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Abstract

Background: To optimize colorectal cancer (CRC) screening and surveillance, information regarding the
time-dependent risk of advanced adenomas (AA) to develop into CRC is crucial. However, since AA are removed after
diagnosis, the time from AA to CRC cannot be observed in an ethically acceptable manner. We propose a statistical
method to indirectly infer this time in a progressive three-state disease model using surveillance data.
Methods: Sixteen models were specified, with and without covariates. Parameters of the parametric time-to-event
distributions from the adenoma-free state (AF) to AA and from AA to CRC were estimated simultaneously, by
maximizing the likelihood function. Model performance was assessed via simulation. The methodology was applied
to a random sample of 878 individuals from a Norwegian adenoma cohort.
Results: Estimates of the parameters of the time distributions are consistent and the 95% confidence intervals (CIs)
have good coverage. For the Norwegian sample (AF: 78%, AA: 20%, CRC: 2%), a Weibull model for both transition
times was selected as the final model based on information criteria. The mean time among those who have made the
transition to CRC since AA onset within 50 years was estimated to be 4.80 years (95% CI: 0; 7.61). The 5-year and 10-year
cumulative incidence of CRC from AA was 13.8% (95% CI: 7.8%; 23.8%) and 15.4% (95% CI: 8.2%; 34.0%), respectively.
Conclusions: The time-dependent risk from AA to CRC is crucial to explain differences in the outcomes of
microsimulation models used for the optimization of CRC prevention. Our method allows for improving models by
the inclusion of data-driven time distributions.
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Background
With over 1.9 million new cases of colorectal cancer
(CRC) in 2020, CRC is the second and thirdmost common
cancer worldwide in women and men, respectively [1].
CRC mortality has been declining for a number of years,
possibly due to improved surgery, the administration of
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adjuvant therapy, and earlier diagnosis. Unarguably, one
of the best ways to reduce CRC death is by early detection
of both adenomatous polyps and early-stage cancer [2, 3].
Screening asymptomatic individuals with the removal
of all detected adenomas, followed by post-polypectomy
surveillance, has been shown to be effective in reducing
CRC incidence and/or mortality [4–8]. To evaluate the
effect of CRC screening and surveillance on long-term
CRCmortality, intermediate endpoints are currently used.
Advanced adenoma (AA), defined as an adenoma with a
villous component, high-grade dysplasia and/or size >=
10 mm, is the most used intermediate endpoint [7, 9, 10].
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How well the use of an intermediate endpoint leads to
sensible conclusions for the effect of screening on cancer
incidence and mortality is unclear. Previous research has
suggested that AA is a more valid surrogate marker for
CRC risk than adenomas since AA has a greater poten-
tial to develop into cancer [11, 12]. Estimation of the time
distribution fromAA to CRC is important to predict long-
term outcomes of screening and surveillance programs in
the absence of observations. It has been shown to be a
crucial parameter explaining differences in the outcomes
of microsimulation models used to study CRC screen-
ing [13]. In addition, information regarding time to CRC
has been described as a key consideration when evalu-
ating surveillance after polypectomy [14]. Specifically, a
short average interval from AA to CRC would mean that
individuals would need to be screened at shorter rather
than longer intervals and vice-versa. However, this time
to event is impossible to observe in an ethically accept-
able manner and hence estimating its distribution is in
all but the simple exponential case [15, 16]. Given that
CRC development can be described as a progressive dis-
ease process from a healthy adenoma-free (AF) state to
AA and finally CRC, the concept of multi-state statistical
modelling is relevant.
In the past, different multistate models with varying

assumptions have been proposed to study disease nat-
ural history. These models differ in terms of the type
of disease process, data structure, observation process,
probability distributions used, and estimation (see Meth-
ods section). Motivated by CRC surveillance, this paper
considers the particular problem of indirectly inferring
the time from AA to CRC in a progressive three-state
disease model where an individual is censored once the
second health state is observed to occur. Although this
means that the second transition time is never directly
observed, both transition times can be jointly estimated.
For this, we derive and maximize the joint likelihood
function, in which the two transition times could assume
any probability distribution without covariates, any of the
three parametric proportional hazards (PH) models (i.e.,
exponential, Weibull and Gompertz [17]) if covariate-
dependent, and be either left-, right- or interval-censored.
We illustrate our method by specifying 16 different mod-
els, with and without covariates, assuming an exponential
or Weibull distribution. Furthermore, we demonstrate
that the censored time from AA to CRC can be cor-
rectly estimated using simulated and real data examples.
In the Additional file 1, we provide the R code with a full
description of how to implement our method.

Methods
Related multi-state models
Several multi-state models have been proposed to
describe disease processes with different assumptions

on (1) the type of data structure, (2) the observation
process, and (3) the methodological approach in
estimating the time distributions between health
states [18–33].
With respect to the type of data structure,[19, 30, 32, 33]

two methods proposed by Vink et al. [19] in human papil-
lomavirus (HPV) screening and Yen et al. [30] using a
CRC frailty model, are based on current status data where
the health state of individuals is only observed at a single
examination, making it impossible to observe the dis-
ease process over time. The type of data structure from
the Norwegian adenoma cohort [34, 35], motivating our
method, is based on CRC surveillance where individuals
are periodically examined over time, leading to interval-
censored data with intervals of varying lengths (also called
panel data).
In terms of the observation process, several methods

proposed by, for example, Kapetanakis et al. [24]; Titman
and Sharples [25]; Van Den Hout [28]; and Joly and Com-
menges [26], assume three-state semi-Markov models.
Contrary to our interval-censored setting, these models
assume that in the presence of interval-censored transi-
tions from state 1 to state 2, the exact time to state 3 is
observed. Foucher et al. [29] postulated a similar observa-
tion process but used more than three health states, again
with the entry to the final state being exactly known. A
more general observation process resulting from the so-
called doubly censored data in a three-state model was
introduced by De Gruttola and Lagakos [20]; Gómez and
Lagakos [22]; and Kim et al. [21] for studying HIV/AIDS.
In these studies, the time intervals at which states 2
and 3 occur are both observed separately in the same
individual. These models can be implemented using the
p3state.msm R package [36]. A very specific case of dou-
bly censored data was studied by Griffin and Lagakos [31],
where the length of the intervals between two consecutive
visits must not vary across individuals and state 2 may be
observed multiple times until the individual is censored
either by reaching state 3 or through right-censoring at the
last visit. None of the above methods address the partic-
ularity of the data collected during surveillance in some
cancer types, such as CRC surveillance. That is, the obser-
vation process is not only interval-censored at both transi-
tion times (i.e., state 1→ state 2 and state 1→ state 3), but
the second transition is never directly observed because
individuals are censored (treated) once state 2 is detected.
In terms of methodological approach, existing meth-

ods differ with respect to the assumptions made for the
sojourn time distributions between health states [18, 23,
25, 27]. For instance, a method proposed by Straatman
et al. [18] for fitting breast cancer screening models is
limited to exponential distributions for the sojourn times.
Similarly, Wei and Kryscio [27] suggested a model where
all transition from the baseline state were constrained
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to be exponential. Jackson et al. [23] developed a more
flexible method in the msm package in R, using a user-
defined piecewise-constant hazard model, that allows
more general censoring mechanisms in approximating an
arbitrary sojourn time distribution from baseline. How-
ever, the piecewise-constant hazard model is only appli-
cable to time since the beginning of the process (i.e.,
baseline) and would not be applicable to time since the
previous health state (e.g., state 2 → state 3), like in a
semi-Markov model. An alternative method using Cox-
ian phase-type distributions was presented by Titman and
Sharples [25]. The two-phase semi-Markov model can be
implemented using the phase.states() option to R
msm package version 1.6.9. In this paper, we compare our
method to the method by Titman and Sharples [25] as this
is the only available method that can fit a semi-markov
model with three health states like ours. Our results indi-
cate that when using a data structure and disease process
as ours where state 2 to 3 is never directly observed,
the method by Titman and Sharples [25] fits poorly for
the second not directly-observable transition time (i.e.,
state 2 → state 3) when a non-exponential distribution is
specified for state 2 to 3.
While the aforementioned literature is rich with meth-

ods for estimating transition times in multi-state models,
they either provide the user with limited probability dis-
tribution options, or do not adequately accommodate the
type of data arising from cancer surveillance where the
transition from the pre-final to final state is not observed
in individuals for whom the pre-final state is detected. The
method presented in this paper seeks to address these lim-
itations by providing a more suitable method for estimat-
ing the transition times in a three-state model using CRC
surveillance data where state 2 to 3 is never observed. Our
objective is model the sojourn time distribution by a para-
metric PH model assuming either exponential, Weibull,
or Gompertz distributions, where the “best” model can
be chosen using model selection and/or goodness-of-fit
criteria [37].

