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ABSTRACT
Prolonged life expectancy in humans has been accompanied by an increase in the
prevalence of cancers. Breast cancer (BC) is the leading cause of cancer-related
deaths. It accounts for one-fourth of all diagnosed cancers and affects one in eight
females worldwide. Given the high BC prevalence, there is a practical need for
demographic screening of the disease. In the present study, we re-analyzed a large
microRNA (miRNA) expression dataset (GSE73002), with the goal of optimizing
miRNA biomarker selection using neural network cascade (NNC) modeling. Our
results identified numerous candidate miRNA biomarkers that are technically suitable
for BC detection. We combined three miRNAs (miR-1246, miR-6756-5p, and miR-
8073) into a single panel to generate an NNC model, which successfully detected BC
with 97.1% accuracy in an independent validation cohort comprising 429 BC patients
and 895 healthy controls. In contrast, at least seven miRNAs were merged in a multiple
linear regression model to obtain equivalent diagnostic performance (96.4% accuracy
in the independent validation set). Our findings suggested that suitable modeling
can effectively reduce the number of miRNAs required in a biomarker panel without
compromising prediction accuracy, thereby increasing the technical possibility of early
detection of BC.

Subjects Oncology, Data Mining and Machine Learning
Keywords microRNA, Breast cancer, Diagnostic biomarker, Neural network cascade

INTRODUCTION
Breast cancer (BC) is one of the most common cancers that accounts for one in
four diagnosed cancers and affects one in eight females worldwide (Torre et al., 2015).
Approximately 1.5 million new BC cases are reported per year (Siegel, Miller & Jemal,
2015), which is close to the existing 1.7 million BC cases reported in 2012. Conservative
estimates suggested higher morbidity rates associated with BC though only prolonged
life expectancy of females was considered. Therefore, early demographic screening is
necessary to manage the unprecedented increase in the malignant disease (Myers et al.,
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2015). However, currently employed BC screening methods have relatively low sensitivity
and insufficient identification power, leading to a high false positive rate of 20.5% in
women aged 40–49 years (Van den Ende et al., 2017). Therefore, there is a need for the
development of novel biomarkers for early detection of BC.

MicroRNAs (miRNAs) are a class of single-stranded small non-coding RNA molecules
of ∼22 nucleotides. miRNAs act as post-transcriptional gene expression regulators via
complementary binding to the 3′-untranslated regions of mRNAs (Bartel, 2009). Recent
studies have shown important involvement of miRNAs in the pathological process of BC
via regulating proliferation and energy synthesis of BC cells (Li et al., 2017; Chen et al.,
2018; Xiao et al., 2018). The miRBase database currently includes data on more than 2,800
mature human miRNAs (Kozomara & Griffiths-Jones, 2014). Of these, some miRNAs, such
as miR-21 and miR-155, have demonstrated potential value for the early diagnosis of BC
(Hamam et al., 2017). Meanwhile, the development of new detection techniques made
accurate detection of low-abundance circulating miRNAs no longer an obstacle (Majd,
Salimi & Ghasemi, 2018).

Despite significant progress in research on the use of circulating miRNAs as diagnostic
BC biomarkers, one major limitation is that most studies have small sample sizes, which
results in poor inter-study reproducibility (Nassar, Nasr & Talhouk, 2017). Thus, there is a
need for a systematic review of candidate biomarkers reported in previous clinical studies.
BC is considered a collection of mammary gland-related heterogeneous diseases (Bertos &
Park, 2011). In addition, the high BC prevalence requires large sample sizes so that multiple
types of BC can be investigated in a single circulating miRNA biomarker study. So far, only
one study hasmet this requirement. In a study comprising approximately 4,000 patients and
healthy subjects, Shimomura and his colleagues performed a microarray-based circulating
miRNA biomarker assay for early detection of BC in the Japanese population (Shimomura
et al., 2016). The authors validated the effectiveness of a biomarker panel comprising
five miRNAs (miR-1246, miR-1307-3p, miR-4634, miR-6861-5p, and miR-6875-5p) for
BC diagnosis with 89.7% accuracy. Surprisingly, the aforementioned five miRNAs were
not reported by other studies with small sample sizes (Nassar, Nasr & Talhouk, 2017).
Therefore, larger sample sizes can facilitate the discovery of miRNA biomarkers, while
smaller sample sizes can introduce more sampling error and inconsistencies in miRNA
biomarkers among different studies.

