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Abstract: Artificial intelligence (AI) classification holds promise as a novel and affordable screening
tool for clinical management of ocular diseases. Rural and underserved areas, which suffer from lack
of access to experienced ophthalmologists may particularly benefit from this technology. Quantitative
optical coherence tomography angiography (OCTA) imaging provides excellent capability to identify
subtle vascular distortions, which are useful for classifying retinovascular diseases. However,
application of AI for differentiation and classification of multiple eye diseases is not yet established.
In this study, we demonstrate supervised machine learning based multi-task OCTA classification.
We sought (1) to differentiate normal from diseased ocular conditions, (2) to differentiate different
ocular disease conditions from each other, and (3) to stage the severity of each ocular condition.
Quantitative OCTA features, including blood vessel tortuosity (BVT), blood vascular caliber (BVC),
vessel perimeter index (VPI), blood vessel density (BVD), foveal avascular zone (FAZ) area (FAZ-A),
and FAZ contour irregularity (FAZ-CI) were fully automatically extracted from the OCTA images.
A stepwise backward elimination approach was employed to identify sensitive OCTA features and
optimal-feature-combinations for the multi-task classification. For proof-of-concept demonstration,
diabetic retinopathy (DR) and sickle cell retinopathy (SCR) were used to validate the supervised
machine leaning classifier. The presented AI classification methodology is applicable and can be
readily extended to other ocular diseases, holding promise to enable a mass-screening platform for
clinical deployment and telemedicine.

Keywords: ophthalmology; diabetic retinopathy; sickle cell retinopathy; quantitative analysis;
computer aided diagnosis; artificial intelligence; support vector machine; optical coherence
tomography angiography

1. Introduction

Machine learning based artificial intelligence (AI) technology has garnered increasing interest
in medical applications over the past few years [1]. An AI-software platform is designed to mimic
the perception of the human brain for information processing and making objective decisions. Recent
studies have demonstrated AI applications in detecting retinal disease progression [2–5], identifying
malignant or benign melanoma [6], and classifying pulmonary tuberculosis [7]. In ophthalmic research,
application of AI technology has led to excellent diagnostic accuracy for several ocular conditions such
as diabetic retinopathy (DR), age related macular degeneration (AMD), and sickle cell retinopathy
(SCR) [2,4,8,9].

In the current clinical setting, mass screening programs for common ocular conditions such as DR
or SCR are heavily dependent upon experienced physicians to examine and evaluate retinal images.
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This process is time consuming and expensive, making it difficult to scale up to incorporate the millions
of individuals who harbor systematic diseases which are prone to affect the retina. Patients with
early onset of retinopathies such as DR or SCR are initially asymptomatic yet require monitoring to
ensure prompt medical interventions to prevent vision losses. However, it is not feasible to screen
65 million people in the USA over the age of 50 years [1] to identify for individuals with signs
of early retinopathy (AMD, DR or other disease). An AI-based diagnostic tool with capability for
multiple-disease differentiation would have tremendous potential to advance mass-level screening of
eye diseases [10].

To date, most of the reported studies of AI diagnostic systems in literature are based on color
fundus imaging [11–14]. Fundus imaging is one of the most common clinical imaging modalities and
has been widely used in evaluating retinal abnormalities. Supervised and unsupervised machine
learning based diagnostic systems using fundus images have been developed by researchers for
staging of individual retinopathies as well as to identify multiple ocular diseases [8,15–18]. However,
these demonstrated AI-based diagnostic tools generally face two major challenges. Firstly, fundus
images provide limited resolution and retinal vascular information, limiting its capability to quantify
subtle micro-vascular distortions near the foveal area and in different retinal layers. Thus, diagnostic
systems using supervised machine learning algorithms suffer from low-performing quantitative feature
analysis and concurrently low diagnostic accuracy. Secondly, systems using unsupervised or deep
machine learning require a large and well documented database (ranging from 100,000 to millions) for
training and optimizing convolutional neural networks. Even if an AI system is successfully trained,
the intrinsic variance among different database from multiple imaging centers makes it extremely
difficult to provide robust accuracy metrics. Additionally, in case of new retinal imaging modalities
such as optical coherence tomography (OCT) angiography (OCTA), it is quite challenging to accumulate
large, multi-center database for efficient clinical deployment of AI-based diagnostic tools.