Notation and assumptions
Let X and Y be two random variables that may be inde-
pendent or conditionally independent given covariates w.
Variables X and Y denote the transition times in a pro-
gressive three-state model with health states consisting of
those individuals that are AF; that is, without AA or CRC;
and those with either AA or CRC. These health states are
hereafter referred to as states AF, AA, and CRC, respec-
tively. Variables X and Y denote the durations from AF to
AA and from AA to CRC respectively, and their sum, Z =
X + Y , denotes the duration from AF to CRC. We denote
f (x) and f (x|w) as the marginal and conditional probabil-
ity density functions (PDFs) of X, respectively; and g(y)
and g(y|w) as the marginal and conditional PDFs of Y,

respectively. Similarly, let F(x), F(x|w), G(y), and G(y|w)

denote the corresponding cumulative distribution func-
tions (CDFs). Also, we assume that AAs do not regress
and that all CRCs develop from AA. Similar assumptions
have implicitly or explicitly been made or suggested by
some authors [11, 16], and it seems plausible on bio-
logical grounds [38, 39]. We further assume that AFs
include non-advanced adenomas (NAAs). After baseline
colonoscopy, the first colonoscopy that leads to inclusion
into the cohort, all individuals with colorectal polyps of
any size are considered successfully treated by means of
polypectomy prior to the start of surveillance. As such,
everyone starts in the AF state with no CRC at base-
line. During surveillance, individuals are followed-up with
repeat colonoscopy or sigmoidoscopy, followed by com-
plete colonoscopy in case of positive findings, according
to a predefined schedule that may or may not be exactly
followed with respect to timing of the visit. This means
that the schedule is allowed to vary across individuals. We
assume that the surveillance test or combination of tests
is perfect, that is, its sensitivity and specificity are 100%.
Although particularly smaller, flat or sessile lesions may
be missed on colonoscopy, this assumption is reasonable
for AAs, which are generally ≥ 10 mm in size, and CRC
[40, 41]. An individual is either left-censored when
detected with either AA or CRC at the first surveillance
visit after baseline, right-censored if AF is reported at the
end of the follow-up, and interval-censored when AF is
followed by AA or CRC at the next visit [42].

Model
Based on the above assumptions, we propose the fol-
lowing three-state model with irreversible transitions as
shown in Fig. 1. Figure 1a shows the assumed under-
lying natural history disease process during the surveil-
lance period. In the assumed disease process, which is
based on the adenoma-carcinoma sequence [43], individ-
uals progress to CRC through the AA state. However,
this underlying process is not observed in reality because
during each surveillance interval, individuals may rapidly
progress to the CRC state without being detected in the
AA state. Moreover, if an individual is being detected in
the AA state, such an individual is censored since the AA
is treated (i.e., removed) and the pathway to CRC is effec-
tively closed. In other words, for each individual in the
surveillance program, we can only obtain the time infor-
mation as depicted in Fig. 1b, that is, we observe that from
the AF state a transition has been made to the AA state
or to the CRC state after one or more surveillance rounds.
Note that the exact timing of the transitions is unknown
but is known to lie within a given interval after one or
more surveillance rounds [44, 45]. Nevertheless, we may
infer the assumed process from the observed process as
follows: by using the patient-time data from AF to AA and
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A B

Fig. 1Multi-state model of colorectal cancer. (A) Natural history process, (B) Observed transition pathways

from AF to CRC, we can estimate the time distribution
from AA to CRC.
There are 3 typical situations that may occur dur-

ing surveillance which are shown in Fig. 2. Let v =
(v1, v2, · · · , vm−1, vm) be the vector of ordered visit times
that are independent of X and Y for any given individ-
ual. First, AA or CRC is not observed within the period
of follow-up, and therefore, if it occurs, this is after the
last visit vm. Second, AA is observed within the follow-

up period, but CRC is not. Third, CRC is observed within
the follow-up period, which necessarily means AA has
occurred within the same surveillance interval.
For the situation in Fig. 2a, it can be shown that the

chance of an individual not having AA or CRC (i.e., being
AF) until and including follow-up visit vm is given by

Pr (X > vm) = 1 − F(vm). (1)

A

B

C

Fig. 2 Schematic representation of 3 possible observation process leading to right-censoring (A) and interval- censoring (B and C). From top to
bottom, all individuals are AF at time zero prior to start of surveillance (A) and remain AF until the end of their follow-up vm , (B) detected to be AA,
or (C) detected to be CRC
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Similarly, for the situation in Fig. 2b, it can be shown
that the chance of an individual having AA but no CRC
between two consecutive follow-up visits vm−1 and vm is
given by

Pr
(
vm−1 < X < vm,Z > vm

)

= F(vm) − F(vm−1) −
∫ vm

vm−1
f (x)G(vm − x)dx. (2)

Lastly, for the situation in Fig. 2c, it can be shown that
the chance of an individual having CRC between two
consecutive follow-up visits vm−1 and vm is given by

Pr
(
vm−1 < X < vm, vm−1 < Z < vm

)

=
∫ vm

vm−1
f (x)G(vm − x)dx. (3)

Derivations of Eqs. (1) to (3) are reported in Section A
of the Additional file 2.

Likelihood construction and estimation
Let v(i) =

(
v(i)
1 , v(i)

2 , v(i)
3 , . . . , v(i)

m
)
denote the vector of

ordered surveillance visit times for an individual i such
that

0 < v(i)
1 < v(i)

2 < v(i)
3 < · · · < v(i)

m < ∞,

where m is a random number of follow-up observation
times for individual i after which he/she is censored. We
also define the censoring indicators �

(i)
AA = 1 and�

(i)
CRC =

1 if an individual i was detected with either AA or CRC,
respectively; and 0 otherwise.
The joint log-likelihood for n individuals given the

observed data D(i) =
{(

w(i), v(i)
m−1, v

(i)
m ,�(i)

AA,�
(i)
CRC

)
; i =

1, 2, · · · , n
}
, expressed as a function of vector of unknown

model parameters ψ , is given by

�(ψ) =
n∑

i=1
logLi(ψ

∣∣∣D(i)), (4)

where the likelihood contribution of individual i with
vector of covariates w(i) is

Li(ψ
∣∣∣D(i)) =

{
Pr

(
v(i)
m−1 < X < v(i)

m ,Z > v(i)
m

∣∣∣ψx,ψy,w(i)
)}�

(i)
AA

×
{
Pr

(
v(i)
m−1<X<v(i)

m ,v(i)
m−1< Z<v(i)

m

∣∣∣ψx,ψy,w(i)
)}�

(i)
CRC

×
{
Pr

(
X > v(i)

m

∣∣∣ψx,ψy,w(i)
)}1−�

(i)
AA−�

(i)
CRC

=
{∫ v(i)m

v(i)m−1

f (x
∣∣∣ψx,w(i))

[
1 − G(v(i)

m − x
∣∣∣ ψy,w(i))

]
dx

}�
(i)
AA

×
{∫ v(i)m

v(i)m−1

f (x
∣∣∣ψx,w(i))G(v(i)

m − x
∣∣∣ ψy,w(i))dx

}�
(i)
CRC

×
{
1 − F

(
v(i)
m

∣∣∣ψx,w(i)
)}1−�

(i)
AA−�

(i)
CRC .

(5)

In the above likelihood contributions, v(i)
m−1 is the most

recent visit time at which an individual i is observed to be
AF or cancer-free (note that v(i)

m−1 = 0 if an individual i
is left-censored), whereas v(i)

m is either the time when an
individual i is detected with an event (i.e., AA or CRC) or
the last visit time for a right-censored individual i. Also,
ψ = ψx ∪ ψy is defined as the joint set of parameters
of the probability distribution of X and Y , respectively.
Eq. 4 is maximized using the optim() function in the
statistical software R, version 4.0.1 [46], to obtain the
maximum likelihood (ML) estimates ψ̂ for the parame-
ters ψ in the model. These estimates are guaranteed to
be close to the true ψ when the sample size n is large
enough, and the maximization is successful. See Sections
B, C and D of the Additional file 2 for inclusion of covari-
ates in the likelihood function, probability expressions in
the likelihood function for models without covariates and
implementation details, respectively.

