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ABSTRACT

The identifiability framework (If ) has been shown to improve differential identifiability

(reliability across-sessions and -sites, and differentiability across-subjects) of functional

connectomes for a variety of fMRI tasks. But having a robust single session/subject functional

connectome is just the starting point to subsequently assess network properties for

characterizing properties of integration, segregation, and communicability, among others.

Naturally, one wonders whether uncovering identifiability at the connectome level also

uncovers identifiability on the derived network properties. This also raises the question of

where to apply the If framework: on the connectivity data or directly on each network

measurement? Our work answers these questions by exploring the differential identifiability

profiles of network measures when If is applied (a) on the functional connectomes, and (b)

directly on derived network measurements.

Results show that improving across-session reliability of functional connectomes (FCs) also

improves reliability of derived network measures. We also find that, for specific network

properties, application of If directly on network properties is more effective. Finally, we

discover that applying the framework, either way, increases task sensitivity of network

properties. At a time when the neuroscientific community is focused on subject-level

inferences, this framework is able to uncover FC fingerprints, which propagate to derived

network properties.

AUTHOR SUMMARY

Functional connectome (FC) fingerprinting recently became a topic of great interest in

network neuroscience. We recently proposed a framework to improve brain fingerprint (i.e.,

identifiability) of FCs, which improves not only test-retest reliability but also the correlation of

FCs with fluid intelligence. However, does this improvement in FC fingerprints propagate to

the derived network measures?

In this work we found that improving the fingerprint (differential identifiability) of the

functional connectome also improves the “fingerprint” of its network properties.

Furthermore, when using the identifiability framework on the network properties directly,

certain network properties like search information and communicability add to the FC

fingerprint. Finally, we show that enhancement of the fingerprint in the network measures, in

a wide range of cognitive tasks, using the identifiability framework also improves task
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Uncovering identifiability in properties of functional connectomes

sensitivity in these measures. We show that regardless of whether you are using functional

connectomes or the network properties derived from them, using the If framework on the

functional connectomes would be a beneficial first step.

INTRODUCTION

The analysis of structural and functional human brain connectivity based on network science

has become prevalent for understanding the underlying mechanisms of the human brain. Us-

ing network properties, we are able to understand the topology of brain connectivity patterns

(Fornito, Zalesky, & Bullmore, 2016; Sporns, 2010, 2018), integration and segregation (Cohen

&D’Esposito, 2016; Deco, Tononi, Boly, & Kringelbach, 2015; Fukushima et al., 2018; Sporns,

2013, Sporns & Betzel, 2016), as well as communication dynamics (Avena-Koenigsberger,

Misic, & Sporns, 2018; Costa, Batista, & Ascoli, 2011; Estrada & Hatano, 2008; Petrella, 2011)

and association between human cognition and brain function (Alavash, Hilgetag, Thiel, &

Gießing, 2015; Bola & Sabel, 2015; Davison et al., 2015; Mattar, Betzel, & Bassett, 2016;

Zalesky, Fornito, & Bullmore, 2010). Until recently, many brain connectivity studies used

group-level comparisons, where data from many subjects are collapsed (e.g., group averag-

ing) into a representative sample of clinical and healthy population (Castellanos, Di Martino,

Craddock, Mehta, & Milham, 2013; Crossley et al., 2014; Fornito, Zalesky, & Breakspear,

2015). However, this comes at a price of potentially ignoring intragroup individual variability

(Seitzman et al., 2019).

Detecting individual differences in functional connectivity profiles thus becomes important,

when associating connectivity profiles with individual behavioral outcomes. In recent years,

publicly available functional connectome (FC) datasets (Biswal et al., 2010; Van Essen et al.,

2013) with large sample sizes have enabled the scientific community to account for interindi-

vidual variability in the human functional connectome. A number of promising methods that

can successfully capture these individual differences have been established in recent times

(Gratton et al., 2018; Mars, Passingham, & Jbabdi, 2018; Satterthwaite, Xia, & Bassett, 2018;

Seitzman et al., 2019; Venkatesh, Jaja, & Pessoa, 2019). For instance, work by Finn et al.

(2015) has shown the existence of a recurrent and reproducible fingerprint in functional con-

nectomes estimated from neuroimaging data. This idea has been extended to maximize or

minimize subject-specific and/or task-specific information (Pallarés et al., 2018; Xie et al.,

2018). These subject-specific fingerprints have been used to track fluctuations in attention at

the individual level (Rosenberg et al., 2019).