As a potential solution to overcome these challenges, we propose a supervised machine learning
based approach to train and evaluate a support vector machine (SVM) classifier model with quantitative
OCTA features for multi-task AI classification of retinopathies. By providing excellent capability for
depth-resolved visualization of retinal vascular plexuses, quantitative OCTA holds genuine promise for
AI screening of retinopathies. Although the comparatively smaller data size of OCTA presently limits
deep-learning based strategies, the sensitivity of OCTA features to detect onset and progression of
retinopathies make it readily useful for supervised AI based screening. Recent studies have established
several quantitative OCTA features correlated with subtle pathological and microvascular distortions
in the retina. OCTA features such as blood vessel tortuosity (BVT), blood vascular caliber (BVC), vessel
perimeter index (VPI), blood vessel density (BVD), foveal avascular zone (FAZ) area (FAZ-A), and
FAZ contour irregularity (FAZ-CI) have also been validated for objective classification and staging
of DR [5,19] and SCR [20], individually. Our recent studies demonstrated that DR and SCR show
different effects on OCTA features, and thus quantitative OCTA analysis promises the potential of
multiple-task classification to differentiate retinopathies and stages. In this study, we propose to test
the feasibility of using these quantitative OCTA features for machine leaning based multi-task AI
screening of different retinopathies. For easy comparison with our recent studies, DR and SCR were
selected as the two diseases for technical validation of the proposed AI screening methodology. The AI
system containing an SVM classifier model utilizes a hierarchical backward elimination technique to
identify optimal-feature-combination for the best diagnostic accuracy and most efficient classification
performance. The AI-based screening tool performs multi-layer hierarchical tasks to perform (1) normal
vs. disease classification, (2) inter-disease classification (DR vs. SCR), and (3) staging of DR (mild,
moderate and severe non-proliferative DR (NPDR)) and SCR (mild and severe). The performance of
the AI system has been quantitatively validated with manually labeled ground truth, using sensitivity,
specificity and accuracy metrics along with graphical metrics, i.e., receiver operation characteristics
(ROC) curve.
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2. Methods

Figure 1 illustrates the step by step methodology for the machine learning based multi-task
AI classification. Each classification task involved primarily three steps. The first step was
OCTA image data acquisition and feature extraction (DA and FE). The second step is optimal
feature identification (OFI) using a hierarchical backward elimination technique for the specific
classification task. The third step was to validate multiple-task classification (MTC) using the
identified optimal-feature-combinations.
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feature extraction; OFI: optimal feature identification; MTC: Multiple-task classification.

2.1. Data Acquisition and Feature Extraction

2.1.1. Data Acquisition

This cross-sectional study was approved by the Institutional Review Board (IRB) of the University
of Illinois at Chicago (UIC) and complied with the ethical standards stated in the Declaration of
Helsinki. Both the DR and SCR patients were recruited from UIC Retinal Clinic. All patients underwent
complete anterior and dilated posterior segment examination (JIL, RVPC). For DR, a retrospective
study of consecutive type II diabetes patients was conducted on those who underwent OCT/OCTA
imaging. The patients are representative of a university population of diabetic patients who require
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imaging for management of diabetic macular edema and DR. Two board-certified retina specialists
classified the patients based on the severity of DR (mild, moderate, severe NPDR) according to the
Early Treatment Diabetic Retinopathy Study (ETDRS) staging system. In case of SCR, disease stages
were graded according to the Goldberg classification (stage I-V, from mild to severe). Only stage II
(mild) and III (severe) SCR data were included in this study as stage I OCTA data were limited in
number while stage IV OCTA images were unreliable due to distortions caused by hemorrhages and
vessel proliferation. For simplification in the classification process, we define the stage II and III as mild
and severe stage SCR, respectively. The control OCTA data were obtained from healthy volunteers (no
history of retinopathy) who gave informed consent for OCT/OCTA imaging. Both eyes (OD: right
and OS: left) were examined and imaged. We did not include eyes with other ocular disease or any
pathological features in their retina such as epiretinal membranes and macular edema. Additional
exclusion criteria included eyes with prior history of vitreoretinal surgery, intravitreal injections or
significant (greater than a typical blot hemorrhage) macular hemorrhages.