Simulation studies
A series of simulation studies were carried out to investi-
gate the empirical performance of the proposed method
and the reliability of the ML estimates obtained. A Monte
Carlo (MC) simulation withNsim = 1000 runs was carried
out for each model specification throughout the study.
The study was performed to see whether our proposed
method can recover the true parameter values when the
true model is fitted to a dataset simulated from that
model. We constructed two parameter settings to assess
performance under two assumptions for the proportion of
CRCs in the cohort (i.e., Scenario I and II), and considered
sample sizes of n = 1000 and 5000. Scenario I was loosely
based on Chen et al. [14]: about 55% AFs, 40% AAs and
5% CRCs, and Scenario II: about 30% AFs, 40% AAs and
30% CRCs. A total of 16 different models were specified
(Table 1). Model performance was assessed in terms of the
root mean squared error (RMSE); relative bias (RB); coef-
ficient of variability (CV), the ratio of empirical standard
error (SE) to the true parameter value; empirical coverage
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Table 1 Percentage of successful simulation runs performed for different model specifications with sample sizes n = 1000 and 5000,
based on 1000 MC simulation runs under Scenarios I and II

Scenario I Scenario II

Model Pr(x) X |w Pr(y) Y|w n = 1000 n = 5000 n = 1000 n = 5000

M1 Exponential No Exponential No 100 100 100 100

M2 Exponential Yes Exponential No 100 100 100 100

M3 Exponential No Exponential Yes 100 100 100 100

M4 Exponential Yes Exponential Yes 100 100 100 100

M5 Exponential No Weibull No 100 100 100 100

M6 Exponential Yes Weibull No 100 100 100 100

M7 Exponential No Weibull Yes 100 100 100 100

M8 Exponential Yes Weibull Yes 98.2 91.3 98.2 90.5

M9 Weibull No Exponential No 100 100 100 100

M10 Weibull Yes Exponential No 100 99.6 93.7 90.3

M11 Weibull No Exponential Yes 100 99.9 69.2 71.8

M12 Weibull Yes Exponential Yes 93.8 96.3 79.4 58.1

M13 Weibull No Weibull No 100 100 100 100

M14 Weibull Yes Weibull No 95.2 92.1 99.6 99.5

M15 Weibull No Weibull Yes 100 100 40 47.9

M16 Weibull Yes Weibull Yes 50.8 31.7 68.2 69.5

Pr(x): assumed probability distribution of X; Pr(y): assumed probability distribution of Y; X |w: X conditioned on covariates w; Y |w: Y conditioned on covariates w

rate (CR) of a Wald-based 95% confidence interval (CI),
the proportion of the estimated CIs that contain the true
parameter value ψ ; and average CI width (AW) [47–49].
These performance measures are defined as follows

RMSE =

√√√√√ 1
Nsim

Nsim∑
j=1

{
ψ̂j − ψ

}2
,

RB = 1
ψ

×
⎛
⎝ 1
Nsim

Nsim∑
j=1

ψ̂j − ψ

⎞
⎠ × 100,

CV = 1
ψ

×

√√√√√ 1
Nsim − 1

Nsim∑
j=1

{
ψ̂j − ψ̄

}2
,

CR = 1
Nsim

Nsim∑
j=1

{
1 if ψ ∈ ψ̂j ± 1.96

× ŜE(ψ̂j), 0 otherwise
}
,

AW = 1
Nsim

Nsim∑
j=1

{
2 × 1.96 × ŜE(ψ̂j)

}
,

where ŜE(ψ̂j) is the SE of the parameter ψ within each
simulation run.
To further demonstrate the reliability of the proposed

method in fitting semi-Markov models, particularly for
the second not directly-observable transition time from

state 2 to 3, we performed an additional simulation study
where we compared our method to the two-phase semi-
Markov model by Titman and Sharples [25] implemented
in the msm R package version 1.6.9 [23]. We fitted both
models using datasets generated under a Weibull proba-
bility distribution assumption for both X and Y without
a covariate. Specifically, we used the same parameter set-
tings for model M13 under Scenarios I and II when n =
5000 in Table 1. Since estimating the second transition
time Y is our main objective in this paper, more emphasis
will be placed on results for Y rather than X. All simula-
tions were done in the statistical software R, version 4.0.1
[46]. See R implementation code in the Additional file 1.

Data simulation procedure
We created a hypothetical cohort for i = 1, 2, · · · , n
number of individuals who enter the surveillance after
complete removal of their adenomas via colonoscopic
polypectomywithw(i) ∼ N(0, 1) as covariate. For a chosen
model specification for X and Y , we generated transition
times X and Y for i = 1, 2, · · · , n individuals and summed
X and Y to obtain Z for each individual i. For simplic-
ity, we assumed that the maximum number of endoscopic
surveillance visits an individual could have was 4, with
such visits generated independently of X and Y from a
uniform distribution over [ a, b], where a and b are the
minimum and maximum years of follow-up of the entire
cohort, respectively. For each individual i, we compared
the observed times X(i) and Z(i) previously generated
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with the individual’s vector of follow-up visit times v(i) to
obtain the time interval (vm−1, vm] in which AA or CRC
must have occurred, and vm (here, m = 4) for individ-
uals who had no AA or CRC throughout their follow-up
period. For detailed simulation procedure, see Section E
of the Additional file 2.

Data
Data structure
Table 2 shows an example dataset, depicting the outcomes
of a cohort of individuals based on the steps mentioned
above. In this example data set, individuals 2 and 5 were
found to have AA during their second and third surveil-
lance visit respectively, while individuals 3, 4 and 6 were
found to have CRC during their first, second and last
surveillance visit, respectively. Finally, individuals may
remain free of AA or CRC (i.e, AF state) during their
entire follow-up period, as exemplified by individual 1.
Hence, Individual 3 is said to be left-censored; Individ-
uals 2, 4, 5 and 6 interval-censored; while Individual 1 is
right-censored.

Norwegian adenoma surveillance cohort
The adenoma cohort consists of all Norwegian individuals
aged 40 years or older, with no previous CRC, who have
had adenomas removed between 1993 and 2007 [34, 35].
The entire cohort consists of 40 848 individuals, of whom
1100 individuals were randomly selected for chart review
(Fig. 3). The individuals selected for the subcohort were
given the opportunity to opt out of the study. Individuals
were excluded if they opted out of the study, their chart
was not available, the registration in the Cancer Registry
was removed at a later update, first adenoma identified
< 40 years at chart review, they did not have adenomas at
chart review, or had CRC preceding their first adenoma.
Thus, the subcohort consisted of 964 individuals. For the
purpose of this study, each individual’s first colonoscopy

Table 2 Different scenarios of health status of individuals during
four follow-up visits after baseline

Follow-up visits

Individual v1 v2 v3 v4
1 AF AF AF AF

2 AF AA - -

3 CRC - - -

4 AF CRC - -

5 AF AF AA -

6 AF AF AF CRC

· · · · ·
· · · · ·
· · · · ·
AF: adenoma-free; AA: advanced adenoma; CRC: colorectal cancer

was considered the baseline examination, and other endo-
scopies occurring before this were disregarded. Thus, we
excluded any individual who never had a colonoscopy, any
individual with no finding at the baseline colonoscopy nor
at later endoscopies, and any individual who had CRC
at baseline colonoscopy. In total, 878 individuals were
included in the data analysis. The retrieved information
included dates of follow-up endoscopies with finding (AF,
AA or CRC) until 31st December 2017 and patient char-
acteristics such as sex; birth year; adenoma-type (AT)
at baseline, i.e., NAA or AA; family history (1st degree
relative with CRC); and type of endoscopy used during
surveillance. Entry age, family history, sex and AT were
included as covariates in the final data analysis. Of the 878
individuals, 688 (78.4%) were AF until the end of surveil-
lance period, 170 (19.4%) had AA, and 20 (2.2%) had CRC
during their follow-up. Table 3 shows the distribution of
the number of visits for the 878 individuals.

