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Potential of mean force between 
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theory and Monte Carlo simulations
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Ion-mediated interactions between like-charged polyelectrolytes have been paid much attention, and 
the Poisson–Boltzmann (PB) theory has been shown to fail in qualitatively predicting multivalent ion-
mediated like-charge attraction. However, inadequate attention has been paid to the ion-mediated 
interactions between oppositely charged polyelectrolytes. In this work, the potentials of mean force 
(PMF) between oppositely charged nanoparticles in 1:1 and 2:2 salt solutions were investigated by 
Monte Carlo simulations and the PB theory. Our calculations show that the PMFs between oppositely 
charged nanoparticles are generally attractive in 1:1 and 2:2 salt solutions and that such attractive 
PMFs become weaker at higher 1:1 or 2:2 salt concentrations. The comprehensive comparisons show 
that the PB theory can quantitatively predict the PMFs between oppositely charged nanoparticles in 
1:1 salt solutions, except for the slight deviation at very high 1:1 salt concentration. However, for 2:2 
salt solutions, the PB theory generally overestimates the attractive PMF between oppositely charged 
nanoparticles, and this overestimation becomes more pronounced for nanoparticles with higher charge 
density and for higher 2:2 salt concentration. Our microscopic analyses suggest that the overestimation 
of the PB theory on the attractive PMFs for 2:2 salt solutions is attributed to the underestimation of 
divalent ions bound to nanoparticles.

Ions play essential roles in polyelectrolyte solutions and can modulate the effective interactions between polye-
lectrolytes1–12. In recent years, ion-mediated condensation/aggregation of like-charged polyelectrolytes such as 
nucleic acids and charged colloids have been investigated extensively by various experiments1,13–21. The existing 
experiments suggested that the Coulomb repulsion between like-charged polyelectrolytes can be weakened by 
the screening of monovalent ions and can be dramatically modulated into an effective attraction by the bound 
multivalent ions13–21.

For predicting bound ions to polyelectrolytes, some classical polyelectrolyte theories have been developed, 
such as the counterion condensation theory22,23, the Poisson–Boltzmann (PB) theory24–32, the density-functional 
theory33, and the tightly bound ion theory34–41. Among these theories, the PB theory has been widely used for 
polyelectrolyte systems and is rather successful in predicting electrostatic properties for polyelectrolytes such as 
colloids, nucleic acids, and proteins in aqueous/1:1 salt solutions24–32,34–41. However, because of the mean-field 
nature, the PB theory does not account for ion–ion correlations and consequently always predicts effective 
repulsions between like-charged polyelectrolytes even in multivalent salt solutions42–45. As an important bridge 
between theories and experiments, computer simulations including Monte Carlo (MC) simulations and molecu-
lar dynamics simulations have been proved to be effective tools in reproducing various experimental results and 
exploring the related microscopic mechanisms46–53.
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Compared to systems of like-charged polyelectrolytes, less attention has been paid to systems of oppositely 
charged polyelectrolytes owing to the attractive nature of opposite-charge interactions. However, the aggregation 
or assembly of oppositely charged polyelectrolytes is a common phenomenon in biology, pharmacology, and 
material science11,18,54–67. For example, negatively charged DNA winds around positively charged histone to form 
nucleosome complex18,54,55. Another example is that, in gene therapy, DNA needs to be neutralized by complexa-
tion with polyelectrolytes or colloids with positive charges and so on11,54,56. In material science, oppositely charged 
colloids can be used to make controllable superlattices with potential photonic application65–67.

Importantly, the aggregation/assembly of oppositely charged polyelectrolytes is strongly dependent on the 
effective interaction between them. The existing experiments and theories including the PB theory and weak-/
strong-coupling theory have shown that interactions between oppositely charged polyelectrolytes can be modu-
lated by monovalent and multivalent salt ions34,68–76. In asymmetrical salt solution, repulsive interactions between 
oppositely charged polyelectrolytes were observed in experiments and simulations at very high salt concentra-
tions73–76. Moreover, Borkovec et al. employed the PB theory with involving charge regulation to calculate the 
effective interactions between oppositely charged colloids in monovalent and multivalent ion solutions, and they 
compared the results with their experiments. They concluded that the PB theory can well describe the effective 
interactions between oppositely charged polyelectrolytes mediated by multivalent ions at large separation and 
low salt concentration68–70. The charge regulation involved in their PB calculations can be attributed to the change 
of effective charges on colloids due to ion binding or releasing in the inner layers of colloids68–70, and the charge 
regulation parameters were obtained through fitting their PB calculations to the experimental measurements for 
the corresponding symmetric colloid systems68–70. Therefore, it still remains unclear whether the PB theory in the 
original version can describe the effective interaction between oppositely charged polyelectrolytes, particularly in 
the presence of multivalent salt, given that the PB theory qualitatively fails to describe the multivalent-mediated 
attractions between like-charged polyelectrolytes46,49,50. In addition, there remains a lack of comprehensive under-
standing on the effective interaction between oppositely charged polyelectrolytes modulated by salt ions, espe-
cially multivalent salt ions.

