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Abstract: Due to differences in geographic surveillance systems, chemical sanitization practices,
and antibiotic stewardship (AS) implementation employed during the COVID-19 pandemic, many
experts have expressed concerns regarding a future surge in global antimicrobial resistance (AMR). A
potential beneficiary of these differences is the Gram-positive bacteria MRSA. MRSA is a bacterial
pathogen with a high potential for mutational resistance, allowing it to engage various AMR mecha-
nisms circumventing conventional antibiotic therapies and the host’s immune response. Coupled
with a lack of novel FDA-approved antibiotics reaching the clinic, the onus is on researchers to de-
velop alternative treatment tools to mitigate against an increase in pathogenic resistance. Mitigation
strategies can take the form of synthetic or biomimetic nanomaterials/vesicles employed in vaccines,
rapid diagnostics, antibiotic delivery, and nanotherapeutics. This review seeks to discuss the current
potential of the aforementioned nanomaterials in detecting and treating MRSA.
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1. Introduction

Recent projections indicate that by 2030 global antibiotic consumption will have
doubled [1], with infections resulting from antimicrobial-resistant (AMR) bacteria expected
to claim 10 million lives per annum by 2050. Key to mitigating against such projections is the
global implementation of antimicrobial stewardship (AS) and the SENTRY Antimicrobial
Surveillance Program, which has successfully reported a decrease in MRSA prevalence
since its peak more than a decade ago [2]. However, antimicrobial stewardship remains far
from a reality in Africa and India. Studies show that a high proportion of antibiotics used in
private and public care settings in African countries are inappropriate [3–6]. Moreover, even
before the pandemic, India faced major AMR challenges, with the prevalence of highly
resistant Gram-negative bacteria orders of magnitude higher than many high-income
countries. Although the majority of AS interventions currently occur in affluent countries,
during the early stages of the pandemic, interventions were relaxed, with a high proportion
of COVID-19 patients receiving antimicrobials (pooled prevalence 75%) [7,8], even when
confirmed bacterial co-infection prevalence was low (8%). Such exceptional conditions
may have contributed to reports of AMR in hospitalized COVID-19 patients. For example,
Kampmeier et al. [9] reported vanB clones of Enterococcus faecium in COVID-19 subjects
from intensive care wards in Germany. In addition, NDM Enterobacterales was also isolated
from COVID-19 patients in an Italian teaching hospital prolonging “length of stay” Porretta
et al. [10].

Exceptional conditions aside, perhaps most concerning, was the broad application of
enhanced chemical sanitization practices and limited UV sterilization procedures employed
throughout the entirety of the pandemic [11]. Furthermore, said practices may have
resulted in New Delhi Metallo (NDM)-beta-lactamase-producing carbapenem-resistant
Enterobacterales isolates being detected in critically ill COVID-19 patients in New York
City [12]. In addition, a 2020 study showed the detection rate of S. aureus (SA) and MRSA
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in 180 elderly patients with respiratory tract infection in a psychiatric department in China
was higher following increased concentration and frequency of disinfection (Figure 1) [13].
Of the seven MRSA strains detected, antimicrobial susceptibility testing of samples from
January 2020 to April 2020 showed that in the absence of a recent epidemiological linkage
the increased cases of MRSA infection were most likely attributable to an interactive
relationship between microbial disinfectant and antimicrobial resistance. Moreover, the
authors suggested future disinfection processes should occur in well ventilated areas in the
absence of residents for a prescribed period in order to prevent nasal and pulmonary cavities
being exposed to sub-lethal levels of disinfectants if it all possible. Interestingly, genetic
disclosure showed newly diagnosed patients were probably exposed to or carrying MRSA
as early as 2017–2018, suggesting the application of a rapid diagnostic prior residential
admission and workers might be considered. The parallel rise in SA and MRSA cases might
also suggest a collective residence (biofilm) and subsequent release of persisters into the
sputum. Thus, following decolonization treatments, a rapid diagnostic for quorum and
other film markers (recurrent risk) or a change in the residential mouth washing regime
might be an option going forward.
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and vancomycin-resistant S. aureus (VRSA). MRSA resistance to vancomycin is acquired 
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vanD, vanE, vanF, and vanG) from vancomycin-resistant Enterococcus faecium (VRE) or 
Clostridium difficile (CD) [16]. In addition, VRSA tends to be multidrug-resistant (MDR) 
against a diversity of currently available antibiotics, including β-lactams [17]. Moreover, 
a recent report showed that vancomycin-resistant isolates are >250 times less susceptible 
to narrow-spectrum fidaxomicin compared to fidaxomicin-sensitive strains, even though 
these two antibiotics have different mechanisms of action [18], suggesting narrow-spec-
trum antibiotics (NSA) should be prioritized as first-line treatments when possible. Fur-
thermore, recent studies show VRSA frequency increased threefold from 2006 to 2014, and 
1.2-fold between 2006 and 2014 and between 2015 and 2020 [19].  

