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Limitations and tradeoffs in 
synchronization of large-scale 
networks with uncertain links
Amit Diwadkar & Umesh Vaidya

The synchronization of nonlinear systems connected over large-scale networks has gained popularity in 
a variety of applications, such as power grids, sensor networks, and biology. Stochastic uncertainty in 
the interconnections is a ubiquitous phenomenon observed in these physical and biological networks. 
We provide a size-independent network sufficient condition for the synchronization of scalar nonlinear 
systems with stochastic linear interactions over large-scale networks. This sufficient condition, 
expressed in terms of nonlinear dynamics, the Laplacian eigenvalues of the nominal interconnections, 
and the variance and location of the stochastic uncertainty, allows us to define a synchronization 
margin. We provide an analytical characterization of important trade-offs between the internal 
nonlinear dynamics, network topology, and uncertainty in synchronization. For nearest neighbour 
networks, the existence of an optimal number of neighbours with a maximum synchronization 
margin is demonstrated. An analytical formula for the optimal gain that produces the maximum 
synchronization margin allows us to compare the synchronization properties of various complex 
network topologies.

Synchronization in large-scale network systems is a fascinating problem that has attracted the attention of 
researchers in a variety of scientific and engineering disciplines. It is a ubiquitous phenomenon in many engineer-
ing and naturally occurring systems, with examples including generators for electric power grids, communication 
networks, sensor networks, circadian clocks, neural networks in the visual cortex, biological applications, and the 
synchronization of fireflies1–4. The synchronization of systems over a network is becoming increasingly important 
in power system dynamics. Simplified power system models demonstrating synchronization are being studied to 
gain insight into the effect of network topology on the synchronization properties of dynamic power networks5. 
The effects of network topology and size on the synchronization ability of complex networks is an important area 
of research6. Complex networks with certain desirable properties, such as a small average path between nodes, 
low clustering ability, and the existence of hub nodes, among others, have been extensively studied over the past 
decade7–12.

It is impossible to do justice to the long list of literature that exists in the area of synchronization of dynamical 
systems. In the following discussion, we list a few references that are particularly relevant to the results presented 
in this paper. In13, the master stability function was introduced to study the local synchronization of chaotic oscil-
lator systems. Interesting computational observations were made that indicated the importance of the smallest 
and largest eigenvalues of the graph Laplacian. The master stability function was also used to study synchroni-
zation over Small-World networks and provide bounds on the coupling gains to guarantee the stability of the 
synchronous state in14. Bounds were provided on the coupling gains to guarantee the stability of the synchronous 
state in15. The impact of network interconnections on the stability of the synchronous state of a network system 
was also studied in16. These results derived a condition for global synchronization based on the coupling weights 
and eventual dissipativity of the chaotic system using Lyapunov function methods and a bound on path lengths 
in the connection graph. In this paper, as in the papers listed above, we provide an analytical characterization 
of the importance of the smallest and largest positive eigenvalue of the coupling Laplacian. However, in con-
trast to the above references, we provide conditions for the global synchronization in the presence of stochastic 
link uncertainty. Understanding the role of spatial perturbation in the nearest neighbour network to force a 
transition from one synchronized state to another is important for molecular conformation17. Other aspects 
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of network synchronization that are gaining attention are the effects of network topology and interconnection 
weights on the robustness of the synchronization properties18. In this paper, we provide a systematic approach for 
understanding the effects of stochastic spatial uncertainties, network topology, and coupling weights on network 
synchronization.

Uncertainty is ubiquitous in many of these large-scale network systems. Hence, the problem of synchroniza-
tion in the presence of uncertainty is important for the design of robust network systems. The study of uncer-
tainty in network systems can be motivated in various ways. For example, in electric power networks, uncertain 
parameters or the outage of transmission lines are possible sources of uncertainty. Similarly, a malicious attack on 
network links can be modelled as uncertainty. Synchronization with limited information or intermittent commu-
nication between individual agents, e.g., a network of neurons, can also be modelled using time-varying uncer-
tainty. In this paper, we address the problem of robust synchronization in large-scale networks with stochastic 
uncertain links. Existing literature on this problem has focused on the use of Lyapunov function-based tech-
niques to provide conditions for robust synchronization19.

Both the master stability function and Lyapunov exponents have been used to study the variation of the syn-
chronous state’s stability, given local stability results with stochastic interactions20,21. The problem of synchroni-
zation in the presence of simple on-off or blinking interaction uncertainty was studied in22–25 using connection 
graph stability ideas16. The local synchronization of coupled maps was studied in26,27, which also provides a 
measure for local synchronization. Synchronization over balanced neuron networks with random synaptic inter-
connections has also been studied28. Researchers have studied the emergence of robust synchronized activity in 
networks with random interconnection weights29. The robustness of synchronization to small perturbations in 
system dynamics and noise has been studied30, while the robustness to parameter variations was also studied in 
the context of neuronal behaviour31. In this paper, we consider a more general model for stochastic link uncer-
tainty than the simple blinking model and develop mathematically rigorous measures to capture the degree of 
synchronization.