In this work, we investigated the potential of mean force (PMF) between oppositely charged nanoparticles 
in symmetrical salt solutions by MC simulations and the PB theory. Our calculations were performed over 
wide ranges of ion conditions and charge densities on nanoparticles and would provide an overall illustration of 
ion-mediated PMFs between oppositely charged nanoparticles. In addition, the present work provides an exten-
sive examination on when the PB theory works well for oppositely charged polyelectrolytes and microscopic 
analyses of the corresponding microscopic mechanism.

Results and Discussion
In this work, the PMFs ∆G(x) between oppositely charged nanoparticles immersed in 1:1 and 2:2 salt solutions 
were calculated by the PB theory and MC simulations, as displayed in Fig. 1. Our calculations were performed 
over wide ranges of 1:1 and 2:2 salt concentrations and charge densities on nanoparticles. We have comprehen-
sively compared the PB theory and MC simulations, and analysed when the PB theory works well and the corre-
sponding microscopic mechanism in detail.

1:1 salt solutions.  The PMFs between oppositely charged nanoparticles in 1:1 salt solutions were calculated 
over wide ranges of 1:1 salt concentrations and charge densities on nanoparticles. As shown in Fig. 2A–C and 
Fig. S1A,B in the Supplementary Material (SM), the PMFs between oppositely charged nanoparticles in 1:1 salt 
solutions are always attractive, and this attraction becomes weakened with increasing salt concentration. This 
is understandable because monovalent ions can bind to charged nanoparticles and reduce the opposite-charge 

Figure 1.  Illustration of two oppositely charged particles with a centre-to-centre separation x immersed in a 
z:−z salt solution. The large red and blue spheres represent positively and negatively charged nanoparticles, and 
the small red and blue spheres represent z-valent cations and −z-valent anions, respectively.
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Coulomb attraction, and higher ion concentration can cause stronger ionic screening for the oppositely charged 
nanoparticles owing to the lower entropy penalty for bound ions. Furthermore, with increasing charges on nano-
particles, the attractive PMFs become stronger. This is reasonable because the increasing charge density on nano-
particles can enhance the opposite-charge Coulomb attraction between nanoparticles and consequently enhance 
the ion-modulated attractive PMFs.

Figures 2(A–C) and S1A,B in the SM also show that the PMFs calculated from the PB theory are generally in 
quantitative accordance with those from the MC simulations for nanoparticles with different charges in 1:1 salt 
solutions, and the PB theory slightly overestimates the attractive PMFs between oppositely charged nanoparticles 
at very high 1:1 salt concentrations (e.g., ~0.3 M). This is not surprising even if the PB theory is generally consid-
ered to work well for polyelectrolytes in monovalent salt solutions. The PB theory assumes a continuous fluid-like 
ion distribution and consequently ignores the discrete properties of ions. For monovalent salt, although ion-ion 
Coulomb correlations are generally weak owing to the low valence, the exclusion volume correlation can become 
important at very high salt concentration35,42–45,50, and this exclusion correlation is ignored in the PB theory. As a 
result, the deviation between the PB theory and MC simulations for nanoparticles with x = 22 Å is approximately 
zero at low and moderate 1:1 salt concentrations, and it becomes visible at very high 1:1 salt concentration (e.g., 
the relative deviation of PMF ~10% at 0.3 M 1:1 salt), as shown in Figs S1 and S2 in the SM.