Spectral domain (SD) -OCT and OCTA image data were acquired using an Angiovue SD-OCT
device (Optovue, Fremont, CA, USA), consisting of a 70,000 Hz A-scan rate, and axial and lateral
resolutions of ∼5 µm and ~15 µm, respectively. All OCTA images used in this study were 6 mm ×
6 mm scans; OCTA images were acquired from both superficial and deep capillary plexuses (SCP
and DCP). All the images were quantitatively examined, and OCTA images with severe motion
or shadow artifacts [21] were also excluded. The OCTA image quality was quantified with scan
quality metric provided in the Angiovue’s software interface, ReVue. Any OCTA image with scan
quality score less than 5 were excluded. The OCTA images were exported from imaging device
and custom-developed MATLAB procedures were used for image processing, feature extraction and
classification as described below.

2.1.2. Data Pre-processing and OCTA Feature Extraction

All the OCTA images used in this study had a field of view (FOV) of 6 mm × 6 mm (304 ×
304 pixels). The OCTA images were normalized to a standard window level based on the maximum
and minimum intensity values to account for light and contrast image variation. Bias field correction
and contrast adjustment of the OCTA images improved the overall reliability of the extracted features
and concurrently the performance of the classifier model to identify OCTAs from different cohorts.

Six different quantitative OCTA features were extracted from each OCTA image (Figure 2) for
the AI classification. The vascular features were BVT, BVC, VPI, and BVD, while the foveal features
were FAZ-A and FAZ-CI. Before measuring the vascular features, the vessel map and skeleton map
were extracted from the OCTA image (i.e., Figure 2(A2,A3)). For the vessel map, we used a Hessian
based multi-scale Frangi filter [22] to enhance vascular flow information. This method utilized the
Eigen vectors of the Hessian matrices and calculated the likeliness of an OCTA region to be vascular
structures. Adaptive thresholding along with morphological functions were furthers used for cleaning
the vessel map and removing noise. From the vessel map, a skeleton map was generated using
morphological shrinking functions. The extracted vessel and skeleton maps from OCTA images had
an average area of 47.34% and 25.81% respectively.
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Figure 2. Representative optical coherence tomography angiography (OCTA) images for illustrating
the feature extraction. (A1–A5) Control subject, (B1–B5) mild non-proliferative diabetic retinopathy
(NPDR) subject, (C1–C5) moderate NPDR subject, (D1–D5) severe NPDR subject, (E1–E5) mild sickle
cell retinopathy (SCR) (stage II) subject, (F1–F5) severe SCR subject. Column 1: OCTA image. Column 2:
Segmented blood vessel map including large blood vessels and small capillaries. Hessian based Frangi
vesselness filter and fractal dimension (FD) classification provide a robust and accurate blood vessel
map. Column 3: Skeletonized blood vessel map (red) with segmented foveal avascular zone (FAZ)
(marked green region) and FAZ contour (yellow boundary marked around FAZ). Column 4: Vessel
perimeter map. Column 5: Contour maps created with normalized values of local fractal dimension.
Scale bar shown in A1 corresponds to 1.5 mm and applies to all the images.
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A brief description of the feature measurement procedure is as follows:
BVT: The BVT was measured in the SCP. For BVT measurement, the BVT of each vessel branch is

measured from the skeleton map and average BVT was measured as [23],

BVT =
1
n

n∑
i=1

( Geodesic distance of a vessel branch i
Euclidean distance of a vessel branch i

)
(1)

Euclidean distance =

√
(x1 − x2)

2 + (y1 − y2)
2 (2)

Geodesic distance =

∫ t1

t0

√ (
dx(t)

dt

)2

+

(
dy(t)

dt

)2

dt (3)

where [xi,yi] are the two endpoints of a vessel branch.
BVC: The BVC was measured from the SCP as the ratio of vascular area (calculated from vessel

map) and vascular length (calculated from skeleton map) [23],

BVC =
Vascular area

Vascular length
(4)

VPI: The VPI was measured from the perimeter map (i.e., Figure 2A4) in the SCP as the ratio of
vessel perimeter area and total image area [23],

VPI =
Perimeter area

Total image area
(5)

BVD: The BVD was measured in both the SCP and DCP using the fractal dimension (FD) technique.
The details and rationale about FD calculation is previously described [23]. Each pixel is assigned an
FD value from 0 to 1 where 0 corresponds to avascular region and 1 corresponds to large vessel pixels.
The FD of 0.7 to 1corresponds to vessel pixels and average BVD was measured as the vascular area to
total image area.