We consider a network of systems where the nodes in the network are dynamic agents with scalar nonlin-
ear dynamics. These agents are assumed to interact linearly with other agents or nodes through the network 
Laplacian. The interactions between the network nodes are assumed to be stochastic. This research builds on our 
past work, where we developed an analytical framework using system theoretic tools to understand the funda-
mental limitations of the stabilization and estimation of nonlinear systems with uncertain channels32–35. There are 
two main objectives for this research, which also constitute the main contributions of this paper. The first objec-
tive is to provide a scalable computational condition for the synchronization of large-scale network systems. We 
exploit the identical nature of the network agent dynamics to provide a sufficient condition for synchronization, 
which involves verifying a scalar inequality. This makes our synchronization condition independent of network 
size and hence computationally attractive for large-scale network systems. The second objective and contribution 
of this paper is to understand the interplay between three network characteristics: (1) internal agent dynamics, 
(2) network topology captured by the nominal graph Laplacian, and (3) uncertainty statistics in the network syn-
chronization. We use tools from robust control theory to provide an analytical expression for the synchronization 
margin that involves all three network parameters and increases the understanding of the trade-offs between these 
characteristics and network synchronization. This analytical relationship provides useful insight and can compare 
the robustness properties for nearest neighbour networks with varying numbers of neighbours. In particular, we 
show that there exists an optimal number of neighbours in a nearest neighbour network that produces a maxi-
mum synchronization margin. If the number of neighbours is above or below this optimal value, then the margin 
for synchronization decreases.

We use an analytical expression for the optimal gain and synchronization margin to compare the synchroni-
zation properties of Small-World and Erdos-Renyi network topologies.

Results
Synchronization in Dynamic Networks with Uncertain Links.  We consider the problem of syn-
chronization in large-scale nonlinear network systems with the following scalar dynamics of the individual 
subsystems:

φ= − ( ) + = ,…, , ( )+x ax x v k N1 1t
k

t
k

t
k

t
k

1

where ∈xk  are the states of the kth subsystem and >a 0 and ∈vk  is an independent, identically distributed 
(i.i.d.) additive noise process with zero mean (i.e., = )E v[ ] 0t

k  and variance ω( ) =E v[ ]t
k 2 2. The subscript t used 

in Eq. (1) denotes the index of the discrete time-step throughout the paper. The function  φ →:  is a mono-
tonic, globally Lipschitz function with φ( ) =0 0 and Lipschitz constant 

δ
2  for δ >  0.

The individual subsystem model is general enough to include systems with steady-state dynamics that could 
be stable, oscillatory, or chaotic in nature. We assume the individual subsystems are linearly coupled over an 
undirected network given by a graph = ( , )G V  with node set V, edge set  , and edge weights µ ∈ +

ij  for 
, ∈i j V  and ∈eij  . Let ⊆U   be a set of uncertain edges and = \D U   . The weights for ∈eij U  are random 
variables: ζ µ ξ= +t
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ij, where µij models the nominal edge weight and ξt
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2 2 2, for all t. Because the 

network is undirected, the Laplacian for the network graph is symmetric. We denote the nominal graph Laplacian 
by L E= ( ) ∈ , ∈×l ij e: [ ] N N

ij , where µ( ) = −l ij ij, if ≠i j, and, ∈eij , µ( ) = ∑ ∈l ij e ijij 
, if =i j. We denote 

the zero-mean uncertain graph Laplacian by = ( ) ∈ , ∈×l ij e: [ ]R R
N N

ij UL E , where ξ( ) = −l ijR t
ij, if ≠i j, and, 
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, if =i j. The nominal graph Laplacian L is a sum of the graph Laplacian for  
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the purely deterministic graph ( , )V D , and of the mean Laplacian for the purely uncertain graph ( , )V U .  
Hence,  may be written as   = +D U , where D , is the Laplacian for the graph over V with edge set D . 
 LU  is the mean Laplacian for the graph over V with edge set U . Define = ( ) ( ) ∈Τx̃ x x[ ]t t t

N N1  and 
φ φ φ( ) = ( )( ) ( )( ) ∈Τ��� x x x[ ]t t t t

N
t
N N1 1 , where ΤA  denotes the transpose of matrix A. In compact form, the 

network dynamics are written as

φ= ( − ( + )) − ( ) + , ( )+   

x aI g L L x x v 2t N R t t t1

where g >  0 is the coupling gain and IN is the ×N N  identity matrix. Our objective is to understand the interplay 
of the following network characteristics: the internal dynamics of the network components, the network topology, 
the uncertainty statistics, and the coupling gain for network synchronization. Given the stochastic nature of net-
work systems, we propose the following definition of mean square synchronization36.

Mean Square Synchronization.  Define ξ ξ= | ∈e: { }t t
ij

ij U , ξ ξ ξ= …{ , , }t
t0 0 , = …  v v v{ , , }t

t0 0  and ⋅ξ ,E [ ]vt t
0 0

 as 
the expectation with respect to uncertainties in the set ξ t

0  and vt
0. The network system (2) is said to be mean square 

synchronizing (MSS) if there exist positive constants β < 1, < ∞K̄ , and < ∞L , such that
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∀ ∈k j N, [1, ], where K̄  is a function of −x xi j
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2
 for ∈i j N, [1, ] and ( ) =K̄ K0  is a constant. In the absence 

of additive noise vt in system Eq. (2), the term ωL 2 in Eq. (3) vanishes and the system is mean square exponential 
(MSE) synchronizing37. We introduce the notion of the coefficient of dispersion to capture the statistics of 
uncertainty.