Efforts to reduce dependency on vancomycin by combining it with b-lactams and 
daptomycin has showed promising results. However, such combinations can result in a 
higher incidence of nephrotoxicity [20]. Moreover, traditional therapies often fail to reach 
suitable intracellular levels in bacteria and phagocytic hosts. An alternative approach 

Figure 1. The detection rate of Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) (A), the
isolates of MRSA (B), and the number of pathogenic bacteria (C) isolated from respiratory specimens
from 2016 to 2020. Reproduced and modified with permission [13] (2021).

MRSA is renowned for its ability to acquire resistance to front-line treatment options
as typified by vancomycin-intermediate S. aureus (VISA), heterogeneous VISA(h-VISA),
and vancomycin-resistant S. aureus (VRSA). MRSA resistance to vancomycin is acquired
via the transfer of the van gene clusters (vanA and vanB), which provide resistance by
altering the drug target from D-alanine-D-alanine to D-alanine-D-lactate [14,15]. Other
types of resistance involve the transfer of plasmid-mediated resistance genes (vanA, vanB,
vanD, vanE, vanF, and vanG) from vancomycin-resistant Enterococcus faecium (VRE) or
Clostridium difficile (CD) [16]. In addition, VRSA tends to be multidrug-resistant (MDR)
against a diversity of currently available antibiotics, including β-lactams [17]. Moreover,
a recent report showed that vancomycin-resistant isolates are >250 times less susceptible
to narrow-spectrum fidaxomicin compared to fidaxomicin-sensitive strains, even though
these two antibiotics have different mechanisms of action [18], suggesting narrow-spectrum
antibiotics (NSA) should be prioritized as first-line treatments when possible. Furthermore,
recent studies show VRSA frequency increased threefold from 2006 to 2014, and 1.2-fold
between 2006 and 2014 and between 2015 and 2020 [19].

Efforts to reduce dependency on vancomycin by combining it with b-lactams and
daptomycin has showed promising results. However, such combinations can result in a
higher incidence of nephrotoxicity [20]. Moreover, traditional therapies often fail to reach
suitable intracellular levels in bacteria and phagocytic hosts. An alternative approach
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involving nanomaterials via enhanced diagnostics and drug encapsulation have sought to
enhance drug efficacy whilst reducing acute toxicity in the host.

Therefore, many researchers have focused on incorporating nanomaterials with rapid
diagnostics and efficient drug delivery systems to meet the challenge of broad-spectrum an-
tibiotic resistance encountered with traditional therapies. These vehicles can be composed
of biomimetic membranes, liposomes, polymers, chitosan, and inorganic materials. Numer-
ous studies have shown that many of these materials are compatible with and enhance the
sensitivities of traditional laboratory and point of care diagnostics [21]. The integration of
these compatible nanomaterials is so refined that multiplexable autonomous disposable
nucleic acid amplification tests (MAD NAAT) constructed on 2D paper networks can detect
MRSA in less than 1 h [22].

Antibiotics delivered via these nanomaterials benefit from reduced enzyme deactiva-
tion and improved efficacy. Moreover, if the material itself induces antimicrobial activity
via reactive oxygen species independent pathways, the potential for resistance can be
reduced. Other advantages include extended retention time, improved serum stability,
reduced hepatotoxicity, and gut microbiome perturbation [23].