The “identifiability framework” (Amico and Goñi, 2018b), based on the group-level princi-

pal component analysis of functional connectomes that maximizes differential identifiability,

Principal component analysis (PCA):
A dimensionality reduction
technique that uses an orthogonal
transformation to convert a set of
observations of (possibly) correlated
variables into a set of values of
linearly uncorrelated variables called
principal components. Such
transformation ensures that the first
principal component has the largest
possible variance, and each
subsequent component has the
highest possible variance under the
constraint of being orthogonal to the
preceding components.

Differential identifiability:
A score that quantifies in a test/retest
dataset, on average, how much more
similar are rest/retest functional
connectomes of the same subject
with respect to functional
connectomes of different subjects.
Similarity is measured by Pearsons
correlation coefficient between every
two functional connectivity profiles.

has been shown to improve functional connectome fingerprints within and across sites, for a

variety of fMRI tasks, over a wide range of scanning length, and with and without global signal

regression (Amico and Goñi, 2018b; Bari, Amico, Vike, Talavage, & Goñi, 2019). Additionally,

it has been shown that maximizing differential identifiability on the functional connectomes

provides more robust and reliable associations with cognition (Svaldi, Goñi, Abbas, et al.,

2019) as well as with disease progression (Svaldi, Goñi, Sanjay, et al., 2019). The natural next

step is to assess the impact of such a procedure on subsequent network measurements that

characterize topological and communication properties of functional brain networks.

An open question of great relevance for the brain connectomics community is how to mea-

sure and uncover subject fingerprints in network measurements of functional connectivity. Un-

covering reliable connectivity fingerprints is crucial when assessing clinical populations and

when ultimately mapping cognitive characteristics into connectivity (Scheinost et al., 2019;
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Shen et al., 2017; Svaldi, Goñi, Sanjay, et al., 2019). Our hypothesis is that improvement in

FC fingerprints should also “propagate” to network derived measurements. An organic way of

assessing this would be to track differential identifiability scores of derived network features as

the differential identifiability on the functional connectomes changes. One could also proceed

with the application of the identifiability framework directly on the network-derived features

Functional magnetic resonance
imaging (fMRI):
A noninvasive technique that
estimates brain activity by detecting
changes associated with blood flow.
The rationale of this technique relies
on the fact that there is a positive
association between cerebral blood
flow and neuronal activation.

Identifiability framework:
A framework based on principal
component analysis to decompose a
test/retest functional connectivity
dataset (or its network-derived
measurements) and subsequently
reconstruct at the optimal number of
components that maximizes the
differential identifiability score.

as opposed to using it on FCs. The above-mentioned approaches rely on different principles

of what a fingerprint in a network-derived measurement. The first one assumes that functional

connectivity data are “holding” the fingerprints and propagating them to any network-derived

measurement. The second one considers functional connectivity data as a proxies to ultimately

estimate a network measurement with a potentially prominent subject fingerprint.

METHODS

The dataset used here is composed of the 100 unrelated subjects of the Human Connectome

Project Release Q3 (Van Essen et al., 2013). Per HCP protocol, all subjects gave written in-

formed consent to theHCP consortium. Each subject consists of two fMRI resting-state runs and

seven fMRI tasks: gambling, relational, social, working memory, motor, language, and emo-

tion. Data acquisition for each subject and for each task consists of two fMRI sessions, which

are tagged here as test and retest. A cortical parcellation into 360 brain regions as proposed by

Glasser et al. (2013) was employed with an additional 14 subcortical regions for completeness

(Amico & Goñi, 2018a, 2018b). The HCP functional preprocessing pipeline was used (Glasser

et al., 2013; Smith et al., 2013), followed by further processing as described in Amico, Arenas,

and Goñi (2019) and Amico and Goñi (2018b) for both resting-state and task fMRI data. For

each subject and fMRI session, a symmetric weighted connectivity matrix (the functional con-

Functional connectome/connectivity
(FC) matrix:
A network representation of the
functional coupling between brain
regions. Such coupling is usually
measured by quantifying the
statistical dependencies between
timeseries of brain regions (e.g.,
pairwise Pearson’s correlation,
mutual information) as obtained by
fMRI.

nectome) was obtained by computing Pearson’s correlation coefficients between pairs of nodal

time courses. For a detailed description of all the preprocessing steps, refer to Amico and Goñi

(2018b). Finally, before finding the below network properties, all negative correlations are set

to a small value of epsilon (MATLAB command eps, equivalent to 2.22 × 10− 16). Please note

that we used the value of epsilon and not 0 to ensure the following two properties for all FCs

assessed: (a) FCs are connected graphs; (b) The derived Markov Chains (as obtained by the