Coefficient of Dispersion.  Let ζ ∈t  be a random variable with mean µ > 0 and variance σ > 02 . The coefficient 
of dispersion (CoD) γ is defined as γ = σ

µ
:

2
. For all edges ( , )i j  in the network, the mean weights assigned are 

positive, i.e., µ > 0ij  for all ( , )i j . Furthermore, the CoD for each link is given by γ =
σ

µij
ij

ij

2

 and γ γ=
ξ

¯ max ij
t
ij

.

Because the subsystems are identical, the synchronization manifold is spanned by the vector = … Τ1 [1, , 1] . 
The dynamics on the synchronization manifold are decoupled from the dynamics off the manifold and are essen-
tially described by the dynamics of the individual system, which could be stable, oscillatory, or complex in nature. 
We apply a change of coordinates to decompose the system dynamics on and off the synchronization manifold. 
Let Λ= ΤL V V , where V is an orthonormal set of vectors given by =V U[ ]

N
1 , in which U is a set of −N 1 ortho-

normal vectors that are orthonormal to 1. Furthermore, we have Λ = λ , , λdiag{ }N1 , where 
= λ < λ ≤ ≤ λ0 N1 2  are the eigenvalues of . Let = Τ

 z V xt t and = Τ
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where Λ = λ λ

^ diag { , , }N2  and ξ ξ= | ∈e{ }t t
ij

ij U . For the synchronization of system (2), we only need to 
demonstrate the mean square stability about the origin of the ẑ dynamics as given in (5).

The objective is to synchronize, in a mean square sense, N first-order systems over a network with a nominal 
graph Laplacian L with eigenvalues = λ < λ ≤ ≤ λ0 N1 2  and maximum link CoD γ . We present the main 
result of this paper.

Mean Square Synchronization Result.  The network system in Eq. (2) is MSS if there exists a positive constant 
δ<p  that satisfies
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where α γτ= ( − λ ) + λa g g2sup sup0
2

0
2 2 ,  = −

δ
a a0

1  and γτλ = |λ + − |
λ∈ λ ,λ
argmaxsup

a
g

{ }N2

0 .  Furthermore, 

τ =
λ

λ + λ
: NU

NU D2
, where λNU

 is the maximum eigenvalue of LU  and λ2D
 is the second-smallest eigenvalue of LD.

The derivation of this result will be discussed in the Methods section. The above synchronization result relies 
on a Lyapunov function-based stability theorem. The positive constant p in Eq. (6) is used in the construction of 
the Lyapunov function given by ( ) =V x pxt t

2. Furthermore, in the Methods section, we prove that the Mean 
Square Synchronization Result obtained in (6) is equivalent to

( )
δ

α γτ
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 −



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a g g1 1 2 7sup sup

2

0
2

0
2 2

The main result can be interpreted in multiple ways. One particular interpretation useful in the subsequent 
definition of the synchronization margin is adapted from robust control theory. The robust control theory results 
allow one to analyse the stability of the feedback system with uncertainty in the feedback loop. The basic concept 
is that if the product of the system gain and the gain of the uncertainty (also called the loop gain) are less than 
one, then the feedback system is stable38. Note that system and uncertainty gains are measured by appropriate 
norms. The farther the system gain is from unity, the more uncertainty the feedback loop can tolerate and hence 
the more robust the system is to uncertainty. This result from robust control theory is extended to the case of sto-
chastic uncertainty and nonlinear system dynamics21,32–35,39,40. It can be shown that the synchronization problem 
for network systems with stochastic uncertainty can be written in this robust control form, where the loop gain 
directly translates to the synchronization margin. We refer the reader to supplementary material for more details 
and a mathematically rigorous discussion on the robust control-based interpretation behind the following mean 
square synchronization margin definition.

Mean Square Synchronization Margin.  The equivalent Mean Square Synchronization Result is used to define the 
Mean Square Synchronization Margin as follows:

( )
ρ σ

= −
− − ( )δ

ˆ

g

a
: 1

1 8
SM

2 2

1 2 2

where µ= − −
δ

â a g1 , ( )< −
δ

â 12 1 2
, µ λ= sup, σ γτ= λ2 sup

2 , and γτλ = λ + −
λ∈ λ ,λ
argmax:sup

a
g

{ }N2

0 . Further 

more, τ =
λ

λ + λ
: NU

NU D2
, where λNU

 is the maximum eigenvalue of U  and λ2D
 is the second-smallest eigenvalue of 

D .
ρSM measures the degree of robustness to stochastic perturbation. In particular, the larger the value of ρSM (i.e., 

the smaller the value of 
− −
δ

^
( ))

a

1

(1 )1 2 2
, the larger the variance of stochastic uncertainty that can be tolerated in the 

network interactions before the network loses synchronization. When considering practical computation, it is 
important to emphasize ρSM, as computed by Eq. (8), is obtained from a sufficiency condition and hence is a 
guaranteed synchronization margin, i.e., the true synchronization margin will be larger than or equal to ρSM. The 
synchronization condition for MSS of an N-node network system (2) as formulated in Eq. (8) is provided in terms 
of a scalar quantity instead of an N-dimensional matrix inequality. The condition is independent of network size, 
which makes it computationally attractive for large-scale networks. We now discuss the effects of various network 
parameters on synchronization.