Results
Simulation results
We first established the number of successful simulation
runs for each combination of model specification, sample
size n and scenario, using MC simulation with Nsim =
1000 runs (Table 1). Subsequently, the performance of the
proposedmethod was studied in detail. Statistic ψ̂ and the
corresponding ŜE(ψ̂), were calculated in each simulation
run per model. The percentage of successful simulation
runs is presented in Table 1.
Model complexity and numerical optimization prob-

lems, described in section D of the Additional file 2, were
reasons for not achieving 100% convergence for some
models. Resolving these issues requires either changing
the starting values or changing the parameters of the opti-
mization algorithm in optim(). Similar issues regarding
the success rate of convergence while fitting a model dur-
ing a MC simulation have been reported elsewhere [50].
As Table 1 shows, the first 15 models under Scenario

I resulted in at least 90% successful simulation runs. In
the remainder, we therefore present detailed results from
the simulation studies for these 15 models (Table 4). We
observe that for models with exponentially distributed Y
and no covariates, the absolute values of the RB were
less than 1% for all n. However, for a higher number of
parameters for Y, either as a result of being covariate-
dependent or because of the use of a Weibull distribution,
the absolute values of the RB increased due to low propor-
tion of CRCs. Nevertheless, the absolute values of the RB
decreased as the sample size n increased across all mod-
els. For all models except for model M13, the estimated
empirical CRs were approximately close to the 95% nom-
inal coverage when n was very large (i.e., n = 5000) with
CRs between 0.936 and 0.964 [47, 49]. The variability of
the parameter estimates of Y can be examined bymeans of
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Fig. 3 Flow chart of inclusion and exclusion criteria from the adenoma cohort [34, 35]. Never colonoscopy: single entry with non-colonoscopic
polypectomy at baseline, or because there was no colonoscopic examination in all visits including baseline. No findings at baseline colonoscopy,
and no findings later: a single (i.e., baseline) entry as no finding, or all entries as no findings. CRC at baseline colonoscopy: a single (i.e., baseline) entry
as CRC

CV and AW (Table 4). For each model, the absolute values
of CV and the AW values of the parameter estimates of X
were always less than or equal to those of Y, and the values
of CV and AW decreased as the sample size n increased.
Finally, the overall accuracy of the estimator can be mea-
sured via the RMSE since it incorporates both the bias and
variability of the estimator. As the sample size increased,
the RMSE value decreased. Results of the estimates of the
second transition time Y improved further if we changed
the simulation setting to include a higher proportion of
CRCs, i.e., 30% CRC under Scenario II. We report results

of models under Scenario II with at least 90% success-
ful simulation runs in Supplementary Table S1 in the
Additional file 2. Clearly, RB and CV were lower in this
setting because of the higher percentage of CRC observed.
In summary, the proposed models provided consistent
parameter estimates as the RMSE, AW, absolute value of
RB and CV decreased as n increased. Smaller AWs implied
greater accuracy and higher power [48].
Supplementary Figure S1 in the Additional file 2 shows

the comparison between the true survival probability
curve to those fitted using our method and the two-phase

Table 3 Distribution of the total number of visits after baseline colonoscopy examination for the 878 individuals in the Norwegian
adenoma cohort

Number of individuals 205 204 157 115 69 45 26 24 6 9 3 3 6 1 1 1 1 1 1

Number of visits 1 2 3 4 5 6 7 8 9 10 11 12 13 15 17 19 23 27 31
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Table 4 Summary of performance measures for different model specifications under Scenario I, based on 1000 MC simulation runs
with sample sizes n = 1000 and 5000

n = 1000 n = 5000
Model PAR True MCM RMSE RBa CV CR AW MCM RMSE RBa CV CR AW

M1 λ1 0.03 0.03 0.002 0.3 0.05 0.955 0.01 0.03 0.001 0.0 0.01 0.958 0.00

λ2 0.04 0.04 0.005 0.1 0.14 0.960 0.02 0.04 0.003 0.0 0.06 0.955 0.01

M2 α0 − 3.60 − 3.60 0.062 0.0 − 0.02 0.951 0.24 − 3.60 0.027 0.0 −0.01 0.951 0.11

α1 − 1.00 −1.00 0.059 0.2 − 0.06 0.942 0.23 − 1.00 0.026 0.2 − 0.03 0.944 0.10

λ2 0.04 0.04 0.006 − 0.1 0.15 0.944 0.02 0.04 0.003 0.3 0.07 0.949 0.01

M3 λ1 0.04 0.03 0.002 − 0.1 0.05 0.955 0.01 0.04 0.001 0.0 0.02 0.946 0.00

β0 − 3.20 − 3.22 0.142 0.7 − 0.04 0.967 0.57 − 3.20 0.063 0.2 −0.02 0.952 0.25

β1 − 0.10 −0.10 0.152 − 1.9 − 1.52 0.946 0.56 − 0.10 0.062 2.5 − 0.62 0.952 0.25

M4 α0 − 3.50 − 3.50 0.056 0.0 − 0.02 0.944 0.22 − 3.50 0.025 0.0 −0.01 0.944 0.10

α1 − 0.80 −0.80 0.056 0.2 − 0.07 0.944 0.21 − 0.80 0.024 0.2 − 0.03 0.953 0.10

β0 − 4.50 − 4.58 0.394 1.7 − 0.09 0.949 1.45 − 4.51 0.155 0.1 −0.03 0.956 0.63

β1 − 1.50 −1.56 0.298 3.7 − 0.20 0.948 1.13 − 1.50 0.123 0.2 − 0.08 0.957 0.49

M5 λ1 0.03 0.03 0.001 0.1 0.05 0.958 0.01 0.03 0.001 0.1 0.01 0.946 0.00

κ2 2.00 2.08 0.486 4.0 0.24 0.963 1.82 2.00 0.195 0.2 0.13 0.946 0.77

θ2 10.00 10.51 2.966 5.1 0.29 0.928 8.41 10.10 0.768 1.0 0.12 0.959 3.00

M6 α0 − 4.00 − 4.00 0.084 0.1 − 0.04 0.951 0.34 − 4.00 0.038 0.0 −0.01 0.954 0.15

α1 − 2.00 −2.01 0.084 0.3 − 0.03 0.950 0.33 − 2.00 0.038 0.1 − 0.01 0.944 0.15

κ2 4.00 4.29 3.327 7.3 0.77 0.959 3.82 4.03 0.355 0.8 0.11 0.956 1.40

θ2 8.50 8.56 0.630 0.7 0.14 0.949 2.35 8.51 0.260 0.2 0.04 0.954 1.01

M7 λ1 0.04 0.04 0.002 − 0.2 0.04 0.950 0.01 0.04 0.001 0.0 0.01 0.950 0.00

κ2 4.10 5.67 6.456 38.3 1.51 0.928 9.21 4.25 0.612 3.5 0.11 0.963 2.26

β0 2.50 2.51 0.177 0.5 0.13 0.933 0.68 2.50 0.075 − 0.1 0.04 0.936 0.29

β1 3.50 4.75 5.065 35.7 1.38 0.933 6.70 3.59 0.437 2.7 0.13 0.963 1.63

M8 α0 − 3.50 − 3.50 0.060 0.1 − 0.02 0.945 0.23 − 3.50 0.026 0.0 −0.01 0.958 0.10

α1 − 1.00 −1.00 0.058 0.2 − 0.06 0.952 0.22 − 1.00 0.026 0.2 − 0.03 0.958 0.10

κ2 1.80 1.84 0.408 2.1 0.23 0.955 1.52 1.81 0.171 0.7 0.09 0.945 0.66

β0 2.50 2.54 0.227 1.7 0.09 0.946 0.86 2.51 0.090 0.2 0.04 0.954 0.35

β1 0.10 0.10 0.184 2.9 1.84 0.956 0.72 0.11 0.082 − 0.5 0.81 0.954 0.31

M9 κ1 0.40 0.40 0.029 0.2 0.07 0.954 0.11 0.40 0.013 0.0 0.03 0.950 0.05

θ1 65.00 66.42 11.453 2.2 0.17 0.956 44.21 65.34 4.993 0.5 0.08 0.951 19.09

λ2 0.04 0.04 0.005 0.6 0.14 0.948 0.02 0.04 0.002 0.3 0.06 0.946 0.01

M10 κ1 2.00 2.02 0.110 0.8 0.05 0.952 0.41 2.00 0.047 0.2 0.02 0.953 0.18

α0 3.50 3.50 0.056 0.0 0.02 0.955 0.23 3.50 0.025 0.0 0.01 0.962 0.10

α1 3.50 3.52 0.173 0.7 0.05 0.948 0.65 3.51 0.073 0.2 0.02 0.943 0.29

λ2 0.04 0.04 0.006 0.4 0.14 0.953 0.02 0.04 0.003 0.2 0.06 0.947 0.01

M11 κ1 4.00 4.01 0.197 0.3 0.05 0.942 0.76 4.00 0.088 0.1 0.02 0.954 0.34

θ1 20.00 20.00 0.300 0.0 0.02 0.936 1.11 20.00 0.130 0.0 0.01 0.939 0.50

β0 − 3.50 − 3.55 0.264 1.5 − 0.07 0.960 1.00 − 3.51 0.115 0.2 −0.03 0.941 0.44

β1 − 1.50 −1.54 0.234 2.7 − 0.15 0.957 0.89 − 1.51 0.102 0.4 − 0.07 0.949 0.39
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Table 4 Summary of performance measures for different model specifications under Scenario I, based on 1000 MC simulation runs
with sample sizes n = 1000 and 5000 (Continued)

n = 1000 n = 5000
Model PAR True MCM RMSE RBa CV CR AW MCM RMSE RBa CV CR AW

M12 κ1 0.50 0.50 0.039 0.7 0.08 0.961 0.16 0.50 0.018 0.1 0.04 0.944 0.07

α0 5.00 5.00 0.247 0.1 0.05 0.954 0.98 5.00 0.112 0.1 0.02 0.941 0.44

α1 − 2.00 −2.01 0.092 0.3 − 0.05 0.957 0.37 − 2.00 0.043 0.0 − 0.02 0.945 0.16

β0 − 1.00 − 0.96 0.273 − 3.5 − 0.27 0.949 1.02 − 1.00 0.112 − 0.4 −0.11 0.952 0.44