Graph:
An ordered pair formed by a set of
nodes and a set of edges (which
represent connections between pairs
of nodes). Nodes are usually
represented by circles, whereas
edges are represented by lines or arcs
connecting pairs of nodes.

transition probability matrices) are regular and hence permit mean first passage time (MFPT)

Mean first passage time (MFPT):
In a connected graph, MFPT
quantifies the expected number of
steps that it takes for a random
walker to go from a source node to a
target node for the very first time.
The measurement relies on the
transition probability matrix that can
be obtained from a connected graph,
which is indeed an ergodic Markov
chain.

computation (Kemeny & Snell, 1976).

Network Properties

Graph theoretic measures have played a key role in understanding the attributes of brain net-

works in general, and of functional connectomes in particular (Fornito et al., 2016; Rubinov

& Sporns, 2010; Sporns, 2010). Here we select a set of node and node pair properties (i.e.,

properties that are a function of a single node or a pair of nodes, respectively) to assess their

fingerprinting characteristics. A functional connectome is a symmetric square correlation ma-

trix that may be seen as an undirected weighted graph. Let G = (V, W) be an undirected

weighted graph with set of nodes V = {v1, v2, . . . , vn} and weights W = [wij], where wij is

the strength of the edge between nodes vi and vj.

Node strength:
In a weighted graph (i.e., where
edges have assigned numerical
values), it represents the total sum of
the edge weights attached to the
node.

1. Degree strength

The degree strength of a node (Ki) in an undirected binary graph is the number of edges

that are connected to the node. Here, we consider the weighted sum of the edges con-

nected to the node i.

Ki =
n

∑
j=1

wij
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2. Shortest path length

The shortest path length (SPL) between two nodes of an undirected graph is defined as

the minimum number of edges (and thus steps) that separate the two nodes. For an

undirected weighted graph, it is the path that results in the smallest value of the sum of

the inverse of edge weights that constitute a path between a pair of nodes i and j. For

such a path, that consists of the following sequence of nodes, Ωi↔j = {i, x, y, . . . , z, j}

with corresponding sequence of edge weights πi↔j = {wix, wxy, . . . , wzj}, the shortest

path length is:

SPLij = ∑
wlm∈πi↔j

1

wlm
.

Note that Ωi↔j = Ωj↔i for shortest paths in any undirected graph.

3. Search information

The search information (SIij) for two nodes i and j is the information required to follow
Search information (SI):
An information theoretical
measurement that quantifies in bits
how hidden a shortest path is (from a
source node to a target node), as
embedded in the graph. This
measurement may be applied to
binary and weighted graphs.

the shortest path (Rosvall, Trusina, Minnhagen, & Sneppen, 2005); that is, the negative

log of the product of probability of taking the correct exit at every node along the shortest

path. In other words, it can be considered as the information required to reach node j

starting from node i. For a path between nodes i and j that has a sequence of nodes

Ωi→j = {i, x, y, . . . , z, j}, with probability of taking the path P(πi→j) = Πl∈Ω∗
i→j

1/kl ,

the search information for the path is (Goñi et al., 2014)

SIij = − log2 P(πi→j).

Note that SIij 6= SIji.

4. Mean first passage time

The MFPT is the expected (on average) number of steps a random walker takes to reach

node j (for the the first time) from node i (Kemeny & Snell, 1976). The Mean First Passage

Time (MFPT) for a pair of nodes with source i and target j is

MFPTij =
ζ jj − ζij

ϕj

where ϕ is the left eigenvector associated with eigenvalue 1, Z = [ζij] is the fundamen-

tal matrix computed as Z = (I − P + Φ)−1. Here I is the n × n identity matrix, P is

the transition matrix and Φ is an n × n matrix with each column corresponding to the

probability vector ϕ such that ∀j Φij = ϕi. Please note that MFPTij 6= MFPTji.

5. Driftness

We use a measure of communication called driftness (Costa et al., 2011), which is the

ratio of the mean first passage time and the shortest path of a pair of nodes i and j. Con-

sidering that SPij is the best possible scenario path for a random-walk, this measurement

is modulating the mean first passage times with respect to the fastest routes within the

network to go from node i to j. Hence, note that Wij ≥ 1.