Although the authors provided a valuable data resource for expression levels of
circulating miRNAs in BC (GSE73002), no optimization was performed for the miRNA
biomarker panel, which could potentially increase diagnostic accuracy. The neural network
cascade (NNC) modeling has been demonstrated to have high prediction accuracy than
the traditional artificial neural network (ANN) modeling (Li et al., 2015; Hou et al., 2016;
Qu et al., 2017). In this study, NNC models were generated to re-analyze the dataset
comprising circulating miRNAs in BC and to optimize the miRNA biomarker panel
for early detection of BC. Our approach was effective in identifying suitable diagnostic
biomarkers for demographic screening for BC.
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MATERIALS AND METHODS
miRNA expression data
Expression data of circulating miRNAs in BC patients and healthy controls (GSE73002)
were retrieved from the Gene Expression Omnibus (GEO) repository (Shimomura et al.,
2016). The present study included data from a total of 3,974 participants, including 1,288
BC patients and 2,686 healthy controls. For each participant, the normalized microarray
expression values of 2,540 miRNAs were downloaded from GEO, and the corresponding
disease statuses (healthy: 0 or BC: 1) were obtained for further modeling.

Biomarker evaluation and selection
Data from the 3,974 participants were randomly divided into two sets, namely, a training
set (n= 2,650) and a validation set (n= 1,324). Later, each of the 2,540 miRNAs in the
training set was independently evaluated as a potential miRNA biomarker for BC. We
performed receiver operating characteristic (ROC) curve analysis of the miRNA expression
values usingMedCalc version 15.8 (MedCalc,Mariakerke, Belgium).We calculated the area
under the curve (AUC) to evaluate whether the generated models can reliably distinguish
between BC and healthy controls (AUC > 0.95 and p< 0.0001). Since all expression values
corresponding to miRNA models with AUC ≥0.95 did not satisfy the D’Agostino-Pearson
omnibus normality test or follow a Gaussian distribution, we conducted Spearman’s
correlation tests to determine the collinearities among the miRNAs using GraphPad Prism
version 6.0 (GraphPad Software, Inc., La Jolla, CA, USA). Collinearity was considered
significant at the threshold of |ρ|> 0.5. If the expression values of two miRNAs are
collinear (|ρ|> 0.5), only the miRNA with a larger AUC was retained for further modeling.
A collinearity network of the miRNAs with AUC ≥0.95 was generated using the network
visualization software Cytoscape v3.6.0 (Institute of Systems Biology, Seattle, WA, USA)
(Shannon et al., 2003).

NNC and multiple linear regression (MLR) models
The expression values of the miRNAs with AUC ≥0.95 were normalized to a value
between 0 and 1 before further model building, as previously described (Zhu & Kan,
2014). The Intelligent Problem Solver (IPS) tool in the Statistica Neural Networks (SNN,
Release 4.0E; Statsoft, Tulsa, OK, USA) software was used to build a radial basis function
(RBF)-ANN model with 1-11-1 network architecture to investigate the associations of
individual miRNAs with the disease status. Afterwards, an NNC model was built following
a step-by-step procedure as previously described (Li et al., 2015). Briefly, the ANN that
contributed to the maximum increase in AUC was retained for further extension of the
ANN cascade. Such a modeling operation would be terminated artificially until there was
no further increase in AUC or all of the miRNAs were incorporated in the NNC model.
For comparison, a MLR model was also built based on the miRNAs with AUC≥0.95 using
the SPSS statistical software version 19.0 (IBM Corp., New York city, NY, USA).

Model validation
A hold-out cross-validation method was used for internal validation of each of the
RBF-ANNs in the NNC model. Briefly, IPS divided the modeling set into three subsets
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(training subset, verification subset, and testing subset) at a 2:1:1 ratio. Data on participants
included in the testing subset were not used for model building but were used for model
validation. The correlation coefficients given by IPS were compared to those from the
training subset (RTr); the testing subset (RTe) measured the linear relationship between
the model output values and the normalized miRNA expression values. Similar RTe and
RTr values indicated good generalizability of the corresponding RBF-ANN. Furthermore, a
tenfold cross-validation method was used to validate the NNC model. The entire training
set (n= 2,650) was randomly divided into ten mutually exclusive groups of nearly equal
size. Nine of the groups were selected for model training, while the remaining group was
used for model validation. The above procedure was repeated ten times, as previously
described (Li et al., 2015). Furthermore, an independent validation set (n= 1,324) was
used for external validation of the NNC and MLR models. Three parameters, namely,
sensitivity, specificity, and accuracy rate, were used for model evaluation and validation.
Sensitivity was calculated as the percentage of the number of true positives divided by the
sum of true positives and false negatives. Specificity was calculated as the percentage of
number of true negatives divided by the sum of true negatives and false positives. Accuracy
rate (ACC) was calculated as the number of successfully identified BC patients and healthy
controls divided by the sum of all the participants.