BVD =
Vascular area

Total image area
(6)

The BVD measurements were taken in three localized regions in the retina, three circular regions
of diameter 2 mm, 4 mm and 6 mm (C1, C2, and C3) around the fovea (i.e., as shown in Figure 2A5).
The segmented FAZ area was excluded when measuring BVD for improved diagnostic accuracy.

FAZ-A: The FAZ-A was measured in both SCP and DCP. The fovea was demarcated automatically
(i.e., blue area in Figure 2A3) and FAZ-A was measured as,

FAZ−A
(
µm2

)
= Number of pixels is Fovea ×Area of sin gle pixel (7)

The FAZ was measured using an active contour technique [23], where the seed point was
automatically chosen as the center pixel of the OCTA image, since all the OCTA images were imaged
as macula-centered scans. The automatically segmented FAZ area was compared to manually traced
FAZ labelling and had 98.26% similarity with manually segmented ground truths.

FAZ-CI: The FAZ-CI was measured in both the SCP and DCP. From the demarcated fovea, FAZ
contour was segmented automatically [23] (i.e., green demarcated contour in Figure 2A3). From the
segmented contour the FAZ-CI was measured as,

FAZ−CI =
Perimeter of the FAZ contour

Perimeter of a circle with equivalant area to the FAZ
(8)
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2.2. Optimal Feature Identification

2.2.1. Statistics and Classification Model

Statistical analyses were conducted using MATLAB (Mathworks, Natick, MA, USA) and
OriginPro (OriginLab Corporation, MA, USA). All the OCTA features were tested for normality
using a Shapiro-Wilk test. For normally distributed variables, one-versus-one comparisons were
conducted using Student’s t-test and one way, multi-label analysis of variance (ANOVA) was used to
compare differences among multiple groups. If the features were not normally distributed, we used
independent sample t-test (Mann-Whitney) for one versus one comparisons and non-parametric
Kruskal-Wallis test for comparing multiple groups. A Chi-square test was used to compare the sex and
hypertension distribution among different groups. For age distribution, we used ANOVA. Spearman’s
correlation coefficients (rs) were measured to analyze the relationship among the OCTA features
and their correlation with DR or SCR severity. Statistical significance for univariate analysis and
correlation test was defined with p < 0.05; however, the p values were Bonferroni-corrected for multiple
simultaneous group comparisons. For the classification model that would be trained with OCTA
features and perform the diagnosis prediction, we chose a support vector machine (SVM) classifier.
In the case of logistic regression based backward elimination (Figure 1B), the initial critical value of
p was 0.15 for the univariate model while it was 0.1 for multi-variate model. In this case, a p value of
0.05 or less was too conservative and there may have been a possibility of losing valuable information
from multivariate regression analysis of different features.

2.2.2. Optimal Feature Selection with Backward Elimination

We implemented feature optimization to choose a subset of OCTA features that delivered the best
diagnostic prediction for each classification tasks, i.e., (1) identifying disease patients from control,
(2) inter-disease (DR vs. SCR) classification and (3) staging of DR (mild, moderate, and severe NPDR)
and SCR (mild and severe) respectively. Taking inspiration from Occam’s Razor, we aimed to choose
the smallest classification model that fit the data. For choosing this optimal feature combination for each
classification task, we used a stepwise backward elimination technique. The flowchart of necessary
steps taken in backward elimination of features is illustrated in Figure 1B. Backward elimination starts
with all of the predictors in the model. The variable that was least significant that is, the one with
the largest p value with worst prediction performance in a regression analysis was removed and the
model is refitted. Each subsequent step removed the least significant variable in the model until all
remaining variables have individual p values smaller than critical p value (set at 0.05). After the SVM
was trained with the optimal feature combination, we tested the classification model with a testing
data set. This feature selection process using backward elimination was repeated for each of the steps
and the SVM model was trained with corresponding optimal feature combination at each step for
a specific classification task. For control vs. disease and DR. vs. SCR classification, the SVM performed
a binary (one vs one) classification while for staging disease conditions (mild vs. moderate vs. severe
NPDR and mild vs. severe SCR) the SVM performed a multi-class classification. The prediction was
performed on the testing database with 5-fold cross validation to control any overfitting. Once the
SVM was trained with optimal feature combination, any new data could be directly inputted into the
classifier to generate task-specific predictions.