β1 5.50 5.67 0.789 3.1 0.14 0.962 2.92 5.53 0.314 0.6 0.06 0.954 1.24

M13 κ1 1.50 1.50 0.073 0.0 0.05 0.952 0.29 1.50 0.032 −0.1 0.02 0.956 0.13

θ1 23.00 23.04 0.880 0.2 0.04 0.940 3.32 23.01 0.375 0.0 0.02 0.945 1.47

κ2 0.80 0.81 0.260 0.9 0.32 0.959 1.01 0.81 0.117 0.8 0.15 0.952 0.45

θ2
b 28.00 − − − − − − 31.01 14.638 10.8 0.51 0.905 43.25

M14 κ1 2.00 2.01 0.115 0.6 0.06 0.946 0.44 2.00 0.049 0.0 0.02 0.952 0.20

α0 3.50 3.50 0.061 0.1 0.02 0.936 0.24 3.50 0.027 0.0 0.01 0.949 0.11

α1 4.50 4.54 0.232 0.9 0.05 0.949 0.90 4.50 0.100 0.0 0.02 0.955 0.40

κ2 2.50 2.55 0.391 2.1 0.15 0.951 1.47 2.52 0.164 0.8 0.07 0.952 0.64

θ2 10.00 10.07 0.952 0.7 0.09 0.936 3.46 10.00 0.372 0.0 0.04 0.955 1.46

M15 κ1 1.50 1.50 0.080 0.1 0.05 0.948 0.30 1.50 0.035 0.0 0.02 0.953 0.14

θ1 25.00 25.05 1.011 0.2 0.04 0.951 3.97 25.02 0.448 0.1 0.02 0.952 1.77

κ2 1.50 1.58 0.489 5.1 0.32 0.958 1.79 1.52 0.196 1.3 0.13 0.962 0.75

β0 3.00 3.10 0.536 3.4 0.18 0.920 1.96 3.01 0.197 0.4 0.07 0.947 0.77

β1 1.50 1.56 0.307 4.3 0.20 0.966 1.07 1.51 0.117 0.7 0.08 0.941 0.44

PAR, parameter; MCM, Monte Carlo means; RMSE, root mean squared error; RB, relative bias % ; CV, coefficient of variation; CR, coverage rate of a Wald-based 95% confidence
interval; AW, average confidence interval width.
Note: λ1 and λ2 represent the exponential rate parameters of the first and second transition times, respectively; α0 and α1 represent the regression intercept and regression
coefficient of the covariate w ∼ N(0, 1) for the first transition time; β0 and β1 represent the regression intercept and regression coefficient of the covariate w ∼ N(0, 1) for the
second transition time; κ1 and κ2 represent the Weibull shape parameters of the first and second transition times, respectively; θ1 and θ2 represent the Weibull scale
parameters of the first and second transition times, respectively.
aThe negative signs correspond to underestimation (overestimation) for positive (negative) true values while the positive signs correspond to overestimation
(underestimation) for positive (negative) true values. The 0.0 values are due to approximation.
bThe estimates were extremely large due to the small sample size and the small proportion of CRCs

semi-Markov model by Titman and Sharples [25], aver-
aged over 500 successful simulation runs. The two-phase
semi-Markovmodel fits poorly for Y in both scenarios and
worst in Scenario I which is a more realistic setting. Fur-
thermore, the two-phase semi-Markov model achieved
1.3% and 4.6% successful simulation runs per 1000 repli-
cated runs for Scenarios I and II, respectively. Ourmethod
achieved 100% successful simulation runs in both scenar-
ios (Table 1).

Application to the Norwegian adenoma cohort
We illustrate the proposed method by fitting all 16 pro-
posed model specifications to the Norwegian adenoma
cohort described above. Table 5 describes the charac-
teristics of the individuals in the subcohort included in
the analysis during a median follow-up of 11.3 years
(interquartile range 3.1; 15.3 years). Parameter estimates
for each of the proposed model specifications were

obtained by maximizing the joint likelihood function. We
performed backward stepwise regression to select vari-
ables with 5% level of significance. The resulting ML
estimates, P values, 95% CIs, Akaike information cri-
terion (AIC) values, and Bayesian information criterion
(BIC) values are reported in Supplementary Table S2 in
the Additional file 2. Model M14, hereafter referred to
as final model, was selected as the best model based
on the lowest AIC (1601.79) and BIC (1625.68) values
(Table 6). To assess the goodness-of-fit of the assumed
Weibull distribution for the first transition time X in the
final model, an informal test was carried out by compar-
ing the survival curves from the model-based estimates to
the non-parametric ML estimates (NPMLEs) for interval-
censored data on individuals who were observed to have
developed AA (Fig. 4). The Weibull model appears to fit
the data well since the curves are very close to each other.
Table 6 shows that individuals who were treated for AA,
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Table 5 Patient characteristics of the Norwegian adenoma cohort used for analysis

Finding at follow-up

Characteristics AF (n = 688) AA (n = 170) CRC (n = 20) Total (n = 878)

% of total 78.4 19.4 2.2 100

Age, yr, mean (SD) 65.0 (11.5) 64.6 (10.2) 70.0 (10.1) 65.0 (11.2)

Sex (%)

Male 342 (49.7) 79 (46.5) 11 (55.0) 432 (49.2)

Female 346 (50.3) 91 (53.5) 9 (45.0) 446 (50.8)

AT (%)

AA 271 (39.4) 113 (66.5) 14 (70) 398 (54.7)

NAA 417 (60.6) 57 (33.5) 6 (30.0) 480 (45.3)

FH (%)

Yes 84 (12.2) 27 (15.9) 1 (5.0) 112 (12.8)

No 604 (87.8) 143 (84.1) 19 (95.0) 766 (87.2)

AF, adenoma-free; AT, adenoma-type; NAA, non-advanced adenoma; AA, advanced adenoma; CRC, colorectal cancer; FH, Family history (First degree relatives with CRC).

have about three times the risk of having a recurrence
when compared to individuals treated for NAA (hazard
ratio: exp(α1) = 2.95, 95% CI: 2.18; 3.98). Figure 5 depicts
the cumulative incidence of AA since baseline and cumu-
lative incidence of CRC since AA onset. Within 5 and 15
years, about 11.4% (95% CI: 8.8%; 13.6%) and 13.9% (95%
CI: 10.6%; 16.6%), respectively, of the individuals treated
for NAA at baseline will develop AA (Fig. 5a). Also, for
individuals treated for AA at baseline, about 30.0% (95%
CI: 25.6%; 34.6%) and 35.7% (95% CI: 31.0%; 40.6%) of the
individuals will develop recurrent AA within 5 and 15
years, respectively (Fig. 5a). The estimates of the log shape
parameter κ2 and the log scale parameter θ2 for Y are
given in Table 6. This translates into an estimate of the
shape parameter κ2 as 0.116 (95% CI: 0.020; 0.689), indi-
cating a decreasing hazard of CRC since onset of AA.
Since we cannot observe Y directly, the appropriateness of
the assumed Weibull distribution for Y can be examined,
as suggested by Hudgens et al. [51], by testing H0 : κ2 = 1
vs. HA : κ2 �= 1 using the estimates for the shape param-
eter κ2 above. We can see that the shape parameter κ2 is
statistically different from one at 5% level of significance.
The bootstrapped curves in Fig. 5b show there was consid-
erable uncertainty about the cumulative incidence of CRC
from AA; with the uncertainty increasing with time. This

was largely due to small sample size and low proportion
of CRCs in the data. Within 5 and 15 years, about 13.8%
(95% CI: 7.8%; 23.8%) and 15.4% (95% CI: 8.2%; 34.0%) of
the individuals will develop CRC, respectively. The mean
time among those who have had the transition to CRC
since AA onset within 50 years was estimated to be 4.80
years (95% CI: 0; 7.61) using a right-truncated Weibull
distribution [52].

Discussion
In this paper, we proposed a modeling framework to
jointly estimate both the transition time X from AF to
AA and the transition time Y from AA to CRC based
on CRC surveillance data using a progressive three-state
disease model. The reliability of the method was shown
by simulation studies and was illustrated using a Norwe-
gian adenoma cohort. Our simulation results show that
the estimates of the parameters of the time distributions
are consistent and the 95% confidence intervals have good
coverage.