Wij =
MFPTij

SPij

6. Communicability

Communicability between two nodes i and j is a measure of network integration com-

puted as a weighted sum of number of all possible walks between them (Estrada &

Hatano, 2008). Here, we use a normalization method proposed to handle the dis-

proportionate influence of highly connected nodes (also known as hubs) in a graph
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(Crofts & Higham, 2009). Note that this is frequently the case when assessing functional

connectomes.

Cij = [eD−0.5AD−0.5
]ij

where D = diag(K) and K = [ki] where ki is the degree strength of node i, as defined

above.

7. Clustering Coefficient

The clustering coefficient of a node is the tendency of its neighbors to form cliques. It is

the ratio of the total number of triangles that a node forms with its neighbors to the total

number of possible triangles that can be formed.

CCi =
2ti

ki(ki − 1)

where ti = 1/2 ∑j,h∈V(wijwihwjh)
1/3 is the geometric mean of triangles around node i

for weighted networks.

8. Betweenness Centrality

The betweenness centrality of a node is the fraction of all shortest paths in a network that

contain that node.

Bi =
1

(n − 1)(n − 2) ∑
h,j∈V

h 6=j,h 6=i,j 6=i

ρhj(i)

ρhj

where ρhj(i) is the number of shortest paths between h and j that pass through i. It can

be seen as a measurement of to what extent a node “lies” between other pairs of nodes

when accounting specifically for shortest-paths.

Group-Level Principal Component Analysis and Differential Identifiability

Briefly describing the Identifiability Framework (If ) introduced in Amico and Goñi (2018b), the

functional connectomes of each subject (test and retest) are vectorized and added to a matrix,

the columns of which are the runs (test and retest) of each subject, while the rows are the

functional connectivity values of brain region pairs. The m principal components of this matrix

are then ranked by variance explained and included, in an iterative fashion, to reconstruct

the functional connectomes (Amico & Goñi, 2018b). This is done separately for each task

and rest. Following the reconstruction of the functional connectomes, we then compute the

network property of interest for each subject, on each run (test and retest). This is referred to as

NP(If {FC}) in all further sections, where NP is the network property and FC is the functional

connectome.

We also extend the framework by using this decomposition — reconstruction procedure on

the network properties. In this case, the network properties are computed on the original func-

tional connectomes for each subject and run. Each network property is then vectorized and

added to a matrix. Note that this is similar to how functional connectomes were rearranged

in the NP(If {FC}) and in Amico and Goñi (2018b). However, the rows of this matrix now

consists of the network property values corresponding to a pair of brain regions in case of pair-

wise properties or a brain region when node properties are derived. The principal components

of this matrix are then extracted and iteratively reconstructed using m number of components

with the highest explained variance. Since the network properties are the ones being decom-

posed in this case, the result of the reconstruction is the corresponding network properties of

each individual and each run. This method is subsequently referred to as If {NP(FC)}).
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We use differential identifiability (Amico, & Goñi, 2018b) to assess the individual fingerprint

of each network property. For each method described above, the network properties derived

are used to compute the identifiability matrix. Each position of the identifiability matrix i, j

denotes the correlation between the network property of subject i test and subject j retest.

Then, along the diagonal elements, we have the correlation of a network property between

the subject test and retest called Iself . The non-diagonal elements are the correlations between

a run of a subject i and subject j where i and j are different (Iothers). The differential identifiability

is then defined as,

Idiff = (Iself − Iothers)× 100

Intraclass correlation coefficient (ICC) represents how strongly measures of a group areIntraclass correlation (ICC):
An inferential statistic for quantitative
measurements that are organized into
groups. ICC describes how strongly
units in the same group resemble
each other. A typical application
consists of the assessment of
consistency or reproducibility of
quantitative measurements made by
different observers measuring the
same quantity.

in agreement with each other (Bartko, 1966; McGraw & Wong, 1996). The higher the ICC

value, the higher the level of agreement. We use ICC (Shrout & Fleiss, 1979) to assess the task

sensitivity of a network measure, for each brain region pair and every subject. In this case,

the members of the groups are the different runs (test and retest) of a subject; the different

groups represent the different fMRI task conditions (and rest). The mean task sensitivity is then

taken across all subjects and reported. For this assessment, the functional connectome (or

the network property If {NP(FC)}) was optimally reconstructed, that is, using the number of

components that gave the highest Idiff score for that task.

RESULTS

The dataset used for this study consisted of fMRI scans of the 100 unrelated subjects from

the Human Connectome Project (Van Essen et al., 2013). For each subject, we computed

18 whole-brain functional connectivity matrices: 4 corresponding to resting-state (2 sessions,

each with test and retest), and 14 corresponding to each of the seven tasks (each including

two runs; test-retest). The multimodal parcellation used here, as proposed by Glasser et al.