To gain a deep understanding on the PMFs, the bound ions around oppositely charged nanoparticles were 
analysed through calculating the net ion charge fraction Q(r) within a distance r from the centre of each nanopar-
ticle. In our cases, the electrostatic potential is zero at the plane in the middle of two oppositely charged nanopar-
ticles in symmetric 1:1 (or 2:2) salt, and this middle plane splits the space into two parts, in which the bound ions 
are dominated by the respective charged nanoparticles. Therefore, we calculate the net ion charge fraction Q(r) in 
one side of the middle plane49,50,77

Q r
Z

z c dr r( ) 1 ( ) , (1)r i i i
3∫ ∑= −

<

where Z is the charge on a nanoparticle, and r is a radial distance from the centre of a nanoparticle. zi is the 
valence of ion species i, and ci(r) denotes its concentration at r. Here, the net ion charge fraction Q(r) represents 
the radial distribution of net bound ion charges and is generally calculated for the nanoparticles with separation 
x = 22 Å. The Q(r) values calculated by the PB theory and the MC simulations are shown in Figs 2D–F and S1C,D 
in the SM. For 1:1 salt, there is generally almost no difference in the net ion charge fraction Q(r) between the PB 
theory and the MC simulations, which corresponds to the quantitative agreement between the PMFs from the 
PB theory and the MC simulations. However, at very high 1:1 salt concentration (>0.1 M), the PB theory slightly 

Figure 2.  (A–C) Potentials of mean force ΔG as functions of separation x between the centres of two oppositely 
charged nanoparticles in 1:1 salt solutions, which were calculated by the PB theory and the MC simulations, 
respectively. (D–F) Net charge distributions Q(r) per unit charge on nanoparticles as functions of distance r 
around the nanoparticles with x = 22 Å in 1:1 salt solutions. The error bars are smaller than the symbols.
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underestimates the net ion charge fraction, suggesting fewer bound counterions to charged nanoparticles from 
the PB theory than those from the MC simulations. The slightly fewer bound counterions contribute to the above 
described slight overestimation on the attractive PMFs of the PB theory, because counterions provide the major 
contribution to reduce the Coulomb attraction between oppositely charged nanoparticles. Overall, the deviation 
between the predictions from the MC simulations and PB theory is insignificant on both the PMFs and the ion 
neutralization fraction for 1:1 salt solutions; see Figs S1 and S2 in the SM.

2:2 salt solutions.  The PMFs between oppositely charged nanoparticles in 2:2 salt solutions were calculated 
over wide ranges of 2:2 salt concentrations and charge densities on nanoparticles. As shown in Figs 3A–C and 
S3A,B in the SM, in analogy to 1:1 salt, the PMFs between oppositely charged nanoparticles are always attractive 
in 2:2 salt solutions. This effective attraction becomes weakened with increasing 2:2 salt concentration, which is 
attributed to more bound ions at higher ion concentration.

Figures 3A–C and S3A,B in the SM show that compared with the PMFs from the MC simulations, the PB the-
ory generally overestimates the effective attraction between oppositely charged nanoparticles in 2:2 salt solutions. 
This overestimation becomes more pronounced for nanoparticles with high charge densities and for high 2:2 salt 
concentrations. For example, for the nanoparticles with |Z| = 12e (e is the elementary charge) in 0.1 mM 2:2 salt 
solution, the relative deviation of PMFs at x = 22 Å between the PB theory and MC simulations is ~7% and can 
become as large as ~73% for nanoparticles with |Z| = 24e in 10 mM 2:2 salt solution. This suggests that for 2:2 salt, 
the PB theory generally qualitatively predicts the effective interactions between oppositely charged nanoparticles 
rather than quantitative predictions, and the deviation of the PB predictions can become very pronounced for 
nanoparticles with high charges in high 2:2 salt solutions.

To understand the severe deviations between the PMFs from the PB theory and MC simulations, we ana-
lysed the bound ions around oppositely charged nanoparticles by calculating the net ion charge fraction Q(r) 
within a distance r from the centre of each nanoparticle; see Eq. 1. As shown in Figs 3D–F and S3C,D in the 
SM, the net ion charge fraction Q(r) from the MC simulations is generally greater than that from the PB the-
ory except for the nanoparticles with very low charge density. The underestimation of the PB theory on Q(r) 
becomes more pronounced for nanoparticles with higher charge density and for higher 2:2 salt concentration. 
For example, ∆Q(r) = (|QMC(r) − QPB(r)|) can become as large as ~0.25 at r = 14 Å for |Z| = 24e and 10 mM 2:2 
salt concentration. The underestimation of the PB theory on Q(r) is in accordance with the above described over-
estimation on the attractive PMFs between oppositely charged nanoparticles in 2:2 salt solutions. The apparent 
underestimation of the PB theory on bound ions is attributed to the high charge of 2:2 salt ions, which can cause 
strong Coulomb correlations between divalent ions. As described above and previously35,40,42–45,50,78,79, the PB the-
ory assumes fluid-like continuous ion distributions and ignores the correlations between ions, whereas the MC 

