat-

egory. The description of dyad categories are as follows: All denotes dyads

between all kinds of individuals; MM denotes male–male dyads; FFW and

FFB denote female–female dyads within a same unit and between different

units; FMW and FMB denote female–male dyads within the same unit and be-

tween different units, respectively.
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Figure 3. The relationship between r and each affiliative behavior in adult female dyads. The plots of the Z-scores of each of three affiliative behaviors, grooming,

proximity and approach, versus the relatedness coefficients are shown in the three subfigures. Each dot in the scatter plots denotes a dyad, and regression ana-

lyses of those Z-scores on relatedness coefficients were performed. The correlation coefficient between independent and dependent variables and their signifi-

cance is shown in the bottom of each subfigure. The line in each subfigure shows the regression equation and the two curves denote the 95% confidence interval

of the estimated Z-score.

Table 4. The correlation coefficients between relatedness and af-

filiative behaviors in adult female dyads

Behavior r R2 P b1 b0

Grooming 0.359 0.129 0.004 1.832 �0.196

Proximity 0.227 0.052 0.050 1.159 �0.124

Approach 0.197 0.039 0.057 1.030 �0.161
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These inconsistencies may be associated with at least three fac-

tors: 1) relatedness estimators are able to determine the degree of kin-

ship but cannot identify maternal or paternal relatives. The social

structure of the golden snub-nosed monkey is based on a loose mater-

nal, one-male and multiple-female multilevel society (Zhang et al.

2006). Maternal relatives tend to be involved in more social activities

than nonmaternal relatives, and therefore have a more important so-

cial function than paternal relatives in a maternal society (Silk 2002);

2) age differences exists among adult females, and in primates social

ties among individuals within the same age class are tighter than

those between different age classes (Mitani et al. 2002; Widdig et al.

2002); and 3) a biological market may have influenced partner selec-

tion and affected social interactions among females (Wei et al. 2012).

For example, females without infants prefer to groom the females

with infants to gain access to infants (Wei et al. 2013). Thus, even

though kin selection plays an important role in social evolution, close

kinship is not always necessary to explain social behavior (de Vladar

and Szathm�ary 2017). A multitude of factors may are likely to affect

social behavior in species such as R. roxellana in addition to those

we mentioned previously, e.g., social structure (Silk 2002), rank

(Bentley-Condit and Smith 1999), and physiological condition (Guy

et al. 2008). It is thus necessary to carry out further studies on kin-

ship and affiliative behaviors in this species.

In conclusion, we show that closely related R. roxellana females

are more likely to reside in the same OMU than less related females.

Females with higher genetic relatedness between groomed each other

more frequently, were in closer proximity, than more distantly

related females. We suggest that female kinship plays an important

role in the maintenance and organization of the R. roxellana social

system. Additional studies are needed to measure the benefits to adult

females that reside in the same OMU and preferentially make social

affiliations with close kin, and to clarify if kinship-based social asso-

ciations result in increased inclusive fitness for adult females.
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