(2016), includes 360 cortical brain regions. For completeness, 14 subcortical regions were

added (Amico & Goñi, 2018a), hence producing functional connectome matrices (square,

symmetric) of size 374 × 374.

In this work, we study the effects of If on the identifiability profiles of network properties in

two different scenarios: (a) when applying differential identifiability on functional connectivity,

NP(If {FC}), and (b) when applying differential identifiability directly on network properties,

If {NP(FC)}.

NP(If {FC}): The functional connectomes (FCs) of each task (including rest) were vector-

ized, organized together, and then decomposed into principal components and subsequently

reconstructed by adding an increasing number of components ordered by their variance ex-

plained. After every such reconstruction, a number of network measurements (see the Methods

section for details) were computed for each FC, and Idiff was found on the derived network

properties. This is compared with the Idiff score estimated directly from the reconstructed func-

tional connectomes - If {FC}. By doing so, we extend the differential identifiability framework

to uncover fingerprints in network properties derived from functional connectomes.

For each task, we observed an optimal point of reconstruction where the differential iden-

tifiability on the FCs was maximized (see Figure 1). This optimal point was always in the

neighborhood of half the maximum number of components (which is equal to the number of

subjects in the data) and produced Idiff values much higher than fully reconstructed data, that

is, using all the components. These results reaffirm those reported by Amico and Goñi (2018b).

We then assessed Idiff on the following node pair network properties: shortest path length (SPL),
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Figure 1. NP(If {FC}) Differential identifiability (Idiff ) profiles of pairwise properties for different fMRI tasks as a function of the number of

principal components used for reconstruction. Here, the identifiability framework was applied on the functional connectomes (If {FC}). Each
plot shows, for each fMRI task, the Idiff score associated with functional connectivity (red solid line) and the Idiff scores on network properties

derived from the reconstructed functional connectomes, NP(If {FC}) (see legend) for different numbers of components.

search information (SI), mean first passage time (MFPT), driftness (W), and communicability

(C). In all cases, there was an optimal regime of number of components that maximized Idiff

(see Figure 1). Overall, the Idiff score on all the network properties and functional connec-

tomes reach the peak at a similar number of principal components, ranging between 80 and

110. We can also see that the Idiff on functional connectomes is generally higher than those

on the network properties for all the tasks and for most of the number of components. One

exception is MFPT on motor task where the Idiff scores on FC and MFPT produced very similar

results for the entire range of principal components. Another exception is MFPT on relational

task where the peak Idiff of MFPT(If {FC} is greater than that of If {FC} but the margin of

difference is really small (≈ 0.59).

In If {NP(FC)}) the different network properties (refer Methods) were first derived from the

original functional connectomes and subsequently decomposed and reconstructed using the

identifiability framework. Idiff scores were computed on these reconstructed network prop-

erties for a different number of components and compared with those computed from the

reconstructed FCs (see Figure 2).

As opposed to results shown in Figure 1, which used NP(If {FC}), network properties have

heterogeneous Idiff profiles with respect to number of components. Compared with Idiff from

If {FC}, search information has a higher peak Idiff score for all tasks, while communicability

has a higher peak Idiff score for all tasks except resting state. We also find that MFPT has a

very different Idiff profile compared with other network properties. The Idiff profiles of MFPT

from If {MFPT(FC)} increases as we add the first few component and saturates or decreases

gradually as more components are added (starting at around 20 components for all tasks). This

is unlike other network properties and functional connectomes that share similar Idiff profiles

Network Neuroscience 704



Uncovering identifiability in properties of functional connectomes

Figure 2. If {NP(FC)} Differential identifiability (Idiff ) profiles of pairwise properties for different fMRI tasks as a function of the number of
principal components used for reconstruction. Here, the identifiability framework was applied directly on the network properties derived from
the original functional connectomes (If {NP(FC)}). Each plot shows, for each fMRI task, the Idiff score associated with functional connectivity

(red solid line) and the Idiff scores on reconstructed network properties derived from the original functional connectomes, If {NP(FC)} (see
legend) for different numbers of components.

(see Figure 2). A summary of maximum Idiff , corresponding number of components used and

variance retained for NP(If {FC}), and If {NP(FC)} can be seen in Figure 3.