Data statistics
Spearman’s correlation test was conducted using Graphpad Prism v6.0. ROC curve analysis
was performed using MedCalc v13.0. Statistically significant differences were considered
at p< 0.0001.

RESULTS
High AUCs revealed the redundancy of technically suitable miRNA
biomarkers for BC
In the present study, data of 3,974 participants were obtained from the GSE73002 dataset.
All participants were randomly assigned into two sets, namely, the training set and
validation set, at a 2:1 ratio. The training set consisted of 859 BC patients and 1,791 healthy
controls. The validation set comprised 429 BC patients and 895 healthy controls. We then
investigated the technical feasibility of each of the 2,540 miRNAs for BC identification in
each of the training sets. Figure 1A shows the frequency distribution of the AUC values
calculated from ROC curve analyses. Approximately 74% of all miRNAs showed high AUC
values (AUC > 0.9), which indicated the strong reliability of the generated models for BC
detection. A total of 82 miRNAs with high AUC values are highlighted (AUC > 0.95).
Furthermore, we observed consistent collinearity among the 82 miRNAs (Fig. 1B), which
implied very high redundancy of candidate miRNA biomarkers used for BC detection.
Finally, we identified eight non-collinearmiRNAs that satisfied AUC> 0.95. ThesemiRNAs
are listed in Table 1. Compared with the seven othermiRNAs,miR-8073 showed the highest
AUC value (AUC = 0.991) and the highest accuracy for identifying BC in the training set
(ACC = 97.0%).
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Figure 1 AUC distribution and collinearity of miRNA expression. (A) Frequency distribution of AUCs.
(B) Collinearity network of the 82 miRNAs with AUC ≥0.95. An edge represents collinear expression be-
tween the two miRNAs (ρ2> 0.5).

Full-size DOI: 10.7717/peerj.4551/fig-1
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Table 1 ROC curve analysis of individual miRNAs (training set).

miRNA ID AUC Sensitivity (%) Specificity (%) ACC (%)

miR-197-5p 0.961 90.7 95.9 94.2
miR-1238-5p 0.964 90.3 97.1 94.9
miR-1246 0.967 89.8 91.7 91.1
miR-3156-5p 0.976 89.8 96.1 94.0
miR-4532 0.968 89.8 98.7 95.8
miR-6748-5p 0.962 90.2 90.3 90.3
miR-6756-5p 0.975 92.7 97.2 95.7
miR-8073 0.991 95.7 97.6 97.0

Table 2 Comparison between NNC andMLRmodels (training set).

Model AUC Sensitivity (%) Specificity (%) ACC (%)

Layer 1 of NNC 0.991 95.7 97.6 96.9
Layer 2 of NNC 0.995 95.8 98.5 97.6
Layer 3 of NNC 0.996 97.3 99.1 98.5
MLR 0.996 96.5 97.9 97.4

NNC model integrating three miRNAs for BC detection
An NNCmodel was built to generate a miRNA biomarker panel for BC diagnosis using the
eight miRNAs listed in Table 1. Finally, three miRNAs, namely, miR-1246, mi R-6756-5 p,
and miR-8073, were used to effectively extend the cascade (Fig. 2A). The NCC consisted of
three 1-11-1 RBF-ANN units and two 2-11-1 RBF-ANN units. Each of the five RBF-ANNs
showed similar RTe and RTr values. Furthermore, an MLC model was built by considering
the same eight miRNAs as candidate model inputs. Except for miR-6748-5p, sevenmiRNAs
were automatically selected into an MLR model using the SPSS software. Although only
three miRNAs were included in the NNC model and four additional miRNAs were used
in the MLR model, significant differences were not observed between the NNC and
MLR models. Table 2 lists the core evaluation parameters for the two models. Although
both models had the same AUC, the NNC model showed better performance for BC
identification. The accuracy rate of the NNC model was 98.5%, while that of the MLR
model was 97.4%.

NNC successfully identified BC in the validation set
To validate the effectiveness of the NNC model for BC identification, we performed a
tenfold cross-validation. The NNC model had an AUC of 0.995, which demonstrated its
effectiveness for BC detection (Fig. 3A). An independent validation set consisting of data
from 1,324 participants was used to further validate the NNC model. The NNC model
was found to have an AUC similar with those of the single miRNA (miR-8073) model and
the MLR model (Fig. 3B). However, the NNC model actually showed the highest accuracy
for BC identification (ACC = 97.1%; Fig. 3C). The sensitivity and specificity of the NNC
model were 96.7% and 97.2%, respectively.
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Figure 2 Establishment of the NNCmodel. (A) Illustration of the NNC model. L1–L3: Layers 1–3 of the
NNC model; R1246: miR-1246; R6756-5p: miR-6756-5p; R8073: miR-8073; AUC values are shown above
the layers. (B) ROC curve diagrams of the NNC and MLR models (training set).