Role of τ and γ .  The parameter τ< ≤0 1 in ρSM captures the effect of the uncertainty location in the graph 
topology. If the number of uncertain links ( )U  is large, the deterministic graph will become disconnected 
(λ = )02D

, and thus τ will equal 1. In contrast, if a single link is uncertain ( = )e{ }U kl , then τ =
µ

µ + λ

2

2
kl

kl D2
. This 

indicates that the synchronization degradation is proportional to the link weight. Because λ ≤ λ2 2D
, a lower alge-

braic connectivity of the deterministic graph further degrades ρSM. Thus, we can rank-order individual links 
within a graph with respect to their degradation of ρSM, where a smaller τ produces an increased ρSM. For exam-
ple, it can be proved that the average value of τ for a nearest neighbour network is larger than that for a random 
network8. Thus, if a randomly chosen link is made stochastic in a nearest neighbour network and in a random 
network, the margin of synchronization decreases by a larger amount in the nearest neighbour network as com-
pared than in the random network. We provide simulation results to support this claim in the supplementary 
information section. The significance of γ is straightforward, as it captures the maximum tolerable variance of the 
system, normalized with respect to the mean weight of the link. If γ > 1, then the uncertainty occurring within 
the system is clustered, which leads to large intervals of high deviation. Similarly, if γ < 1, then the uncertainties 
are bundled closer to the mean value. Decreasing γ for the network increases ρSM.

Role of Laplacian Eigenvalues.  The second smallest eigenvalue of the nominal graph Laplacian λ > 02  indicates 
the algebraic connectivity of the graph. Because α0 in (8) is a quadratic in λ , there exist critical values of λ2 (or λ )N  
for a given set of system parameters and CoD below which (or above which) synchronization is not guaranteed. 
Hence, the critical λ2 indicates that there is a required minimum degree of connectivity within the network for 
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synchronization to occur. Furthermore, increasing the connectivity at appropriate nodes may increase λ2, leading 
to higher ρSM. To understand the significance of λN , we look at the complement of the graph on the same set of 
nodes. We know from41 (Lemma provided in Supplementary Information for reference) that the sum of the larg-
est Laplacian eigenvalue of a graph and the second smallest Laplacian eigenvalue of the complementary graph is 
a constant. Thus, if λN  is large, then the complementary graph has low algebraic connectivity. Hence, a high λN  
indicates the presence of many densely connected nodes. Therefore, we conclude that a robust synchronization is 
guaranteed for graphs with close-to-average node connectivity to graphs with isolated but highly connected hub 
nodes. Thus, decreasing λN  by reducing the connectivity of specific nodes (i.e., dense hub nodes) will help 
increase ρSM.

Impact of Internal Dynamics.  The internal dynamics are captured by parameters a and δ, which respectively 
represent the rate of linear instability and the bound on the rate of change of the nonlinearity. As a increases, the 
linear dynamics become more unstable. When all other parameters are held constant, an increase in a results in a 
decrease in ( − ) − ( − λ )

δ
a g1 sup

1
0

2. Because 
)( )(

ρ ∝ −
− − − λ
δ

SM
a g

1

1 sup
1 2

0
2
, an increase in a will produce a 

decrease in ρSM. Thus, as the instability of the internal dynamics increases, the network becomes less robust to 
uncertainty. When the fluctuations in link weights are zero (i.e., CoD γ = )0 , the critical value of λ2 below which 
synchronization is not guaranteed is λ = −⁎ a

g2
1 . Furthermore, synchronization is not guaranteed for 

 λN  above the critical value ( )λ = − = λ + −
δ δ

+⁎ ⁎ 1N
a

g g g
1 2

2
2 1 . Thus, we see ( )λ − λ = −

δ
⁎ ⁎ 1N g2

2 1  and 

( )= + −
δ

λ

λ −

⁎

⁎ 1 1
a

2
1

1N

2
. While λ − λ⁎ ⁎

N 2 is independent of the internal dynamics parameter a, λ⁎
2 increases with 

an increase in a. In fact, for = +a 1 , where >0  is arbitrarily small, we have λ =⁎
g2
 . Hence, as the internal 

dynamics become more unstable, we require a higher degree of connectivity between the network agents to 
achieve synchronization. Because the nonlinearity φ is sector-bounded by 

δ
2 , the impact of the nonlinearity on 

synchronization can be analysed using δ. When all of the other network parameters are held constant, λ⁎
2 is inde-

pendent of δ and λ⁎
N  increases with increasing δ. Increasing the value of δ leads to an increase in 

( − ) − ( − λ )
δ

a g1 sup
1 2

0 , which increases ρSM. Hence, as the nonlinearity of the system is reduced, the system 
becomes more robust to uncertainties.