The network property with the most different Idiff profiles was between MFPT(If {FC})

and If {MFPT(FC)}. Search information was the only network property that reached higher

Idiff values for all fMRI tasks for If {SI(FC)}. The difference between search information

and mean first passage time are assessed in detail in Figure 4. shaded area highlights the

variability of Idiff scores across different tasks for NP(If {FC}) (solid area) and If {NP(FC)}

(hatched area). Across all tasks, Idiff on If {SI(FC)} is higher than SI(If {FC}.

However, for Mean First Passage time, Idiff on MFPT(If {(FC)} is higher than (If {MFPT

(FC)}. When SI(If {FC}) is derived and optimally reconstructed, Idiff on search information

is highest across all tasks. However, under full reconstruction m = 200 (which is equivalent to

using the original functional connectomes), Idiff scores are highest for the functional connec-

tome for all fMRI tasks.

We then assessed how differential identifiability varies based on node properties: degree,

betweeness centrality, and clustering coefficient (Figure 5). We find that the Idiff profiles of

NP(If {FC} are similar to that of If {FC}. These also give a significantly higher optimal Idiff

score for gambling, language, motor, and working memory tasks for all node properties. Es-

pecially in the case of language and motor tasks, betweeness centrality gives a significantly

higher Idiff of 37 and 35 respectively at optimal reconstruction. For If {NP(FC)}, results show

lower and flatter Idiff profiles for all tasks and a wide range of number of components. Idiff pro-

files using NP(If {FC}) of these node properties are in agreement with all pairwise properties

explored so far. In contrast, the Idiff profiles using If {NP(FC)} on these node properties are

similar to If {MFPT(FC)} only.

Network Neuroscience 705



Uncovering identifiability in properties of functional connectomes

Figure 3. A summary of maximum Idiff values, corresponding to number of components and explained variance retained for each fMRI

task and network property for both NP(If {FC}) and If {NP(FC)}. On the left, each plot shows, for each property and each method—
NP(If {FC}) or If {NP(FC)}—the Idiff score for all tasks. The number mentioned gives the maximum Idiff score for the corresponding task
(y-axis) and the position denotes the number of components (x-axis). On the right is the same information summarized as a table. For each
method and network property, the table gives the number of components used for optimal reconstruction m∗, corresponding maximum Idiff

value, and the variance explained at that reconstruction R2.

Intraclass correlation coefficient was used to assess the task sensitivity of each pairwise

network property for three possible cases: NP(If {FC}) vs NP(FC) (Figure 6, top row), If {NP

(FC)} vs NP(FC) (Figure 6, middle row) and NP(If {FC}) vs If {NP(FC)} (Figure 6, bottom

row). We find that the task sensitivity is higher for all network properties when the identifiability

framework was used (for both NP(If {FC}) and If {NP(FC)}). Between NP(If {FC}) and

If {NP(FC)}, there is no one method that improves task sensitivity for all network properties.

DISCUSSION

Brain connectivity fingerprinting has taken center stage in the neuroscientific community (Byrge

&Kennedy, 2019; Finn et al., 2015; Gratton et al., 2018; Mars et al., 2018; Miranda-Dominguez

et al., 2014; Satterthwaite et al., 2018; Seitzman et al., 2019; Venkatesh et al., 2019). As we

move in this direction, there is a need to improve the reliability and robustness of individual
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Figure 4. Assessment of the two most divergent network measurement Idiff profiles. (A) Across tasks and rest differential identifiability (Idiff )
for mean first passage time as a function of the number of principal components used for reconstruction. Solid line and solid shaded area
represent the results for MFPT(If {FC}). Dashed line and hatched area show results for If {MFPT(FC)} (B) Across tasks and rest differential
identifiability (Idiff ) for search information as a function of the number of principal components used for reconstruction. Solid line and solid

shaded area represent the results for SI(If {FC}). Dashed line and hatched area show results for If {SI(FC)} The differential identifiability
matrix (as defined in the Methods section) is shown at optimal reconstruction for language task for (C) MFPT(If {FC}), (D) If {FC} and (E)
If {SI(FC)}. The diagonal elements in each matrix represent Iself and the non-diagonal elements represent Iothers.

fingerprint in functional connectomes and on common network measures extracted from func-

tional connectomes. The identifiability framework (If ) has shown the capacity to uncover subject

fingerprint as measured by the Idiff score in human functional connectomes, regardless of the

fMRI task (Amico & Goñi, 2018b). Improving differential identifiability using the If frame-

work on functional connectomes (FCs) has been shown to improve the test-retest reliability

of FCs and correlation with fluid intelligence (Amico & Goñi, 2018b). Here, we extend this

framework to show that by maximizing individual fingerprints in the functional connectomes,

we also maximize individual fingerprint in network properties derived from the connectomes.