Figure 3.  (A–C) Potentials of mean force ΔG as functions of separation x between the centres of two oppositely 
charged nanoparticles in 2:2 salt solutions, which were calculated by the PB theory and the MC simulations, 
respectively. (D–F) Net charge distributions Q(r) per unit charge on nanoparticles as functions of distance r 
around the nanoparticles with x = 22 Å in 2:2 salt solutions. The error bars are smaller than the symbols.
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simulations explicitly account for the ion-ion correlations. The ion-ion correlations can drive ions to self-organize 
to low-energy micro-states and generally cause more bound ions to a charged polyelectrolyte35,40,42–45,50,78,79. 
Therefore, the PB theory generally underestimates the bound divalent ions and consequently overestimates the 
attractive PMFs between oppositely charged nanoparticles in 2:2 salt solutions. With increasing charge density 
on nanoparticles or increasing 2:2 salt concentration, the ion-ion correlations near the surface of nanoparticles 
would become stronger, and consequently the deviation of the PB predictions on bound ions and the resultant 
PMFs would become more pronounced; see Figs S3 and S4 in the SM.

1:1 salt versus 2:2 salt.  Physically, multivalent ions can interact more strongly with charged nanoparticles 
and consequently can bind more strongly to charged nanoparticles than monovalent ions. The larger Q(r) of 
bound multivalent ions relative to monovalent ions becomes more pronounced for nanoparticles with higher 
charges; see Figs 2D–F and 3D–F. As a result, compared with 1:1 salt, 2:2 salt is more efficient in screening the 
Coulomb attraction between oppositely charged nanoparticles, and this efficiency becomes more pronounced 
for nanoparticles with higher |Z|, as shown in Figs 2 and 3. For example, in 30 mM 1:1 salt and 1 mM 2:2 salt 
solutions, the attractive PMFs are almost identical for the nanoparticles with |Z| = 12e, whereas for the nanopar-
ticles with |Z| = 18e, the PMF in 1 mM 2:2 salt solution becomes visibly less attractive than that in 30 mM 1:1 salt 
solution.

To quantitatively compare the efficiency of monovalent and divalent ions in screening the Coulomb attraction 
between oppositely charged nanoparticles, we calculated the equivalent 1:1 salt concentrations, which can cause 
(nearly) the same PMFs as those at 0.1 mM, 1 mM, and 10 mM 2:2 salt concentrations, respectively. Practically, 
the interpolation technique was used to obtain this equivalent 1:1 salt because the 1:1 concentrations cannot be 
continuously covered in our MC simulations, and we used ∆G(x = 22 Å) to compare the PMFs for 1:1 and 2:2 
salts because the similar ∆G(22 Å) values generally correspond to the similar ∆G(x) values over separation x. It 
is shown that ∆G(x) values from 2:2 salts and the respectively equivalent 1:1 salts deduced from ∆G(22 Å) values 
are almost the same over the whole range of separation x; see Fig. S5 in the SM. As shown in Fig. 4A, divalent ions 
are much more efficient than monovalent ions, and this higher efficiency of divalent ions over monovalent ions 
becomes more pronounced for nanoparticles with higher charge density. For example, 0.1 mM and 10 mM 2:2 
salts can cause (nearly) the same attractive PMFs as ~3 mM and ~80 mM 1:1 salts for nanoparticles with |Z| = 9e, 
respectively. However, for nanoparticles with |Z| = 24e, 0.1 mM and 10 mM 2:2 salts can cause the same PMFs as 
~30 mM and ~300 mM 1:1 salts, respectively.