Impact of Coupling Gain.  The impact of the coupling gain is more complicated than the impact of the internal 
dynamics. A very small coupling gain is not enough to guarantee γτ( − ) > ( − λ ) +

δ
a g g1 2sup

1 2
0

2 2, which is 
required to ensure ρ > 0SM . On the other hand, a very large coupling gain also does not guarantee 

γτ( − ) > ( − λ ) +
δ

a g g1 2sup
1 2 2 2. Thus, we can conclude the coupling gain affects the synchronization margin 

in a nonlinear fashion. Hence, to obtain the largest possible ρSM, the network must operate at an optimal gain.
We now demonstrate how the main results of this paper can be used to determine the optimal value of the 

coupling gain ⁎g  that maximizes the margin of synchronization for a given network topology (i.e., specific values 
of λ2 and λ )N  and uncertainty (i.e., CoD value γ). We assume that, for given values of λ , λN2 , and γ, there exists 
a value of g for which synchronization is possible.

Optimal Gain.  For the network system in Eq. (2) with ρSM given by Eq. (8), the optimal gain ⁎g  that produces 
the maximum ρSM is

( )
γτ γτ

=
−

λ , λ + + λ +
.

( )
δ⁎g

a2

max{ 2 } 2 9N

1

2 2

The derivation of this result will be discussed in the Methods Section. The results of the Mean Square 
Synchronization Margin ρSM and the Optimal Gain ⁎g  will be used in the following subsections to study the effect 
of neighbours and network connectivity on both nearest neighbour networks and random networks such as 
Erdos-Renyi and Small-World networks.

Interplay of Internal Dynamics, Network Topology, and Uncertainty Characteristics.  We now 
study the interplay of the internal dynamics (a), nonlinearity bound (δ), network topology (λ ), and the uncer-
tainty characteristics γ( ) through simulations over a 1000-node network using a set of parameter values. To nullify 
the bias of uncertain link locations, we choose to work with a large number of uncertain links to obtain τ ≈ 1.

In Fig. 1(a), we study the interplay of network topology, uncertainty, and the internal dynamics in the 
three-dimensional parameter space of γ− λ −a . In Fig. 1(a), the region inside (or outside) the tunnel corre-
sponds to the combination of parameter values where synchronization is possible (or not possible). Another 
important observation we make from Fig. 1(a) is that the area inside the tunnel increases with a decrease in either 
the internal instability or a. In Fig. 1(b), we plot the effects of changing the nonlinearity bound δ on the synchro-
nization margin in the δ γ− λ −  space. As δ is increased, the region of synchronization increases. Thus, a mini-
mally nonlinear system is able to achieve synchronization even with high levels of communication. On the other 
hand, as the nonlinearity in a system becomes significant, the interaction between the nonlinearity and the fluc-
tuations in the link weights could have adverse effects in a highly connected network. Intuitively, because a high 
communication amplifies the uncertainty between the agents, one might view this as the uncertainty in the 
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fluctuations being wrapped around and amplified by the nonlinearity, which causes this high-communication 
desynchronization . In Fig. 1(c), we plot a slice of the synchronization regions from both Fig. 1(a,b) for = .a 1 125, 
δ = 2, and = .g 0 01, that highlights the synchronization margin.

Optimal Neighbours in Nearest Neighbour Networks.  The analytical formula for the synchronization 
margin in Eq. (8) provides us with a powerful tool to understand the effect of various network parameters on the 
synchronization margin. In this section, we investigate the effects of the number of neighbours on the synchroni-
zation margin. We consider a nearest neighbour network with =N 1000 nodes and increase the number of 
neighbours to study their impact on the synchronization margin. The other network parameters are set to 

δ= . , =a 1 05 2, =g
N
1 , and γ = 25. We choose a large number of uncertain links (70%) so that τ ≈ 1 to remove 

the bias of uncertain link locations. We show the plot for the synchronization margin versus the number of neigh-
bours in Fig. 2(a). From this plot, we see that there exists an optimal number of neighbours an agent requires in 
order to maximize the synchronization margin. Additionally, there is a minimum number of neighbours required 
by any given agent. Below this number, the network will not synchronize. However, an uncertain environment 
with too many neighbours is also detrimental to synchronization. This result highlights the fact that, while “good” 
information is propagated through neighbours via network interconnection, in an uncertain environment, these 
same neighbours can propagate “bad” information that is detrimental to reaching an agreement. In Fig. 2(b), we 
show the plot for the change in the synchronization margin versus a change in the number of neighbours for 
different values of CoD. For larger values of CoD, the drop in the margin as the network connectivity increases is 
more dramatic.