Furthermore, we found that uncovering individual fingerprinting on network measurements

also improves task signature. In addition, we show that in certain network properties, we

can uncover an even stronger fingerprint if we apply the framework directly on the network

property instead of functional connectomes.
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Figure 5. NP(If {FC}) and If {NP(FC)} Differential identifiability (Idiff ) of node properties for different fMRI tasks as a function of the
number of principal components used for reconstruction. Each plot shows, for each task, the Idiff score associated with functional connectivity

(red solid line), the Idiff scores on the network properties derived from the reconstructed functional connectomes NP(If {FC}) (solid lines,

colors - see legend) and the Idiff scores on the reconstructed network properties derived from the original functional connectomes If {NP(FC)}
(dotted lines, colors - see legend) for different numbers of components.

Numerous work has been done to assess the effect of a change in parameters of the acqui-

sition process and the preprocessing pipelines on test-retest (TRT) reliability of fMRI data (Birn

et al., 2013; Noble, Scheinost, & Constable, 2019; Noble et al., 2017; Shah, Cramer, Ferguson,

Birn, & Anderson, 2016). The impact of different correlation metrics, inclusion or exclusion

of edges on functional connectomes, as well as the use of global signal regression, have been

explored extensively (Byrge & Kennedy, 2019; Cao et al., 2014; Fiecas et al., 2013; Liang et al.,

2012; Schwarz & McGonigle, 2011; Wang et al., 2011). Additionally, TRT reliability is also

seen to be affected by band pass filtering, scan length, sampling rate, network definition of

the weights, and size of voxels for node definition (Braun et al., 2012; Liang et al., 2012;

Liao et al., 2013). Given that the TRT reliability of the fMRI data and the subsequent estima-

tion of functional connectomes are affected by such diverse factors, it is important to explore

the reliability of the derived network properties. Even though TRT reliability is not the only

parameter to take into account when choosing the optimal strategy for brain network analyses,

it surely has to be considered an important factor to help in such an important choice.

Essentially, If works as a group-level data-driven (denoising) procedure where the com-

ponents not contributing towards test-retest reliability of FCs are identified and removed. If

doesn’t just improve the overall TRT reliability of a functional connectome but also improves

it locally on an edge-level (Amico & Goñi, 2018b) which should ensure that both global and

local network properties computed using these denoised functional connectomes are more

reliable and robust. As shown in Figure 1, If not only maximizes subject fingerprint at the FC

level, but also at the network property level, which validated our premise. In addition, this con-

vergent behavior is not present just at the optimal point; the identifiability profile of network

properties follows the identifiability profile of the functional connectomes. In essence, we have
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Figure 6. Effect of If on task sensitivity of network measures. For each pairwise network property, task sensitivity is measured using ICC
between NP(If {FC}) vs NP(FC) (top row), If {NP(FC)} versus NP(FC) (middle) and NP(If {FC}) vs If {NP(FC)} (bottom row). The
first two rows highlight the fact that the If framework uncovers the inherently distinct signature of different tasks through derived network
properties. The last row shows that certain network properties would benefit more from application of the If framework on the functional
connectomes, while others from application directly on the network properties.

shown that regardless of whether you are using functional connectomes or the network

properties derived from them, using If framework on the functional connectomes would be a

beneficial first step.

A natural next questionwas to findwhether If should be applied on functional connectomes

and then derive the network properties (NP(If {FC})), or to use it directly on the network prop-

erties derived from original functional connectomes (If {NP(FC)}). The two approaches are

an attempt to understand different principles of what a fingerprint is in a network derived mea-

surement. If {NP(FC)} assumes that functional connectomes are “holding” the individual fin-

gerprints and then propagating them to the network measurements. The fact that maximizing

fingerprint of functional connectomes also maximizes the fingerprint in derived network mea-

sures, suggests that functional connectomes do indeed hold a subject fingerprint that is then

transmitted to the derived network properties. On the other hand, we also see that for some

network measures (e.g., search information), we can uncover a better fingerprint if we apply

the framework directly on the network measure. This suggests that specific network measures

have a subject fingerprint of their own which gets added on to the functional connectome
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fingerprint. Hence, if under some circumstances, the goal is to maximize the reliability and

the individual variability of a specific network property, one can benefit from applying the If

framework on the network property itself, rather than on FCs.