To understand the efficient role of divalent ions over monovalent ions in screening the Coulomb attraction 
between oppositely charged nanoparticles, we further calculated another kind of equivalent 1:1 salt concentration 
to 2:2 salt by comparing the net ion charge fraction Q(r); see Eq. 1. Practically, we also used the interpolation 
technique and Q(r = 22 Å; three layers of ions) with the separation x = 22 Å to compare 1:1 salts and 2:2 salts. 
Here, the large value of r = 22 Å was used to compare 2:2 salt with 1:1 salt of bound ions because monovalent ions 
bind loosely relative to divalent ions. As shown in Fig. 4B, the relationship between the equivalent 1:1 salt and 2:2 
salts from Q(r = 22 Å) shares a similar trend to that from ∆G(x = 22 Å) in Fig. 4A; i.e., to achieve the same ionic 
neutralization, divalent ions are much more efficient than monovalent ions, and this apparently higher efficiency 
of divalent ions becomes more pronounced for nanoparticles with higher charge density. Therefore, the compar-
ison between Fig. 4A and B clearly shows that the more efficient role of divalent ions than monovalent ions in 

Figure 4.  (A) Equivalent 1:1 salt concentration as a function of 2:2 salt concentration. Here, a 2:2 salt 
concentration and the corresponding equivalent 1:1 salt concentration can modulate the (nearly) same 
attractive PMFs ∆G (x = 22 Å) between oppositely charged nanoparticles. (B) Equivalent 1:1 salt concentration 
as a function of 2:2 salt concentration. Here, a 2:2 salt concentration and the corresponding equivalent 1:1 salt 
concentration can cause the (nearly) same Q(r = 22 Å; three layers of ions) around charged nanoparticles with 
x = 22 Å. The large value of r = 22 Å was used to compare 2:2 salt with 1:1 salt of bound ions because monovalent 
ions bind loosely relatively to divalent ions; see Figs 2D–F and 3D–F.

http://S3
http://S4
http://S5


www.nature.com/scientificreports/

6Scientific REPOrTS | 7: 14145  | DOI:10.1038/s41598-017-14636-x

screening Coulomb attraction between oppositely charged nanoparticles is attributed to the larger charge fraction 
of bound divalent ions.

Deviation between the PB theory and MC simulations and an apparent parameter.  To obtain 
a direct understanding on the deviation between the PMFs from the PB theory and MC simulations, we further 
calculated the charge density distribution landscapes that include both cations and anions around the nanopar-
ticles with |Z| = 18e and x = 22 Å. As shown in Fig. 5, the distributions of net ion charge density around nano-
particles from the PB theory and MC simulations share similar landscapes. For high 1:1 salt concentration, the 
deviation of ion net charge density appears slight, whereas such deviation becomes pronounced for high 2:2 salt 
concentration.

In the following, we quantitatively examine the relative deviation of the PMFs between the PB theory and the 
MC simulations, which is characterized by

∆∆ =
∆ − ∆

∆
g G x G x

G x
( ) ( )

( ) (2)
MC 0 PB 0

MC 0

here, x0 = 22 Å was used because the maximum deviation of PMFs between the PB theory and the MC simula-
tions are generally located at x0 = 22 Å; see Figs S2A–C and S4A–C in the SM. As shown in Fig. 6A,B, the relative 
difference ∆∆g between the PMFs from the PB theory and the MC simulations is generally rather small at low 1:1 
salt concentrations and becomes visible at high 1:1 salt concentrations. For example, for |Z| = 24e, ∆∆g is ~3.5% 
in 0.03 M 1:1 salt and can reach ~15% in 0.3 M 1:1 salt. In contrast, for 2:2 salt, the relative deviation ∆∆g gener-
ally appears significant except for nanoparticles with very low |Z| and becomes more pronounced for nanoparti-
cles with higher |Z| and for higher 2:2 salt concentrations. For example, in 0.1 mM 2:2 salt solution, ∆∆g is ≤~7% 
for the nanoparticles with |Z| ≤ 12e and becomes ~34% for those with |Z| = 24e. When the 2:2 salt concentration 
is increased to 10 mM, ∆∆g becomes as large as ~18% for the nanoparticles with |Z| = 12e and ~73% for those 
with |Z| = 24e. Therefore, for two oppositely charged nanoparticles in 1:1 salt solution, the PB theory generally 
predicts the PMFs between them reliably except for very high salt concentration (~0.3 M). However, for oppo-
sitely charged nanoparticles in 2:2 salt solution, the PB theory generally apparently overestimates the attractive 
PMFs except for the nanoparticles with very low |Z|.