Full-size DOI: 10.7717/peerj.4551/fig-2

DISCUSSION
The GSE73002 breast cancer (BC) dataset, comprising data from a Japanese population, is
the largest miRNA dataset published in GEO. China has also witnessed an increase in the
number of BC cases in recent years (Jiang, Tang & Chen, 2018). BC has become the most
prevalent malignant disease in Chinese females, with nearly 270,000 new BC cases reported
in 2015. Consequently, BC has become a serious and widespread social issue that cannot be
solved by treatment alone. Early detection of BC in the population represents an optimal
strategy for improving the survival rates of BC patients (Sun et al., 2017).

Considerable evidence has demonstrated the technical reliability of miRNAs as early
diagnosticmarkers for BCbecause of their relatively simplemolecular structure and stability
(Bahrami et al., 2018). However, multiple studies have not agreed upon a consensus set of
miRNAs that are useful as biomarkers, which could be attributed to inadequate sample sizes
in the majority of studies (Nassar, Nasr & Talhouk, 2017). The above findings indicated
that cohorts with small samples sizes within the range of dozens to hundreds are of little
or no value for the identification of potential miRNAs as early diagnostic biomarkers.
Therefore, simply counting the number of times a miRNA was validated as a BC biomarker
in different studies is not reliable. The heterogeneity of different BC subtypes is a major
consideration for the initial research design (Yeo & Guan, 2017). The sample size is a
crucial design parameter for a clinical study. Inadequate samples do not fully represent the
whole population (Freiman et al., 1978). However, large sample sizes are difficult to obtain
because of certain criteria that limit the number of available samples. For example, research
funding may not be sufficient to support a large sample size, and different research groups
may have limited staff for implementation of the research protocols. Moreover, research
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Figure 3 Model validation. (A) ROC curve diagram of the tenfold cross-validation of the NNC model.
(B) ROC curve diagram of the NNC and MLR models (validation set). 10FCV: Tenfold cross-validation.
(C) Accuracy evaluation of miR-8073, MLR, and NNC BC detection (validation set). R8073: miR-8073.
ACC: accuracy rate; Se: sensitivity; Sp: specificity.

Full-size DOI: 10.7717/peerj.4551/fig-3

groups are usually relatively isolated from each other and most studies tend to address
problems in the regions in which the studies were performed.

Re-analysis of the GSE73002 dataset facilitated the selection and optimization of
biomarkers from the human miRNAome, a sample set that is most representative of the
population. One of our main findings is that circulating miRNAs serve as highly useful
markers for BC detection. A single miRNA can be used as a biomarker without the need
for data reprocessing. For example, our models achieved close to 96% accuracy in the
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independent validation set using miR-8073 as the biomarker. Our results were consistent
with those of previously reported miRNA biomarkers (Nassar, Nasr & Talhouk, 2017).

In addition, our findings showed that appropriate data modeling is necessary for
optimization of miRNA biomarkers. The currently developed NNC model showed
significantly higher accuracy ranging from 95.8% to 97.1% after integration of single
miRNA, miR-8073, with the two miRNAs miR-6756-5p and miR-1246 that was validated
as biomarkers for several cancers (Hannafon et al., 2016;Machida et al., 2016; Todeschini et
al., 2017). However, six additional miRNAs were needed to achieve the same accuracy rate
when using the MLRmodel. TheMLRmodel is a widely used mathematical model that can
be used to construct miRNA biomarker panels for the detection of various human diseases
(Ding et al., 2017). The NNC is a tandem mode of multiple small ANNs that generates
a gradual gain in target information. In the present study, we confirmed that the NNC
models achieved higher prediction accuracy with a lower number of input biomarkers than
traditional modeling methods, including MLR and ANN (Li et al., 2015; Hou et al., 2016;
Qu et al., 2017).

CONCLUSION
In conclusion, we constructed and validated an NNC-based biomarker panel comprising
three miRNAs (miR-1246, miR-6756-5p, and miR-8073) for early detection of BC. The
models were generated using data from a miRNA microarray database comprising nearly
4,000 Japanese female participants. Compared with the single miRNA biomarker (miR-
8073) or theMLR-basedmiRNAbiomarker panel, theNNC-basedmiRNAbiomarker panel
was validated to successfully identify BC with significantly higher accuracy of 97.1%. Given
that the dataset used for constructing the biomarker panel was derived from a Japanese
population, further studies using a large cohort of female participants are required to
confirm the generalizability of the developed panel to other Asian populations, such as the
Chinese population.
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