Modeling framework
Our proposed method distinguishes itself from other
methods used for estimating the time distributions
in a progressive three-state disease model in that

Table 6 Result of the final model of the Norwegian adenoma cohort

Transition Distribution Parameter Estimate P value 95% CI

First (X) Weibull shape, log(κ1) − 1.646 <0.001 (−1.849;−1.442)

Intercept, α0 12.561 <0.001 (10.117; 15.004)

AT: AA, α1 1.081 <0.001 (0.780; 1.382)

Second (Y) Weibull shape, log(κ2) − 2.153 0.02 (−3.935;−0.372)

scale, log(θ2) 18.087 0.29 (−15.382; 51.555)

AT, adenoma-type; AA, advanced adenoma
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Fig. 4 Comparison between survival curves from NPMLE estimate and Weibull model for the first transition time to AA

our method provides a likelihood function that in
principle, accommodates any probability distribution
without covariates (see R implementation code in the
Additional file 1), is based on surveillance data that are
interval-censored for both transition times, allows the
inclusion of covariates at both times, and models a dis-
ease process where an individual is censored once the
second health state is observed to occur. A comparison
between our method and the two-phase semi-Markov
model by Titman and Sharples [25] via simulation showed
that our method is more accurate and stable when han-
dling data arising from disease processes where state 2 to

3 is never observed; contrary to the observation process
in the model by Titman and Sharples [25] where transi-
tion to state 3 is exactly known. These results demonstrate
the importance of using our tailored method for modeling
surveillance data.
We focused on PH models with the exponential and

Weibull distributions as an illustration, but also the Gom-
pertz distribution can be used and was implemented in
the R code in the Additional file 1. Inclusion of covariates
on both X and Y allows capturing the dependency
between both transition times and examining possible
population heterogeneity.

Fig. 5 Estimated cumulative incidence curves. (A) Cumulative distribution function (CDF) for patients treated with AA (red solid line) and NAA (blue
dashed lines) since baseline. (B) CDF of CRC (black solid line) since AA onset, with 1000 bootstrapped CDF curves (grey lines)
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Our proposed method is based on the maximum
likelihood framework, which can encounter problems
during estimation. First, numerical issues can be encoun-
tered when performing the optimization or numerical
integration of the probability expressions in the likelihood
function. A few of the issues include divergence of the
integrand and the so-called false convergence, a situation
where the optimization algorithm reports a solution (i.e.,
convergence) but the Hessian matrix which is needed for
computing the SE of the model parameters fails to be
positive definite. These issues could be solved by adjust-
ing some of the default settings of the integrate()
and optim() functions. Second, the stability of the opti-
mization algorithm is fairly dependent on the choice of
the starting values and the nature of the likelihood sur-
face (i.e., unimodal, flat, or multimodal), particularly for
more complex models. Hence, it is recommended to run
complex models using different starting values to ensure
that the optimization algorithm successfully converged to
global optima (i.e., true ML estimates) instead of local
optima. Similar observations have been made in the liter-
ature [23, 25, 53].

Application to CRC surveillance
Yen et al. [30] noted that quantification of heterogeneity
by identifying risk groups or factors associated with rapid
progression to AA or to CRC since the onset of AA is an
important step in determining the potential value of per-
sonalizing surveillance intervals. Analysis of the Norwe-
gian adenoma cohort showed that individuals who were
treated for AA at baseline have about three times higher
risk of developing an AA when compared to individu-
als who were treated for NAA instead. This is expected.
Similar findings have been reported before [54, 55]. For
example, our finding is in agreement with Laiyemo et al.
[55], who reported a relative risk of AA recurrence in indi-
viduals with high- versus low-risk adenomas at baseline
of 1.68 (95% CI: 1.19; 2.38). These findings are the reason
for current more intensive surveillance recommendations
after AA removal compared to NAA removal [6, 54].
The difference in risk to progress to AA between indi-
viduals in whom an AA was removed versus those with
NAA removed could also possibly hold for the transition
from AA to CRC. However, this was not estimated in our
final model. The lack of significance of the adenoma-type
variable in the second transition time may have been the
result of the small sample size, particularly the small num-
ber of CRCs, in the current study. A large amount of data
is needed to substantiate our hypothesis, especially with
respect to CRC cases.
For the transition from AA to CRC, we found that

around 15% of individuals will develop CRC within 15
years after AA onset. Note that about 10% of these indi-
viduals developed a CRC at the same time or even earlier

than the average time it takes to develop an AA from base-
line (Fig. 5b). This suggests that some of the AA cases are
rapidly progressing and there is likely substantial hetero-
geneity in duration between individuals. However, there
is considerable degree of uncertainty in the CRC cumu-
lative incidence. This is in part because of the relatively
small sample size and in particular the low proportion of
CRC cases. Another reason, as shown in the simulation
studies, is the inherent uncertainty that is always associ-
ated with estimating Y. Estimates of the cumulative risk
or average time to CRC since adenoma onset have previ-
ously been published [14, 16, 30, 56]. For instance, Brenner
et al. [16] studied the age and sex-specific risk of CRC
from AA onset using data from a nationwide registry of
screening colonoscopies in Germany. At age 55 years, the
10-year cumulative risk for both sexes was estimated to
be around 25%. Cafferty et al. [57] and Yen et al. [30]
showed that within 20 years, 57% and 40% of adenomas
(of any type), respectively, will progress to CRC.We found
the hazard from AA to CRC to be decreasing with time
since onset of AA, again suggesting heterogeneity in risk,
with fast and slow transforming lesions. There is some evi-
dence for such differences in malignant potential among
AAs, based on molecular characterization of adenomas
[58]. Surveillance might not be warranted for those indi-
viduals with indolent or slow transforming lesions as this
would lead to overdiagnosis, but there is currently no solid
means to identify these individuals. This time distribu-
tion from AA to CRC is a key parameter in explaining
differences in the outcomes of microsimulation models
used for the optimization of CRC prevention [13, 59]. Our
method allows for improving these models by the inclu-
sion of flexible statistical time distributions rather than
using expert assumptions or model calibration. Surveil-
lance intervals are currently recommended based on the
outcome of examination findings and the risk status of
an individual [6, 54]. For instance, the general consensus
is that a 10-year interval for colonoscopy should be rec-
ommended for average-risk individuals [6, 54]. Such time
interval has not been determined in a systematic way. We
suggest that recommendations for screening and surveil-
lance intervals should be based on the rate of transitioning
of the disease, as also stated by Frame and Frame [60].
Our modelling framework provides such estimates. Our
projections of cumulative incidence of CRC allows one to
predict the number of CRC cases that would have devel-
oped if there would not have been any surveillance and
newly developing AAwould not be detected and removed.
We estimated that about 14% of AA cases will develop to
CRC within 5 years and that only an additional 1% will
develop to CRC in the subsequent 10 years. This sug-
gests that 10 years follow-up surveillance after the initial 5
yearsmay not necessarily yield any added benefit, and only
short-term surveillance is required. We also estimated the
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mean time among those who have made the transition
to CRC since AA onset within 50 years to be 4.80 years
(95% CI: 0; 7.61). Thus, indicating the need for short-term
surveillance due to the short amount of time it may take
to progress to CRC from AA.

Future directions
We assumed that every individual having an AA has the
potential to develop CRC. As noted by Van Ballegooijen
et al. [13] and Lew at al. [61], vast majority of individu-
als with AA will not develop a CRC in their lifetime and
diagnosis and treatment of these AA could be seen as
overdiagnosis. To account for the possibility of a differ-
ence in risk, Y could bemodelled as a mixture distribution
accounting for individuals with progressive versus indo-
lent lesions [19, 62] or by explicitly modelling the depen-
dence between X and Y since fast progression from AF to
AA maybe followed by fast progression from AA to CRC
as noted similarly in the cervical cancer model proposed
by Vink et al. [19]. Furthermore, we assumed that at base-
line, after polypectomy, all individuals are adenoma free.
This assumption could be relaxed to allow for the possibil-
ity that a small proportion of non-advanced or advanced
adenomas, or even CRC, are missed at colonoscopy.

Conclusion
Reliable estimation of the time distribution between pre-
cancer and cancer is important to allow prediction of
long-term outcomes of screening and surveillance pro-
grams and to allow optimization of such programs. We
have provided a statistical method for estimating the not
directly-observable time from AA to CRC in a progres-
sive three-state disease model. Our proposed method is
not limited to estimating time distributions in the CRC
screening and surveillance setting, but can be applied
to any disease process where individuals are censored
once they are observed to be in a pre-final state and are
treated in that disease state, such that the progress from a
pre-final to final state cannot be observed.