Notably, in the If {SI(FC)} scenario, the most different Idiff profiles were found between

MFPT and search information (Figure 4). Search information consistently provides a better

fingerprint across all tasks than does functional connectome. MFPT, however, can neither im-

prove nor match the fingerprint of functional connectomes. Also, it can not retain the finger-

print that is otherwise present is the functional connectomes and is then propgated to MFPT

using If {MFPT(FC)}. Hence, while some properties (i.e., search information) can derive

higher identifiability than functional connectomes, properties like MFPT need to be computed

on optimally reconstructed functional connectomes to uncover subject identifiability on it.

These findings show that brain fingerprinting can be improved by deriving network mea-

surements that extract multivariate information from bivariate measurements such as pairwise

correlations used to estimate FCs. Specifically, individual fingerprint peaks on network mea-

surements (e.g., search information) that are more multivariate and requires more information

on the global topology of the functional network. However, if the information is heavily driven

by degree properties (e.g., MFPT), then there is no improvement on the individual fingerprint

(Figure 4). This is strongly corroborated by the Idiff profiles of several node properties under

the If {NP(FC)} scenario. These profiles are very similar to that of MFPT, a network prop-

erty which has a strong negative correlation with the degree of the target node. Although

If {NP(FC)} of these node properties have Idiff profiles similar to If {MFPT(FC)}, the max-

imum Idiff on these node properties are, for some tasks, significantly higher than If {FC}.

Betweeness centrality, for example, has a higher subject identifiability for social and motor

tasks.

It was interesting to observe that under the If {NP(FC)} scenario, betweenness centrality

maximizes differential identifiability using just the first two components for social and mo-

tor tasks and that it was higher than the identifiability of the functional connectomes for any

number of components. Since betweenness centrality can be used to identify integrative com-

munication hubs in FCs (Sporns, 2013), it can be argued that social and motor tasks display a

“hub functional fingerprint”, which can be captured by the first two principal components.

A complementary assessment to the identification of subject fingerprints is to assess the

ability to identify the different tasks used in this study. To do so, we used intraclass correlation

coefficient on the derived network properties. The If framework improved task sensitivity

on the network properties (see Figure 6). Regardless of using the framework on the original

functional connectomes or on the network properties themselves, a higher task sensitivity is

obtained using one of the process depending on the network property. In both cases, the

task reliability of the network properties has improved. The different tasks in the HCP dataset

aim to assess different cognitive processes. Hence, the corresponding connectomes and the

network properties derived from them should, at least to some extent, be task specific. We have

shown that using the If framework uncovers task-related fingerprints where unique cognitive

processes result in differential network properties.

To summarize, differential identifiability was found to be always higher on functional con-

nectomes than on any network properties when the identifiability framework (If ) is not used.

When If improved identifiability on functional connectomes, the identifiability on the network

properties also increased. The framework also improved the subject fingerprints of the network

properties. Not only do they improve at the optimal point, but the differential identifiability

follows the same profile on network properties as it does on functional connectomes. We also

find that applying the identifiability framework on the network properties instead of functional

connectomes gives higher differential identifiability for some network properties. At optimal
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reconstruction, we find that search information has higher differential identifiability than func-

tional connectomes across all tasks when the identifiability framework is applied on search

information. This shows that there are network properties that can uncover better identifiabil-

ity with the framework than the functional connectomes themselves. Finally, we found that

using the identifiability framework (either on functional connectomes or network property)

improves task sensitivity in all network properties.

Our study has some limitations. Only the unrelated subjects of the Human Connectome

project and the cortical parcellation proposed by Glasser et al. (2013) are used in this work.

Other explorations with other atlases, parcellations and/or other estimators of functional cou-

pling (other than Pearson’s correlation coefficient) would expand on the implications of our

work. We have also limited our study to commonly used five pairwise and three node net-

work properties. Delving into other network properties can strengthen this framework further

and provide additional insights in understanding the associations between brain fingerprints,

functional connectivity, and network derived properties. It could also be possible that relevant

combinations of network measurements (driftness is an example of it) might uncover additional

brain fingerprints and reach even higher differential identifiability levels.

This study can be extended to clinical applications to understand diseases that target specific

functions of the human brain. For instance, for assessing pathologies whose signature cannot

be mapped on the functional connectomes themselves but can be assessed using different

network properties derived from them (Bassett & Bullmore, 2009; Fornito & Bullmore, 2015;

Fornito et al., 2015) In this case, to retain individual differences and to be able to differentiate

healthy population from clinical ones, we need this study to understand the advantages of

using the identifiability framework on the functional connectome or network property. Finally,

studying the effect of the framework on the structural connectome is another natural extension

of this work.
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