2.2.3. Performance Metrics

The performance of the prediction model was evaluated with sensitivity, specificity, and accuracy
metrics. Receiver Operation Characteristics (ROC) curves were also generated along with area under
the ROC curve (AUC). The ROC curve plots the true positive rate (i.e., sensitivity) as a function of
false positive rate (i.e., 1-specificity) at different tradeoff points. Then AUC was measured to quantify
how well the classifier was able to identify the different classes. The closer the curve to the upper left
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corner, the more accuracy the prediction was. A value of AUC equal to 1 or 100% represented a perfect
prediction, and 0.5 or 50% represented a bad prediction.

3. Results

The OCTA image database in this study included 115 images from 60 DR patients (20 mild,
20 medium and 20 severe NPDR), 90 images from 48 SCR patients (30 stage II mild and 18 stage
III severe SCR), and 40 images from 20 control patients (representative images shown in Figure 2).
Patient demographic data is shown in Table 1. There were no statistical significances in age and sex
distribution between control, DR and SCR groups. (ANOVA, p = 0.14; chi-square test, p = 0.11 and p =

0.32, respectively). For DR, no significance in hypertension or insulin dependency between stages of
disease groups was observed.

Table 1. Demographics of control, DR and SCR subjects

Control DR SCR

Mild NPDR Moderate
NPDR

Severe
NPDR

Mild SCR Severe SCR

Number of subjects 20 20 20 20 30 18
Sex (male) 12 11 12 11 17 11

Age (mean ± SD) 42 ± 9.8 50.1 ± 12.61 50.8 ± 8.39 57.84 ± 10.37 51 ± 11.52 59.73 ± 8.26
Age range 25–71 24–74 32–68 41–73 28–71 46–75
Ethnicity 25% AA

20% Ca
45% A

10% SA

60% AA
20% Ca
15% A
5% SA

65% AA
20% Ca
15% A

60% AA
30% Ca
10% A

90% AA
5% Ca
5% A

90% AA
10% Ca

Duration of disease - 19.64 ± 13.27 16.13 ± 10.58 23.40 ± 11.95 13.25 ± 8.78 18.43±10.7
Diabetes type - Type II Type II Type II - -

Insulin
dependent(Y/N)

- 7/13 12/8 15/5 - -

HbA1C % - 6. 5 ± 0.6 7.3 ± 0.9 7.8 ± 1.3 - -
HTN prevalence % 10 45 80 80 - -

DR: diabetic retinopathy, SD: standard deviation, HbA1C: Glycated hemoglobin, HTN: hypertension, AA: African
American, Ca: Caucasian, A: Asian: SA, South-Asian. ‘-’ defines ‘Not Applicable or Available’.

3.1. Optimal Feature Selection Using Backward Elimination

We employ a logistic regression-based model with backward elimination to select optimal
combination of features for the multi-task classification. A summary of the quantitative univariate
analysis of the OCTA features is shown in Table S1–S3 for comparing control vs. DR vs. SCR, NPDR
stages and SCR stages respectively. In general, BVT, BVC and FAZ parameters increased with disease
onset and progression whereas BVD and VPI decreased. The comparison of the diagnostic accuracy
for each feature in the backward elimination process is shown in Table 2. Figure 3 provides further
support to the results shown in Table 2, showing relative changes of OCTA features in different groups.
Each panel corresponds to four classification tasks respectively. The backward elimination initially
started with all OCTA features and eliminated features one by one based on the prediction accuracy of
the fitted regression model. The feature selection method identified an optimal feature combination
for each classification task, i.e., perifoveal BVDSC3 (SCP, circular area: >4 mm), FAZ-AS (SCP) and
FAZ-CID (DCP) for control vs. disease classification; BVTS (SCP), BVDSC3, FAZ-AS, and FAZ-CID for
DR vs. SCR classification; BVDSC3 and FAZ-AS for NPDR staging; and BVTS, BVDSC3, and FAZ-CIS

(SCP) for SCR staging. From Table 2, we can observe that the individual accuracy of the optimal
features in each classification task were highest compared to the other features and the model fitted
with the combination of these optimal features provided the best diagnostic accuracy. Also, from
Figure 3, we can see that the relative changes in each cohort could only be observed in the chosen
optimal OCTA features.
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Table 2. Diagnostic accuracy measured during hierarchical backward elimination.