Figure 5.  (A,B) Distribution landscapes of net ion charge density around two oppositely charged nanoparticles 
with |Z| = 18e and x = 22 Å in 0.3 M 1:1 salt solution from the MC simulations (A) and the PB theory (B). 
(C) Deviation between the distributions of net ion charge density calculated by the PB theory and the 
MC simulations. (D,E) Distribution landscapes of net ion charge density around two oppositely charged 
nanoparticles with |Z| = 18e and x = 22 Å in 0.01 M 2:2 salt solution from the MC simulations (D) and the PB 
theory (E). (F) Deviation between the distributions of ion net charge density calculated by the PB theory and 
MC simulations. The circles represent the surfaces of nanoparticles.
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To further characterize the relative deviation ∆∆g of the PMFs between the PB theory and MC simulations, 
an apparent parameter |Z|∆Q* of the difference in total net ion charges was defined as |Z|∆Q(r) at r = 14 Å, where 
the maximum values of |Z|∆Q(r) are located at high 1:1 and 2:2 salts; see Figs S2D–F and S4D–F in the SM. 
Figure 6C showed the relative difference ∆∆g as a function of |Z|∆Q* for both 1:1 and 2:2 salts. It is interesting 
that ∆∆g appears tightly and positively coupled to |Z|∆Q* over wide ranges of salt conditions and charge densities 
on nanoparticles. This tight and positive coupling between ∆∆g and |Z|∆Q* is reasonable. Because bound ions 
mainly provide ionic neutralization to reduce the Coulomb attraction between oppositely charged nanoparticles, 
the large difference in bound ion charges should correspond to the large deviation in the PMFs between the PB 
theory and MC simulations. Therefore, |Z|∆Q* can be served as an apparent parameter to well characterize the 
deviation degree of the PMFs between the PB theory and MC simulations for oppositely charged nanoparticles.

Conclusions
In this work, both the PB theory and MC simulations were employed to investigate the PMFs between oppositely 
charged nanoparticles in 1:1 and 2:2 salt solutions. The work covers wide ranges of 1:1 and 2:2 salt concentrations 
and charge densities on nanoparticles. Through systematic calculations and detailed analyses, the following con-
clusions have been obtained:

	(1)	 For 1:1 salt solutions, the PMFs between oppositely charged nanoparticles are always attractive and 
become more attractive for nanoparticles with higher charge density and in lower 1:1 salt solution. The 
PMFs from the PB theory are generally in good agreement with those from the MC simulations except for 
the slight deviation at very high 1:1 salt concentrations, which suggests that the PB theory can generally 
describe the PMFs between oppositely charged nanoparticles in 1:1 salt solutions.

	(2)	 For 2:2 salt solutions, the PMFs between oppositely charged nanoparticles are always attractive, and this ef-
fective attraction becomes stronger for nanoparticles with higher charge density and lower 2:2 salt concen-
tration. The PB theory generally overestimates the attractive PMFs between oppositely charged nanoparti-
cles in 2:2 salt solutions, especially for highly charged nanoparticles and for high 2:2 salt concentrations.

	(3)	 Compared with 1:1 salt, 2:2 salt is more efficient in screening the Coulomb attraction between oppositely 
charged nanoparticles, and this efficient role of 2:2 salt solutions is more pronounced for more highly 
charged nanoparticles.

	(4)	 The overestimation of the PB theory on the attractive PMFs is attributed to the underestimation of bound 
ions around charged nanoparticles. The relative deviation in the PMFs is tightly and positively coupled to 
an apparent parameter |Z|∆Q* of the difference in the total net ion charges between the PB theory and MC 
simulation for oppositely charged nanoparticles.

Our conclusion that the PB theory generally overestimates the attractive PMFs between oppositely charged 
nanoparticles in 2:2 salt solutions is attributed to the higher ionic charge and the resultant strong ion correlations, 
as discussed above. This is not contradictory to the combination work of atomic force microscopy and the PB 
equation with charge regulation, which can be attributed to the change of effective charges on nanoparticles due 
to possible ion binding or releasing in the inner layer of nanoparticles68–70. The present work was mainly focused 
on the nanoparticles with constant charges, and our PB calculations based on the original version of the PB 
theory did not involve charge regulation in the inner layers of nanoparticles. Our conclusions do not exclude the 
validity of the PB equation with charge regulation on the PMFs between oppositely charged nanoparticles medi-
ated by multivalent ions, especially for low salt concentrations and at large separations68–70, because the effective 
charges on nanoparticles can be apparently reduced by the ion binding in the inner layers of nanoparticles and 
consequently the electrostatic potential in the diffusive layers can be greatly reduced68–70. Moreover, in the present 