Abbreviations
CRC: Colorectal Cancer; AA: Advanced Adenoma; AF: Adenoma-Free; HPV:
Human Papillomavirus; PH: Proportional Hazards; PDFs: Probability Density
Functions; CDFs: Cumulative Distribution Functions; ML: Maximum Likelihood;
MC: Monte Carlo; RMSE: Root Mean Squared Error; RB: Relative Bias; CV:
Coverage Variability; SE: Standard Error; CR: Coverage Rate; CI: Confidence
Interval; AW: Average Width; AT: Adenoma-Type; NPMLEs: Non-Parameteric
Maximum Likelihood Estimates; AIC: Akaike Information Criterion; BIC: Bayesian
Information Criterion

Supplementary Information
The online version contains supplementary material available at
https://doi.org/10.1186/s12874-022-01645-2.

Additional file 1: R implementation codes.

Additional file 2: Supplementary Material.

Acknowledgements
The study has used data from the Cancer Registry of Norway. The
interpretation and reporting of these data are the sole responsibility of the
authors, and no endorsement by the Cancer Registry of Norway is intended
nor should be inferred.

Authors’ contributions
EUA contributed to the development of the methodology, carried out the
simulation studies, performed data cleaning and analysis, wrote the
manuscript and the R implementation codes. TK, JB, and VMHC conceived the
research ideas, contributed to development of the methodology, verified the
data analysis and supervised the study. TK, HCJ, BC, ML, MK, JB, and VMHC
extensively revised the manuscript for intellectual content, and interpretation.
HCJ collected and prepared the data used in the study. All authors read and
approved the final manuscript.

Funding
Financial support for this study was provided by ZonMw (grant number:
531002023) and the Research Council of Norway (grant numbers: 231920,
250256). The funding agreement ensured the authors’ independence in
designing the study, interpreting the data, writing, and publishing the report.

Availability of data andmaterials
De-identified data that support the finding of this study may be available from
Henriette C. Jodal (h.c.jodal@medisin.uio.no), however restrictions apply to the
availability of these data, and permission of sharing may be subject to approval
by the Regional Research Ethics Committee of South-Eastern Norway.

Declarations

Ethics approval and consent to participate
The study was approved by the Regional Research Ethics Committee of
South-Eastern Norway (2014/2352). Informed consent from all living
individuals randomly selected for chart review were obtained about the study
and could opt out. All methods were performed in accordance with the
relevant guidelines and regulations.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Epidemiology
and Data Science, Amsterdam Public Health, Amsterdam, The Netherlands.
2Clinical Effectiveness Research Group, University of Oslo and Oslo University
Hospital, Oslo, Norway. 3Department of Pathology, Netherlands Cancer
Institute, Amsterdam, The Netherlands.

Received: 17 March 2022 Accepted: 30 May 2022

References
1. Global Cancer Observatory: Cancer Today. International Agency for

Research on Cancer. Lyon; 2020. https://gco.iarc.fr/today/home. Accessed
29 Jan 2021.

2. Winawer SJ, Zauber AG, Ho MN, O’brien MJ, Gottlieb LS, Sternberg SS,
Waye JD, Schapiro M, Bond JH, Panish JF, et al. Prevention of colorectal
cancer by colonoscopic polypectomy. N Engl J Med. 1993;329(27):
1977–81.

3. Mandel JS, Bond JH, Church TR, Snover DC, Bradley GM, Schuman LM,
Ederer F. Reducing mortality from colorectal cancer by screening for fecal
occult blood. N Engl J Med. 1993;328(19):1365–71.

4. Winawer SJ. Natural history of colorectal cancer. Am J Med. 1999;106(1):
3–6.

5. Mandel JS, Church TR, Ederer F, Bond JH. Colorectal cancer mortality:
effectiveness of biennial screening for fecal occult blood. J Natl Cancer
Inst. 1999;91(5):434–37.

https://doi.org/10.1186/s12874-022-01645-2
https://gco.iarc.fr/today/home


Akwiwu et al. BMCMedical ResearchMethodology          (2022) 22:179 Page 15 of 16

6. Hassan C, Antonelli G, Dumonceau J-M, Regula J, Bretthauer M,
Chaussade S, Dekker E, Ferlitsch M, Gimeno-Garcia A, Jover R, et al.
Post-polypectomy colonoscopy surveillance: European society of
gastrointestinal endoscopy (esge) guideline–update 2020. Endoscopy.
2020;52(08):687–700.

7. Winawer SJ, Zauber AG, O’brien MJ, Ho MN, Gottlieb L, Sternberg SS,
Waye JD, Bond J, Schapiro M, Stewart ET, et al. Randomized comparison
of surveillance intervals after colonoscopic removal of newly diagnosed
adenomatous polyps. N Engl J Med. 1993;328(13):901–06.

8. Jodal HC, Helsingen LM, Anderson JC, Lytvyn L, Vandvik PO, Emilsson L.
Colorectal cancer screening with faecal testing, sigmoidoscopy or
colonoscopy: a systematic review and network meta-analysis. BMJ Open.
2019;9(10):032773.

9. Karsenti D, Tharsis G, Burtin P, Venezia F, Tordjman G, Gillet A, Samama
J, Nahon-Uzan K, Cattan P, Cavicchi M. Adenoma and advanced
neoplasia detection rates increase from 45 years of age. World J
Gastroenterol. 2019;25(4):447–56.

10. Martínez ME, Sampliner R, Marshall JR, Bhattacharyya AK, Reid ME,
Alberts DS. Adenoma characteristics as risk factors for recurrence of
advanced adenomas. Gastroenterology. 2001;120(5):1077–83.

11. Winawer SJ, Zauber AG. The advanced adenoma as the primary target of
screening. Gastrointest Endosc Clin N Am. 2002;12(1):1–9.

12. He X, Hang D, Wu K, Nayor J, Drew DA, Giovannucci EL, Ogino S, Chan
AT, Song M. Long-term risk of colorectal cancer after removal of
conventional adenomas and serrated polyps. Gastroenterology.
2020;158(4):852–61.

13. van Ballegooijen M, Rutter CM, Knudsen AB, Zauber AG, Savarino JE,
Lansdorp-Vogelaar I, Boer R, Feuer EJ, Habbema JDF, Kuntz KM.
Clarifying differences in natural history between models of screening: the
case of colorectal cancer. Med Decis Making. 2011;31(4):540–49.

14. Chen C, Yen M, Wang W, Wong J, Chen T-H. A case–cohort study for the
disease natural history of adenoma–carcinoma and de novo carcinoma
and surveillance of colon and rectum after polypectomy: implication for
efficacy of colonoscopy. Br J Cancer. 2003;88(12):1866–73.

15. Winawer S, Fletcher R, Miller L, Godlee F, Stolar M, Mulrow C, Woolf S,
Glick S, Ganiats T, Bond J, Rosen L, Zapka J, Olsen S, Giardiello F, Sisk J,
Van Antwerp R, Brown-Davis C, Marciniak D, Mayer R. Colorectal cancer
screening: clinical guidelines and rationale. Gastroenterology.
1997;112(2):594–642.

16. Brenner H, Hoffmeister M, Stegmaier C, Brenner G, Altenhofen L, Haug
U. Risk of progression of advanced adenomas to colorectal cancer by age
and sex: estimates based on 840 149 screening colonoscopies. Gut.
2007;56(11):1585–89.

17. Collett D. Modelling Survival Data in Medical Research: CRC press; 2015.
18. Straatman H, Peer PG, Verbeek AL. Estimating lead time and sensitivity in

a screening program without estimating the incidence in the screened
group. Biometrics. 1997;53(1):217–29.

19. Vink MA, Bogaards JA, van Kemenade FJ, de Melker HE, Meijer CJ,
Berkhof J. Clinical progression of high-grade cervical intraepithelial
neoplasia: estimating the time to preclinical cervical cancer from doubly
censored national registry data. Am J Epidemiol. 2013;178(7):1161–69.

20. De Gruttola V, Lagakos SW. Analysis of doubly-censored survival data,
with application to aids. Biometrics. 1989;45(1):1–11.

21. Kim MY, De Gruttola VG, Lagakos SW. Analyzing doubly censored data
with covariates, with application to aids. Biometrics. 1993;49(1):13–22.

22. Gómez G, Lagakos SW. Estimation of the infection time and latency
distribution of aids with doubly censored data. Biometrics. 1994;50(1):
204–12.

23. Jackson CH, et al. Multi-state models for panel data: the msm package for
r. J Stat Softw. 2011;38(8):1–29.

24. Kapetanakis V, Matthews FE, van den Hout A. A semi-markov model for
stroke with piecewise-constant hazards in the presence of left, right and
interval censoring. Stat Med. 2013;32(4):697–713.

25. Titman AC, Sharples LD. Semi-markov models with phase-type sojourn
distributions. Biometrics. 2010;66(3):742–52.

26. Joly P, Commenges D. A penalized likelihood approach for a progressive
three-state model with censored and truncated data: application to aids.
Biometrics. 1999;55(3):887–90.