Parameters Diagnostic Accuracy (%)

Control vs. Disease DR vs. SCR NPDR Staging SCR Staging

BVTS 81.75 81.64 71.26 89.15
BVCS 79.88 75.59 78.51 71.92
VPIS 76.49 76.83 78.39 65.46

BVDSC1 72.11 53.14 62.02 55.19
BVDSC2 80.02 77.98 75.83 74.98
BVDSC3 89.01 83.49 82.67 83.67
BVDDC1 69.35 52.17 64.30 58.02
BVDDC2 78.53 75.83 78.54 76.20
BVDDC3 80.69 70.28 77.13 65.59
FAZ-AS 91.67 83.66 85.02 78.84
FAZ-AD 88.48 80.09 80.46 76.11
FAZ-CIS 88.74 81.57 79.34 80.95
FAZ-CID 89.05 82.65 78.95 75.69

Optimal feature combination 97.45 94.32 89.60 93.11

Superscript S and D denote SCP and DCP respectively. In case of BVD, C1–C3 denote circular area 1,2 and 3
respectively as shown in Figure 2.
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3.2. Multi-Task Classification

The SVM classifier performed the classification tasks in a hierarchical manner. To evaluate the
diagnostic performance in each step or task, we measured the sensitivity and specificity task. For each
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task, the ROC curves were also drawn (Figure 4) and AUCs were calculated. At the first step, the
SVM identified diseased patients from control subjects with 97.84% sensitivity and 96.88% specificity
(AUC 0.98). After identifying the diseased patients, the classifier sorted them to two groups: DR
and SCR with 95.01% sensitivity and 92.25% specificity (AUC = 0.94). After sorting to corresponding
retinopathies, the SVM conducted the condition staging classification: 92.18% sensitivity and 86.43%
specificity for NPDR staging (mild vs. moderate vs. severe; AUC = 0.96), and 93.19% sensitivity and
91.60% specificity for SCR staging (mild vs. severe; AUC = 0.97). The sensitivity, specificity and AUC
metrics were calculated for the SVM model trained with optimal feature combination. Table 3 shows
the performance metrics in further details.J. Clin. Med. 2019, 8, 872 11 of 16 
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Table 3. Performance evaluation of multi-task classification algorithm using optimal feature combination.

Parameters Classification Performance

AUC Sensitivity (%) Specificity (%)

Control vs. Disease 0.98 97.84 96.88
DR vs. SCR 0.94 95.01 92.25

NPDR Staging 0.96 92.18 86.43
SCR Staging 0.97 93.19 91.60

AUC = area under the receiver operation characteristics (ROC) curve.

4. Discussion

We herein demonstrate the feasibility of a supervised machine learning based AI screening tool for
multiple retinopathies using quantitative OCTA technology. In a hierarchical manner, this diagnostic
tool can perform multiple tasks to classify (i) control vs. disease, (ii) DR vs. SCR, (iii) different
stages of NPDR and SCR, using quantitative features extracted from OCTA images. These OCTA
images can provide visualization of subtle microvascular structures in intraretinal layers which
permits a comprehensive quantitative analysis of pathological changes due to systematic retinal
diseases such as DR and SCR. Morphological distortions such as impaired capillary perfusion, vessel
tortuosity and overall changes in foveal size and complexity etc. were quantitatively measured and
compared for identifying onset and progression of DR or SCR in diabetes and SCD patients respectively.
The SVM classifier model demonstrated a robust diagnostic performance in all classification tasks.
The classification model also utilized a backward-elimination strategy for choosing an optimal
combination of OCTA features for getting the best diagnostic performance with highest efficiency.
Proper implementation of this AI-based tool in primary care centers would facilitate a quick and
efficient way of screening and diagnosis of vision impairment due to systematic diseases.