Figure 6.  Relative deviation ∆∆g (Eq. 2) between the PMFs calculated by the PB theory and MC simulations 
for two oppositely charged nanoparticles with separation of x = 22 Å in 1:1 (A) and 2:2 (B) salt solutions. (C) 
The relative deviation ∆∆g as a function of the apparent parameter |Z|∆Q* between the PB theory and MC 
simulations, which was defined as |Z|∆Q(r) at r = 14 Å, where the maximum values of |Z|∆Q(r) are located at 
high 1:1 and 2:2 salts; see Figs 2 and 3. Here, x = 22 Å was used because the deviation between PMFs from the 
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work, the PMFs between oppositely charged nanoparticles are calculated as the effective attractions in 1:1 and 
2:2 salt solutions, which is also not contradictory to the effective repulsions observed in previous experimental 
and theoretical studies42,43,71–76. The effective repulsions in previous studies might be attributed to the adopted 
very high asymmetrical salts and the resultant over-neutralization of bound multivalent ions to the nanoparti-
cles42,43,73,75,76. However, the present work involves only symmetrical 1:1 and 2:2 salts and does not cover very high 
salt concentrations, thus only predicts effective attractions between oppositely charged nanoparticles.

The present work also involves some approximations and simplifications. First, the solvent molecules were 
modelled implicitly as a continuum medium with a high dielectric constant of 78, and for simplicity, the die-
lectric discontinuity at the interface between nanoparticles and solvent was ignored35,50,80,81. This assumption 
may slightly affect the bound ions at the nanoparticle surface and should be considered in future work. Second, 
the nanoparticles and ions were treated as hard-core spheres, which should not essentially affect our results and 
analyses. Finally, the present work did not cover the effective interactions at very large separation (e.g., ≫ nano-
particle size), because the assembly of nanoparticles generally involves interactions within a moderate separation 
range68–70. Nevertheless, the present work illustrates that the effective attraction between oppositely charged nan-
oparticles can be greatly modulated by salt ions, especially by multivalent ions. In addition, this work suggests 
that the PB theory can generally provide reliable predictions on the effective interactions between oppositely 
charged nanoparticles in 1:1 salt solutions, while it cannot quantitatively describe the PMFs between oppositely 
charged nanoparticles in multivalent salt solutions. The present work would be very helpful for understanding the 
ion-mediated assembly and complexation of oppositely charged polyelectrolytes42–45,71–76.

Model and Method
Model system for oppositely charged nanoparticles.  In this work, for simplicity, we employed a 
model system of two oppositely charged nanoparticles immersed in 1:1 and 2:2 salt solutions to study the PMFs 
between oppositely charged nanoparticles50–52. In the model system, both charged nanoparticles and salt ions 
were represented by spheres with radii of 10 Å and 2 Å, and the solvent was modelled as a continuous medium 
with dielectric constant ε = 78; see Fig. 1. The charges on two oppositely charged nanoparticles were taken as 
+6e/−6e, +9e/−9e, +12e/−12e, +18e/−18e and +24e/−24e. In the model system, the interactions between 
nanoparticles and ions were simplified into Coulomb and hard-sphere repulsion interactions, and the interaction 
energy Uij between spheres i and j in the model system is given by

πε ε
σ σ

σ σ
=










≥ +

+∞ < + .
U

q q

r4
, r ;

, r (3)
ij

i j

ij
i j

i j

0
ij

ij

Here, σi and qi represent the radius and charge of particle i (nanoparticles or ions). rij is the distance between 
the centres of two charged particles i and j (nanoparticles and ions). ε is the dielectric constant of solvent, and ε0 is 
the permittivity of vacuum. Thus, our systems involved only the effects of Coulomb and exclusion volume inter-
actions and did not involve possible chemical processes such as specific proton adsorption or surface ionization 
in some colloid systems68–70.

Monte Carlo simulations for PMFs.  For the model system, the MC simulations with the Metropolis algo-
rithm have been employed to calculate the PMFs between oppositely charged nanoparticles in salt solutions. The 
simulation cell was generally a rectangular box, and to diminish the boundary effect, the box size was kept larger 
than the centre-to-centre separation x between oppositely charged nanoparticles by at least six Debye–Hückel 
lengths35–37,50.