In light of the previous discussion, we can also interpret the coupling gain g as the amount of trust a given 
agent has in the information provided by its neighbours. In particular, if the coupling gain is large, then the agent 
has more trust in its neighbours. In Fig. 2(c), we show the effects of increasing the coupling gain on the synchro-
nization margin. We observe that if an agent has more trust in its neighbours, then fewer neighbours are required 
to achieve synchronization. However, in an uncertain environment, an agent with more trust in its neighbours 
must avoid having more neighbours, as it is detrimental to synchronization. On the other hand, if an agent has 
less trust in its neighbours, more connections must be formed to gather as much information as possible, even if 
that information is corrupted. Thus, forging connections is good for a group with the goal of synchronization, but 
there exists a critical number of neighbours above which the benefits from forging new connections diminish.

Figure 1.  (a) ρSM in γ− λ −a  parameter space for = .g 0 01 and δ = 2, (b) ρSM in δ γ− λ −  parameter space 
for = .a 1 125 and = .g 0 01, (c) γλ −  parameter space indicating ρSM for = .a 1 125, = .g 0 01, and δ = 2.

Figure 2.  (a) Synchronization margin for = .a 1 05, δ = 2, = .g 0 001, and γ = 1 as the number of neighbours 
are varied in a nearest neighbour graph, (b) Synchronization margin for = .a 1 05, δ = 2, and = .g 0 001 for 
different γ as the number of neighbours are varied in a nearest neighbour graph, where the blue, red, and yellow 
lines represent γ = 1, γ = 25, and γ = 50, respectively, (c) Synchronization margin for = .a 1 05, δ = 2, and 
γ = 10 for different coupling gains as the number of neighbours are varied in a nearest neighbour graph, where 
the blue, red, yellow, and magenta lines indicate = −g e5 4, = −g e1 3, = . −g e1 5 3, and = −g e2 3, 
respectively.
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Optimal gain for complex networks.  Based on the optimal gain formulation, we can now compare the 
performance of some well-known random networks and the optimal gain required to synchronize these net-
works. We use the following parameters in these simulations: the system instability = .a 1 05, the nonlinearity 
bound δ = 4, and the uncertainty statistics represented by CoD is γ = 1. Furthermore, we choose τ ≈ 1. The 
properties of these random networks are studied for four different network sizes: ∈ , , ,N {80 100 120 140}, where N 
is the number of nodes.

In Fig. 3(a), we plot the optimal gain for the Erdos-Renyi (ER) networks as a function of the edge connection 
probability. It is well known that for an Erdos-Renyi network of size N to be connected, the probability of connec-
tion must be ≥p N

N
log . Hence, we plot these networks for probabilities ranging from = .p 0 2 to =p 1. At =p 1, 

we obtain an all-to-all connection network, as each edge is connected with unit probability. In Fig. 3(d), we plot 
the corresponding optimal synchronization margin for the ER network. In Fig. 3(b,e), we plot the optimal gain 
and optimal synchronization margin, respectively, for a SW network with varying probability p8. To better 
observe the contrast in behaviour of both the ER and SW random networks, we plot in Fig. 3(c) the optimal gains 
for an ER network and an SW network with =N 100 nodes.

We notice that, while a larger gain is required to synchronize the ER network than that for the SW network for 
smaller values of p, the optimal gain for the ER network is smaller than that of the SW network for larger values 
of p. In Fig. 3(d–f), we plot the optimal synchronization margins for the two networks. We notice an increase in 
the synchronization margin for the ER network around = .p 0 5. From these plots (specifically Fig. 3(c,f)), we 
conclude that for the given set of parameters, the ER (or SW) network has better synchronization properties (i.e., 
a smaller value of the optimal gain and a larger margin of synchronization) for larger (or smaller) values of p. The 
transition between the two cases occurs for some probability between = .p 0 2 and = .p 0 4.

Discussion
We study the problem of synchronization in complex network systems in the presence of stochastic interaction 
uncertainty between the network nodes. We exploited the identical nature of the internal node dynamics to 
provide a sufficient condition for network synchronization. The unique feature of this sufficient condition is 
its independence from the network size. This makes the sufficient condition computationally attractive for 
large-scale network systems. Furthermore, this sufficient condition provides useful insight into the interplay 
between the internal dynamics of the network nodes, the network interconnection topology, the location of 
uncertainty, and the statistics of the uncertainty and into their effects on the network synchronization. The 
sufficient condition provided in the main result allows us to characterize the degree of robustness of a synchro-
nized state to stochastic uncertainty through the definition of a mean square synchronization margin. Using 
the synchronization margin, a formulation for an optimal synchronization gain is derived to assist in designing 

Figure 3.  Optimal gain computation for (a) an Erdos-Renyi network with probability of connecting two nodes 
p, for varying network sizes and (b) a Small World network with probability of rewiring an edge p, for varying 
network sizes; (c) comparison of optimal gain for Erdos-Renyi and Small World networks as a function of 
probability for network size =n 100. Optimal synchronization margin computation for (d) Erdos-Renyi 
network with probability of connecting two nodes p, for varying network sizes and (e) a Small World network 
with probability of rewiring an edge p, for varying network sizes; (f) comparison of optimal synchronization 
margin for Erdos-Renyi and Small World networks as a function of probability for network size =n 100. We 
provide the figure legends after the references. In (a,b,d,e), the blue, red, yellow, and magenta lines indicate 
n =  80, 100, 120, and 140, respectively. In (c,f), the blue and red lines indicate Small World and Erdos-Renyi 
networks respectively.
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gains for complex networks based purely on the system dynamics, nominal network Laplacian eigenvalues, and 
uncertainty statistics. This optimal gain result is used to compare various complex network topologies for given 
internal nodal dynamics.