For any screening and diagnostic prediction system, sensitivity is a patient safety criterion [24].
The AI-based tool’s major role is to identify patients prone to vision impairment due to retinopathies.
In the control vs disease classification task, the 94.84% sensitivity of our system represents the capability
to identify individual eyes with retinopathies (DR and SCR) from a general pool of control, DR and
SCR eyes. Furthermore, the system can identify patients with DR or SCR with 95.01% sensitivity. This
is crucial for screening purposes, as those patients should be referred to eye care specialists. Similarly,
specificity is also an important factor because it will represent the capability of detecting subjects that
do not require referral to an eye care specialist. When the data pool equals millions of patients, this
discriminatory capability is crucial for efficient clinical effectiveness in mass-screening. Our system
demonstrates 96.88% specificity which means the control subjects would rarely be erroneously referred
for treatment of retinopathies; additionally, 92.25% specificity in DR vs. SCR classification means the
patients with DR or SCR would not be referred with an incorrect diagnosis. This is relevant since certain
advanced stages of a disease tend to progress faster than others and hence require more expedient
evaluation and management upon referral. In mass-screening applications, the AI classification tool
will be useful to identify proper referral for patients with systematic diseases (i.e., diabetes or SCD)
and avoid unnecessary referral for patients who do not need specialized care at that time point.

Our study demonstrated that an optimal combination of OCTA features can achieve maximum
diagnostic accuracy for all classification tasks. As supported by results from Table 2 and Figure 3,
we can observe that, in all performance metrics, the classification model trained with optimal feature
combination demonstrated better diagnostic proficiency compared to the model trained with individual
features or combination of all features. The OCTA features analyzed in this study represent vascular
and foveal distortions in retina due to retinopathy from both superficial and deep layers as well as
localized circular regions in the retina (BVD). Out of all these OCTA features, the feature selection
strategy identified the most sensitive features for each classification tasks to significantly distinguish
different cohorts. The high diagnostic accuracy of the SVM classifier trained with optimal feature
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combination highlights the importance of the most relevant feature selection in automated classification.
Few features that showed significance in the univariate analysis (Supplementary Tables) were not
selected in the final set of optimal features. This suggests a contrast between clinical applicability
and overall difference of OCTA features among different patient groups. Ashraf et al. [19] observed
a similar phenomenon when using feature selection for automated staging of DR eyes. In all the
classification tasks, the most sensitive features also had low correlation amongst themselves. Figure 5
illustrates a scatter plot showing correlation analysis for DR vs. SCR classification. We can observe
that only FAZ parameters had positive correlation with each other; BVT and BVD both were not
significantly correlated with FAZ parameters (Spearman’s rank test, p > 0.05), suggesting that all the
features provided different pathological aspects of the diseased retina. Therefore, the four optimal
features were objective for identifying DR or SCR associated distortions and their combination yielded
strong classification performance.J. Clin. Med. 2019, 8, 872 13 of 16 

 

 
Figure 5. Correlation analysis among four most sensitive features. The scatter plot also shows the 
distribution of control, DR and SCR patient data for different feature combination. 

The optimal OCTA features selected by the AI classification tool have been previously shown in 
the literature to be useful in quantitative analysis studies [25–35]. Both BVD and FAZ parameters 
(FAZ-A and FAZ-CI) have been shown to be significant in identifying DR stages [19,33,35,36]. 
Tortuosity metric, BVT is also an established predictor for SCR progression. In two separate studies, 
we previously demonstrated an SVM classifier for automated staging of DR groups (mild, moderate, 
severe) [5] and SCR groups (stage II and III) [20]. In our DR study, the most sensitive OCTA feature 
was observed to be BVD while for SCR, it was BVT and FAZ. These sensitive OCTA features are also 
selected to be included in the optimal feature set by the backward elimination technique in our 
current study for different classification tasks. Our current study, therefore, supports our previous 
findings and also demonstrates the clinical importance of identifying most sensitive features for 
different retinopathies. Furthermore, the optimal features included measurements from both SCP 
and DCP. Previous OCTA studies [19] including our recent studies [5,23] have suggested that the 
onset and progression of DR or SCR in diabetes or SCD patients affect both the retinal layers. By 
choosing optimized features from SCP and DCP, the AI-based model ensured representation of layer 
specific distortions due to retinopathies. 

