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Galectins constitute a protein family of soluble and non-glycosylated animal lectins
that show a β-galactoside-binding activity via a conserved sequence of approximately
130–140 amino acids located in the carbohydrate recognition domain (CRD). To date, fifteen
members, named in the order of their identification, have been identified in mammals.
The galectin family members are classified into three types on the basis of their structures.
Galectins are stored in the cytoplasm of many types of immune and stromal cells that
occur at the entry sites of pathogenic micro-organisms, including fibroblasts, keratinocytes,
endothelial cells, and mucosal membrane epithelial cells. Despite the highly conserved
nature of galectin CRDs, subtle yet significant differences occur in the binding affinity
between different members of the galectin protein family. Galectins are also released from
injured cells and express a variety of activities under pathological conditions. This Special
Issue aims to present studies that describe novel aspects of galectins.

Kuśnierz-Cabala et al. described “Diagnostic Significance of Serum Galectin-3 in
Hospitalized Patients with COVID-19” [1]. This is the second report showing the signifi-
cantly higher serum galectin-3 (Gal-3) in patients with COVID-19 pneumonia and in those
requiring treatment in the ICU as compared to the cases with less severe diseases and to the
healthy population. Highly significant positive correlations were shown between serum
Gal-3 concentrations and the studied inflammatory markers, including IL-6, PTX-3, and
ferritin, and the endothelial dysfunction marker, sFlt-1. Another study showed significantly
higher plasma Gal-3 concentrations in 23 COVID-19 patients as compared to 15 healthy
controls [2]. Gal-3 is involved in innate immunological reactions to infections, serving as
a pattern-recognition receptor, a danger-associated molecular pattern molecule, and an
immunomodulator [3].

Plasma levels of Gal-9 are elevated in various disaster-related infectious diseases such
as dengue, malaria, and AIDS/TB [4]. Gal-9 is susceptible to cleavage of its linker-peptides
by several proteases. It is also interesting that truncated-Gal-9 (Tr-Gal9) levels showed a
high discriminating power between the healthy controls, COVID-19 infected and COVID-
19 pneumonia patients [5]. A dengue virus infection study also demonstrated Gal-9 as a
potential DAMP [6].

Finally, it should be mentioned that both Gal-3 and Gal-9 are potential immune
checkpoint molecules, because Gal-3 interacts with LAG3 and the interaction of Gal-9 Tim-3
induces either apoptosis or suppression of T cell effector functions via engagement with
its receptor TIM-3. In agreement, Gal-9 knockout mice mount a more robust and vigorous
virus-specific immune response, resulting in rapid viral clearance [7].

Wałek et al. wrote “SerumGalectin-3 Concentration Reflects Left Atrial Remodeling
and Function in Patients with Persistent Atrial Fibrillation” [8]. Atrial fibrillation (AF) is
the most common persistent supraventricular tachyarrhythmia [9]. It is associated with
an increased risk of developing heart failure, stroke and premature death [10]. This study
included 63 patients scheduled for elective direct current cardioversion (DCCV) due to
persistent AF. DCCV was successful in 43 (68.3%) patients and recovery of sinus rhytm
was achieved. The concentration of Gal-3 significantly negatively correlates with the size,
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systolic function, and compliance of the left atrial wall in patients with persistent AF. One
of the most important pathways of Gal-3’s activity is its effect on fibroblasts and collagen
synthesis. Gal-3 stimulates collagen synthesis and thus contributes to the impairment of
the systolic and diastolic functions of the heart muscle [11]. The concentration of Gal-3
negatively correlates with the size and systolic function of the LV in patients with persistent
AF. The assessment of Gal-3 concentration in patients with persistent AF may help in the
assessment of left atrial remodeling.

Dr. Meggy described the influence of Gal-9 treatment on the phenotype and function
of NK-92MI cells. The cytotoxic activity of the natural killer (NK) cells can be triggered
without prior sensitization or immunization in a major histocompatibility complex (MHC)-
unrestricted manner and regulated by various activating and inhibitory receptors, depend-
ing on the presence of their ligands on the target cells and the activation state of the NK
cells [12]. For tumor therapy, adoptive transfer of expanded and in vitro-activated NK cells
has been widely used [13]. The amplified natural killer cell activity was also applied to
adult T cell leukemia (ATL) [14], HTLV-1 infected leukemia, because the NK-cell-inhibitory
molecule HLA-Class I gene is hypermethylated and silenced in many ATL cells [15]. They
described that the expression of the TIM-3 immune checkpoint receptor can be induced on
NK-92MI cells by recombinant Gal-9 treatment, and the elevated level of TIM-3 receptors
may mark a dose-dependent activation of these cells, which is strongly masked in the
presence of FCS-containing media, but is unmasked when 10% ABS is applied as a culture
supplement. The authors suggested to avoid using FCS in their activity examining the
biological and regulatory role of Gal-9 or other members of the galectin family.

Campanero-Rhodes et al. examined the binding of four human galectins to the Gram-
negative bacteria [16]. Galectins have been shown to bind to the surfaces of some pathogens
and products released by the pathogens [17]. These can result in either direct effects on
growth of the pathogens or immune responses against them. In this manuscript, bind-
ing assays to microarray-printed bacteria revealed that galectins-3, -4, and -8, but not
galectin-1, bind to Gram-negative bacteria Klebsiella pneumoniae (Kpn) and non-typeable
Haemophilus influenzae (NTHi) cells, and confocal microscopy attested binding to bacterial
cells in suspension. They illustrated galectins’ versatility for recognizing different bacterial
structures, and point out the occurrence of so far overlooked galectin ligands on bacterial
surfaces. Galectins’ plasticity in targeting diverse ligands in multifarious pathogens, in-
cluding Gram-negative and -positive bacteria, virus, fungi, and parasites, points to a key
role of these lectins in immune protection.

Huang et al. described the immunosuppressive roles of Gal-1 in the tumor microen-
vironment [18]. Gal-1 is expressed classical Hodgkin’s lymphoma, head and neck cancer,
all types of human glioma, pancreatic ductal adenocarcinoma cells, lung cancer, breast
cancer and melanoma [18]. In breast cancer, tumor-derived Gal-1 promotes an immuno-
suppressive breast cancer microenvironment by increasing the frequency of CD4+CD25+

Foxp3+ Treg cells within the tumor, draining lymph nodes, spleen, and lung metastases [19].
The mechanistic studies discussed in this review revealed that Gal-1 contributes to an im-
munosuppressive tumor microenvironment by inducing apoptosis in effector T cells. Thus,
the manipulation of the Gal-1 signaling pathways provides a new avenue for improving
checkpoint blockade immunotherapy outcomes.

To conclude, this Special Issue described the novel activities of galectins. Galectins
have been present in various organisms since ancient times and maybe the root of their
complexity. Further research is desired.
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