Following previous studies46,49,53, we employed the pseudo-spring method to calculate PMFs46,49,52, and a 
spring with spring constant k = 9 nN/Å was added to link the centres of the two oppositely charged nanoparticles. 
In our MC simulations, one nanoparticle remains frozen, while the other can move along x-axis with a constraint 
of the added spring. The effective force F(x) between the two nanoparticles with a centre-to-centre separation x 
can be given by46,49,53

F x k x( ) , (4)= ∆

where ∆x is the small deviation of spring length away from the original distance x at equilibrium. The conver-
gence of the average separation between two nanoparticles is shown in Fig. S6 of the SM. Afterwards, the PMF 
∆G(x) between the two nanoparticles can be calculated by the following integration46,49,53:

∫∆ = − = ′ ′G x G x G x F x dx( ) ( ) ( ) ( ) , (5)x

x
ref

ref

where xref is the outer reference distance, which was taken as 40 Å in practice43,46,50. More details about the MC 
simulations can be found in Section 1 of the SM.

The Poisson–Boltzmann theory for PMFs.  In a parallel way, the PB theory has been employed to calcu-
late the PMFs between oppositely charged nanoparticles in 1:1 and 2:2 salt solutions, because the PB theory is a 
well-established polyelectrolyte theory24–32. The electrostatic potential ψ(r) around charged nanoparticles can be 
given by the PB equation24,26,29,35,37,50

http://S6
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where ρf is the charge density of fixed charges on nanoparticles, zi is the valance of ion species i, and ci
0 denotes the 

bulk concentration of species i. β = 1/kBT, where T is the absolute temperature in Kelvin, and kB is the Boltzmann 
constant. With electrostatic potential from the PB equation, the electrostatic free energy for two nanoparticles 
with a centre-to-centre separation x can be calculated by30–32,37,50

G x c z e k T c c
c

c c Ur r r r r r r r( ) 1
2
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 − +





 + −

where UN-N is the Coulomb energy for the oppositely charged nanoparticles. r( )ψ  and r( )fψ  are the electrostatic 
potentials with and without diffusive salt ions, and = β ψ−c c er( )i i

z e r0 ( )i  denotes the ion concentration of species i at 
r. It is noted that the electrostatic potential r( )ψ  changes with separation x between two nanoparticles. The deri-
vation of Eq. 7 is detailed in the SM; see Section 2 in the SM. Therefore, ∆ = −G x G x G x( ) ( ) ( )PB PB PB ref  gives the 
PMF between two nanoparticles by the PB theory, where xref is taken as 40 Å35–37,46,49,50,53. Thus, our PB calcula-
tions are based on the original version of the PB theory, without considering charge regulation due to ion binding 
or releasing in the inner layers of nanoparticles68–70.

In this work, the three-dimensional algorithm developed in the tightly bound ion theory was used to numer-
ically solve the PB equation35–37,50. To account for the excluded volume layer of ions, a thin layer of ion radius was 
added to the nanoparticle surface, and the charge density ρf of fixed charges on nanoparticles can be obtained 
approximately by partitioning the fixed charges to their eight nearest grid points when solving the PB equation 
on a cubic lattice with the finite-difference method35–37,50. The focusing process of three steps has been used to 
compute the detailed electrostatic potential near the nanoparticle surface35–37,50. In the first step, the PB equation 
was solved numerically on a cubic box with large grid size, which depends on salt concentration. Generally, we 
chose a box-size approximately six times larger than the Debye–Hückel length from the nanoparticle surface to 
include the salt effect in solution35–37,50. In the second step of focusing, the PB was solved on a smaller cubic box 
with smaller grid size, and the initial electrostatic potentials were obtained from the interpolation based on those 
in the first step. A similar procedure was repeated in the third focusing step to obtain the electrostatic potentials 
with high resolution near the nanoparticles. The resolution of the first step varies with the grid size to increase 
the efficiency of the iterative process. The grid sizes (Lx, Ly, Lz) were kept at (160 Å, 120 Å, 120 Å) and (100 Å, 
60 Å, 60 Å) in the second and the third focusing steps, respectively, and the corresponding resolutions were 1.0 Å 
and 0.25 Å per grid size. As a result, the numbers of grid points were 161 × 121 × 121 in the second step and 
401 × 241 × 241 in the third step. The iteration for each step was continued until the electrostatic potential change 
δψ(r) for an iteration was less than 10−4 kBT/e35–37,50.
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