For practical implementation of any AI-based tool in mass-screening at a clinical setting, a major 
challenge is the computation time required for overall feature extraction, optimization and diagnostic 
prediction. Our AI-based screening tool required only 4–6 seconds to extract features from each 
OCTA image. From the training data, the optimized features were chosen using backward 
elimination which takes approximate 40–50 seconds (done only one time) depending on the size of 
the dataset. After the training of the SVM classifier is completed, it takes 8–10 seconds for classifying 
the testing database used in this study. If new data is included for diagnosis prediction, it takes only 
1–2 seconds per OCTA image to use the trained model to classify control, DR or SCR eyes. However, 
at this point the AI-based tool is implemented in MATLAB (Mathworks, Natick, MA, USA), a 

Figure 5. Correlation analysis among four most sensitive features. The scatter plot also shows the
distribution of control, DR and SCR patient data for different feature combination.

The optimal OCTA features selected by the AI classification tool have been previously shown in the
literature to be useful in quantitative analysis studies [25–35]. Both BVD and FAZ parameters (FAZ-A
and FAZ-CI) have been shown to be significant in identifying DR stages [19,33,35,36]. Tortuosity metric,
BVT is also an established predictor for SCR progression. In two separate studies, we previously
demonstrated an SVM classifier for automated staging of DR groups (mild, moderate, severe) [5] and
SCR groups (stage II and III) [20]. In our DR study, the most sensitive OCTA feature was observed to
be BVD while for SCR, it was BVT and FAZ. These sensitive OCTA features are also selected to be
included in the optimal feature set by the backward elimination technique in our current study for
different classification tasks. Our current study, therefore, supports our previous findings and also
demonstrates the clinical importance of identifying most sensitive features for different retinopathies.
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Furthermore, the optimal features included measurements from both SCP and DCP. Previous OCTA
studies [19] including our recent studies [5,23] have suggested that the onset and progression of DR or
SCR in diabetes or SCD patients affect both the retinal layers. By choosing optimized features from SCP
and DCP, the AI-based model ensured representation of layer specific distortions due to retinopathies.

For practical implementation of any AI-based tool in mass-screening at a clinical setting, a major
challenge is the computation time required for overall feature extraction, optimization and diagnostic
prediction. Our AI-based screening tool required only 4–6 s to extract features from each OCTA image.
From the training data, the optimized features were chosen using backward elimination which takes
approximate 40–50 s (done only one time) depending on the size of the dataset. After the training of
the SVM classifier is completed, it takes 8–10 s for classifying the testing database used in this study.
If new data is included for diagnosis prediction, it takes only 1–2 s per OCTA image to use the trained
model to classify control, DR or SCR eyes. However, at this point the AI-based tool is implemented in
MATLAB (Mathworks, Natick, MA, USA), a separate software not integrated in the OCTA imaging
device (Angiovue from Optovue, Fremont, CA, in our case). Once the technology is integrated into the
interface of the OCTA device, the users can view real-time prediction as soon as the OCTA image is
captured in retina clinics. The diagnostic accuracy can be enhanced even further if the patient history
or clinical information is integrated into the screening tool.

Limitations of this study include relatively modest sample size for each of cohort and single
imaging center. In future studies, we plan to include multiple imaging centers and a much larger OCTA
database to test the robustness of our AI screening tool for practical implementation in retina clinics.
Furthermore, we relied on the segmentation provided by the clinical device to identify the images
from SCP and DCP. Thus, there is a possibility of segmentation error. The potential motion, projection
artifacts in OCTA and error in reconstruction of OCTAs from SD-OCT volume data were few other
limitations. However, we attempted to minimize the effect of these errors and artifacts in our study by
excluding the images with severe artifacts, segmentation errors and patients with macular edema.

5. Conclusions

In conclusion, we present a supervised machine learning based multi-task AI classification tool
that uses an optimal combination of quantitative OCTA features for objective classification of control,
DR and SCR eyes with excellent diagnostic accuracy. Using the feature selection strategy, the classifier
selected BVDSC3, FAZ-AS and FAZ-CID for control vs. disease classification; BVTS, BVDSC3, FAZ-AS,
and FAZ-CID for DR vs. SCR classification; BVDSC3 and FAZ-AS for staging of NPDR severity; and
BVTS, BVDSC3, and FAZ-CIS for staging of SCR severity. The optimal-feature-combination directly
correlates to the most significant morphological changes in the retina for each classification task and
provides the most effective classification performance with least computational complexity. Our
diagnostic tool performs well with cross-validate data. However, further validation studies using larger
cohorts of OCTA data from different centers and devices will facilitate future clinical implementation
of a mass-level AI-based screening tool.
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