27. Wei S, Kryscio RJ. Semi-markov models for interval censored transient
cognitive states with back transitions and a competing risk. Stat Methods
Med Res. 2016;25(6):2909–24.

28. van den Hout A. Multi-state Survival Models for Interval-censored Data:
CRC Press; 2016.

29. Foucher Y, Giral M, Soulillou J, Daurès J. A flexible semi-markov model
for interval-censored data and goodness-of-fit testing. Stat Methods Med
Res. 2010;19(2):127–45.

30. Yen AM, Chen TH, Duffy SW, Chen C-D. Incorporating frailty in a
multi-state model: application to disease natural history modelling of
adenoma-carcinoma in the large bowel. Stat Methods Med Res.
2010;19(5):529–46.

31. Griffin B, Lagakos S. Design and analysis of arm-in-cage experiments:
inference for three-state progressive disease models with common
periodic observation times. Biometrics. 2008;64(2):337–44.

32. Foucher Y, Mathieu E, Saint-Pierre P, Durand J, Daurès J. A semi-markov
model based on generalized weibull distribution with an illustration for
hiv disease. Biom J. 2005;47(6):825–33.

33. Listwon A, Saint-Pierre P. Semimarkov: An r package for parametric
estimation in multi-state semi-markov models. J Stat Softw. 2015;66(6):
784.

34. Løberg M, Kalager M, Holme Ø, Hoff G, Adami H-O, Bretthauer M.
Long-term colorectal-cancer mortality after adenoma removal. N Engl J
Med. 2014;371(9):799–807.

35. Jodal HC, Klotz D, Herfindal M, Barua I, Tag P, Helsingen LM, Refsum E,
Holme Ø, Adami H-O, Bretthauer M, et al. Long-term colorectal cancer
incidence and mortality after adenoma removal in women and men.
Aliment Pharmacol Ther. 2021;55(4):412–21.

36. Meira-Machado L, Roca-Pardiñas J. p3state. msm: Analyzing survival data
from an illness-death model. J Stat Softw. 2011;38(3):1–18.

37. Katki HA, Cheung LC, Fetterman B, Castle PE, Sundaram R. A joint model
of persistent human papillomavirus infection and cervical cancer risk:
Implications for cervical cancer screening. J R Stat Soc Ser A Stat Soc.
2015;178(4):903–23.

38. Ladabaum U, Song K. Projected national impact of colorectal cancer
screening on clinical and economic outcomes and health services
demand. Gastroenterology. 2005;129(4):1151–62.

39. O’Leary BA, Olynyk JK, Neville AM, Platell CF. Cost-effectiveness of
colorectal cancer screening: comparison of community-based flexible
sigmoidoscopy with fecal occult blood testing and colonoscopy. J
Gastroenterol Hepatol. 2004;19(1):38–47.

40. Rex DK, Cutler CS, Lemmel GT, Rahmani EY, Clark DW, Helper DJ,
Lehman GA, Mark DG. Colonoscopic miss rates of adenomas determined
by back-to-back colonoscopies. Gastroenterology. 1997;112(1):24–28.

41. Van Rijn JC, Reitsma JB, Stoker J, Bossuyt PM, Van Deventer SJ, Dekker E.
Polyp miss rate determined by tandem colonoscopy: a systematic review.
Am J Gastroenterol. 2006;101(2):343–50.

42. Clark TG, Bradburn MJ, Love SB, Altman DG. Survival analysis part i: basic
concepts and first analyses. Br J Cancer. 2003;89(2):232–38.

43. Leslie A, Carey F, Pratt N, Steele R. The colorectal adenoma–carcinoma
sequence. Br J Surg. 2002;89(7):845–60.

44. Zhang Z, Sun J. Interval censoring. Stat Methods Med Res. 2010;19(1):
53–70.

45. Huang J, Wellner JA. Interval censored survival data: a review of recent
progress. In: Proceedings of the First Seattle Symposium in Biostatistics.
Springer; 1997. p. 123–69.

46. R. Core Team. R: A Language and Environment for Statistical Computing.
Vienna: R Foundation for Statistical Computing; 2020. R Foundation for
Statistical Computing. https://www.R-project.org/.

47. Burton A, Altman DG, Royston P, Holder RL. The design of simulation
studies in medical statistics. Stat Med. 2006;25(24):4279–92.

48. Collins LM, Schafer JL, Kam C-M. A comparison of inclusive and
restrictive strategies in modern missing data procedures. Psychol
Methods. 2001;6(4):330–51.

49. Morris TP, White IR, Crowther MJ. Using simulation studies to evaluate
statistical methods. Stat Med. 2019;38(11):2074–102.

50. Gallacher D, Kimani P, Stallard N. Extrapolating parametric survival
models in health technology assessment: a simulation study. Med Decis
Making. 2020;41(1):37–50.

51. Hudgens MG, Li C, Fine JP. Parametric likelihood inference for interval
censored competing risks data. Biometrics. 2014;70(1):1–9.

52. Crénin F. Truncated Weibull distribution functions and moments. 2015.
Available from SSRN: https://ssrn.com/abstract=2690255. Accessed 7 May
2022.

https://www.R-project.org/
https://ssrn.com/abstract=2690255


Akwiwu et al. BMCMedical ResearchMethodology          (2022) 22:179 Page 16 of 16

53. Kim Y, Kim J, JangW. An em algorithm for the proportional hazardsmodel
with doubly censored data. Comput Stat Data Anal. 2013;57(1):41–51.

54. Gupta S, Lieberman D, Anderson JC, Burke CA, Dominitz JA, Kaltenbach
T, Robertson DJ, Shaukat A, Syngal S, Rex DK. Recommendations for
follow-up after colonoscopy and polypectomy: a consensus update by
the us multi-society task force on colorectal cancer. Am J Gastroenterol.
2020;91(3):463–85.

55. Laiyemo AO, Murphy G, Albert PS, Sansbury LB, Wang Z, Cross AJ,
Marcus PM, Caan B, Marshall JR, Lance P, et al. Postpolypectomy
colonoscopy surveillance guidelines: predictive accuracy for advanced
adenoma at 4 years. Ann Intern Med. 2008;148(6):419–26.

56. Rutter CM, Savarino JE. An evidence-based microsimulation model for
colorectal cancer: validation and application. Cancer Epidemiol
Biomarkers Prev. 2010;19(8):1992–2002.

57. Cafferty FH, Sasieni PD, Duffy SW. A deterministic model for estimating
the reduction in colorectal cancer incidence due to endoscopic
surveillance. Stat Methods Med Res. 2009;18(2):163–82.

58. Carvalho B, Diosdado B, Droste J. S. T. S., Bolijn AS, Komor MA, De Wit M,
Bosch LJ, Van Burink M, Dekker E, Kuipers EJ, et al. Evaluation of
cancer-associated dna copy number events in colorectal (advanced)
adenomas. Cancer Prev Res (Phila). 2018;11(7):403–12.

59. Buskermolen M, Gini A, Naber SK, Toes-Zoutendijk E, de Koning HJ,
Lansdorp-Vogelaar I. Modeling in colorectal cancer screening: assessing
external and predictive validity of miscan-colon microsimulation model
using norccap trial results. Med Decis Making. 2018;38(8):917–29.

60. Frame PS, Frame JS. Determinants of cancer screening frequency: the
example of screening for cervical cancer. J Am Board Fam Pract.
1998;11(2):87–95.

61. Lew J-B, Greuter MJ, Caruana M, He E, Worthington J, St John DJ,
Macrae FA, Feletto E, Coupé VM, Canfell K. Validation of microsimulation
models against alternative model predictions and long-term colorectal
cancer incidence and mortality outcomes of randomized controlled trials.
Med Decis Making. 2020;40(6):815–29.

62. Shen Y, Dong W, Gulati R, Ryser MD, Etzioni R. Estimating the frequency
of indolent breast cancer in screening trials. Stat Methods Med Res.
2019;28(4):1261–71.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.


	Abstract
	Background
	Methods
	Results
	Conclusions
	Keywords

	Background
	Methods
	Related multi-state models
	Notation and assumptions
	Model
	Likelihood construction and estimation
	Simulation studies
	Data simulation procedure

	Data
	Data structure
	Norwegian adenoma surveillance cohort


	Results
	Simulation results 
	Application to the Norwegian adenoma cohort

	Discussion
	Modeling framework 
	Application to CRC surveillance 
	Future directions 

	Conclusion 
	Abbreviations
	Supplementary InformationThe online version contains supplementary material available at https://doi.org/10.1186/s12874-022-01645-2.
	Additional file 1
	Additional file 2

	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher's Note