When considered from a practical point of view, the synchronization margin is useful in determining the 
synchronizability of large-scale networks with stochastic uncertainty in the coupling. The independence of the 
result with respect to the network size can be used to obtain a bound on the tolerable uncertainty with minimal 
computational effort. In networked systems with communication uncertainty, these results can be used to pro-
vide a worst-case signal-to-noise ratio that is tolerable in communication or to design network connectivity in 
order to optimize the network’s tolerance to uncertainty. These results have potential applications in determining 
the optimal neighbours and coupling gain in consensus dynamics, swarm dynamics, and other situations where 
systems seek synchronization.

Methods
Mean Square Synchronization Condition.  The system described by Eq. (2) is MSS as given by Definition 
1, if there exist >L 0, >K 0 and β< <0 1, such that

β ω≤ + . ( )ξ ,− −


ˆ ˆE z K z L[ ] 10v t
t2

0
2 2

t t
0

1
0

1

We refer to this as mean square stability of ẑ t . From Eq. (5), we obtain, =ẑ t
2   

( ⊗ ) = x UU I xt n t  
∑ ∑ −= ≠ , = x x

N i
N

j i j
N

t
i

t
j1

2 1 1
2, since  = −UU I 11N N

1 . Now, suppose there exist >L 0, >K 0, and β< <0 1, 
such that (10) holds true. We can rewrite (10) as

∑ ∑ ∑ ∑β ω− ≤ − + .
( )

ξ ,
= ≠ , = = ≠ , =

− −


E x x K x x NL[ ] 2
11

v
k

N

j k j

N

t
k

t
j t

k

N

j k j

N
k j

1 1

2

1 1
0 0

2 2
t t

0
1

0
1

Thus, from (11) we obtain systems Sk and Sl , that satisfy (3) for mean square synchronization, where 

= +
∑ ∑ −

−

= ≠ = ≠˜K e K( ) : (1 )
x x

x x
0

i i k
N

j j i
N i j

k l

1, 1, 0 0
2

0 0
2

 and =L NL2 .

In the Mean Square Synchronization Condition, we proved the mean square stability of (5) guarantees the 
MSS of (2). We will now utilize this result to provide a sufficiency condition for MSS of (5).

Mean Square Stability of the Reduced System.  The system given by (5) is mean square stable, if there 
exists a Lyapunov function ( ) = Τˆ ^ ^V z z Pzt t t for a symmetric matrix >P 0, such that for some symmetric matrix 
>R 0P  and ρ > 0 we have,

ρω( )) − ( ) < − + . ( )ξ , + ˆ^ ^ ^E V z V z z R z[ ] 12v t t t P t1
2

t t



Consider ( ) =ˆ ˆ ˆV z z Pzt t t
  for a symmetrix matrix >P 0, we know there exist < <c c0 1 2, such that 

≤ ≤^ ^c z V c zt t t1
2

2
2. Let ( )^V z t  satisfy (12). Substituting = λ ( )c Rmax P3  as the spectral radius of RP in (12) and 

using c2 sufficiently large to define β = − >: 1 0c
c

3

2
, we obtain, β ρω( )) < ( ) +ξ , +ˆ ˆE V z V z[ ]v t t1

2
t t

. Taking expec-
tation over ξ( , )vt t

0 0  recursively, we obtain, β ρω< +ξ β, +
+

−

ˆ ˆc E z c z[ ]v t
t

1 1
2

2
1

0
2 1

1
2

t t
0 0

. This guarantees the mean 
square stability of ẑ t, for =K c

c
2

1
 and = ρ

β( − )
L

c1 1
.

We now utilize the Mean Square Stability of the Reduced System to define the Mean Square Synchronization 
Margin as given in (8). Towards this aim, we first construct an appropriate Lyapunov function, ( ) =ˆ ˆ ˆV z z Pzt t t, 
that guarantees mean square stability. From (5), defining ∆ = ( ) − ( )ξ , +ˆ ˆV E V z V z: [ ]v t t1t t

, we obtain,

ξ ξ ξ ψ ψ ξ ψ ψ∆ = ( ( ) ( ) − ) − ( ) − ( ) + + . ( )ξ
   

 

^ ^ ^ ^V E z A PA P z z A P PA z P E w Pw[ ] [ ] 13t t t t t t t t t t t t v t tt t

      

Now, suppose for some >R 0P , P satisfies,

ξ ξ ξ δ ξ= ( ) ( ) + + ( ( ) − )( − ) ( ( ) − ) . ( )ξ ξ − −
−

−P E A PA R E A P I I P PA I[ ] [ ] 14t t P t N N t N1 1
1

1t t

 

Using (14) and algebraic manipulations as given in42, we can rewrite η η∆ = − − −ξ^ ^V z R z E [ ]t P t t tt

   
 ψ ψ( − ) + ( )δ^ ^ ^ ^ ^z trace PE w w2 [ ]t t t v t t2 t

, where η ξ( ( ))tt t  is given by η ξ ξ ψ( ( )) = ( ( ) − ) −−
−

^t W PA I z Wt t t N t t1
1
2

1
2  

and δ= ( − )−W I P: N 1 . Since, φ( ⋅ ) is monotonic and globally Lipschitz with constant 
δ
2 , we know 

φ φ φ φ( ( ) − ( )) ( ( − ) − ( ( ) − ( ))) >
δ

x x x x x x 0t
k

t
l

t
k

t
l

t
k

t
l2 . This gives ψ ψ( − ) >δ^ ^ ^z 0t t t2


. Using this and writ-

ing ρ = ( )trace P , we obtain Eq. (12). Hence, (14) is sufficient for MSS of (1) from condition for Mean Square 
Stability of the Reduced System. Furthermore, the Eq. in (14) can be rewritten using43 (Proposition 12.1,1) as

ξ ξ
δ

ξ δ ξ= ( ) ( ) + + + ( ) ( − ) ( ) , ( )ξ ξ− −
−P E A PA R I E A P I P PA[ ] 1 [ ] 15t t P N t N t0 0 1 0 1

1
0t t

 

where ξ( ) = − Λ −−
A a I g gU L Ut N R0 0 1

  and = −
δ

a a0
1 . We observe this condition requires us to find a sym-

metric Lyapunov function matrix P of order ( − )N N 1
2

. We now reduce the order of computation by using network 
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properties. For this, consider = −P pI N 1, where δ<p  is a positive scalar. This gives us δ >−I PN 1 . Using this and 
(5), we rewrite the condition in (15) as follows,

∑δ
σ

δ
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ij U
. Substituting this into (16),  

a sufficient condition for inequality (16) to hold is given by > + − Λ
δ− − −

ˆ( )pI p a I g[( )N
p

p N1 0 1
2   

γτ− Λ + Λ +
δ− −

ˆ ¯ ˆa I g g I( ) 2 ] ,N N0 1
2 1

1  a block diagonal equation. The individual blocks provide the sufficient con-

dition for MSS as, ( ) γτ> + (( − λ ) + λ ) +
δ δ−

p p a g g2p
p j j0

2 2 12
, for all eigenvalues λ j of Λ̂. This is simplified as
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where δ >  p >  0 and α γ τ= ( − λ) + λ¯a g g20
2

0
2 2 for all λ ∈ λ , …, λ{ }N2  are eigenvalues of the nominal graph 

Laplacian. Now, for each of these conditions to hold true, we must satisfy condition (17) for the minimum value 
of αo

2 with respect to all possible λ . Now, λ * that provides minimum values for α0
2 is found by setting | =α

λ λ⁎ 0d
d

0
2

, 
giving us γτλ = −⁎ a

g
0 . Using λ *, we know for (17) to be satisfied for all λ ∈ λ …, λ{ }N2 , it must satisfy (17) for 

the farthest such λ  from λ⁎. Since eigenvalues of the nominal graph Laplacian are positive and monotonic 
non-decreasing, all we need is to satisfy (17) for λsup, where λ = λ − λ

λ∈ λ ,λ

⁎argmaxsup
{ }N2

.

We observe from (17), if = >p q 1 is a solution of (17), then =p
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2 . The “only if ” part is obvious as, ( − ) ≥ ( − )( − )
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from AM-GM inequality. To show the “if ” part assume there exists >r 0, such that, ( ) α α− = + > +
δ

r1 r1 2
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2
. 
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. Setting = + >p 1 1 , we know (17) holds true for some 
>p 1. Hence, (17) and (18) are equivalent conditions. We now use (18) to define 

)(
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1SM

g
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2 2

1 2 2
. The 

rationale for this and connections with existing conditions in robust control theory are discussed in the supple-
mentary information.

We now provide the optimal coupling gain for systems with fixed internal dynamics interacting over a nomi-
nal network with a given set of uncertain links and γ . We observe from (18), to maximize the synchronization 
margin with respect to the coupling gain, g, we must minimize α0

2, with respect to g, and maximize α0
2, with 

respect to λ  .  This is a regular saddle-point optimization problem44. Hence, for a given λ  , 
γτ= − λ + (λ + λ) =
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a g2 2 2 0g

g 0
20

2
. This provides us with the optimal gain as (λ) =
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. The only important eigenvalues of the nominal graph Laplacian imposing limitations on 
synchronization, are λ2 and λN . Hence we obtain (λ ) =
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2
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2 .
There also exists a value of gain, ge, which provides the exact same synchronization margin for both λ2 and 
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S i n c e ,  λ ≥ λN 2 ,  w e  h a v e  ≥ (λ )⁎g ge N .  F u r t h e r m o r e ,  α α(λ , ) ≥ (λ , (λ ))⁎g gN e N N0
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Hence, ge, being the saddle-point solution, is the optimal gain providing the largest possible α (λ, )g0
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(λ )⁎g 2  as the optimal gain. Furthermore, at the optimal gain, we always have λ = λsup 2. Defining, 
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