In addition, these carriers can act as decoys, reducing the impact of virulent microbial
factors such as toxins, adhesions, and secretory systems, thereby minimizing disruption
to indigenous microflora. The advances come at a time when the effect of subinhibitory
antibiotic concentrations on outer membrane vesicle production and the potential for the
dissemination of resistant genes from susceptible bacteria is becoming apparent [24]. The
complex bi-directional role of extracellular vesicles in infection and antibiotic resistance
is beyond the scope of this review. Kim and He et al.’s studies are recommended for
those readers seeking further insight regarding extracellular vesicle (EV) production and
their roles in vancomycin and methicillin-induced biofilm formation [25,26]. This review
discusses five areas where natural and synthetic delivery carriers/vehicles are used to
combat MRSA. These areas include (1) vaccines, (2) rapid diagnostics, (3) antibiotic delivery,
(4) nano-stealth coatings, and (5) biofilm inhibition. Advances in these areas bring us ever
closer to tailored antibacterial therapies that respond to changes in S. aureus susceptibility,
virulence factors, host organism infiltration, and colonization resistance.

2. Vaccines and Nanovesicles

Vaccines can reduce the spread of antibiotic-resistant pathogens, antibiotic usage,
and the risk of symptomatic disease and associated costs. Recent predictions suggest that
vaccines could play a significant role in controlling antibiotic resistance [27]. However, the
Gram-positive pathogens [28] Clostridium difficile (CD), MRSA, and SA have a wide array of
virulent determinants at their disposal, including surface proteins [29], glycopolymers [30],
and multiple secreted proteins, such as superantigens (T cell impairment), hemolysins,
proteases, and toxins [31], allowing them to circumvent and impair the hosts innate and
adaptive immune response, reducing vaccine efficacy. Despite promising preclinical re-
sults, S. aureus monoclonal and polyclonal vaccines targeting major toxin (a-hemolysin
(Hla), Panton-Valentine leukocidin (PVL), and phenol-soluble modulins (PSMs)) failed
clinical trials [32,33], suggesting specific antibodies were insufficient to prevent pathogenic
escape. Coupled with the recent withdrawals of the StaphVAX (bivalent polysaccharide
and protein conjugate vaccine) developed by Nabi Biopharmaceuticals, V710, a vaccine
trialled by Merck [34], and the four-antigen vaccine candidate SA4ag composed of capsular
polysaccharide conjugates and recombinant proteins from Pfizer [35], there is an urgent
need to develop additional vaccine candidates akin to virulence factor SpA and the pore-
forming toxins leukocidins as well as novel adjuvants currently in the preclinical phase of
development [36]. However, the cost of developing a multicomponent vaccine currently
outweighs the economic benefits. Therefore, researchers have sought cheaper and naturally
available alternative platforms for vaccine development.



Pharmaceutics 2022, 14, 805 4 of 29

The Role of Gram-Negative and Positive Extracellular Vesicles in Vaccine Development

EV formation by Gram-negative bacteria was first observed by electron microscopy
more than fifty years ago [37], and these bacteria secreted what is now referred to as outer
membrane vesicles. Since then, OMVs have emerged as commercially promising vaccine
platforms suitable for human use [38]. Ranging in size from 20 to 300 nm, OMVs are
vesicles principally composed of a lipid bilayer, on and within which proteins, lipoproteins,
peptidoglycans, DNA, RNA, and various multiple pathogen-associated molecular patterns
(PAMPs), including lipopolysaccharide (LPS), are housed (Figure 2) [39]. OMV’s versatility
has led to its employment in various applications, including adjuvant and vaccine synthesis,
antibacterial treatments, and bioimaging [40].
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Figure 2. Composition of natural and genetically engineered OMVs, and contributions to biomedical
applications. (1) OMVs with multiple PAMPS enhances antigen-specific immune responses; addi-
tional adjuvants are not required. (2) OMVs can be tailored with foreign proteins/polypeptides.
(3) The vesicular structure, PAMPs, and proteins target tumour and infection sites and elicit a robust
immune response. (4) The vesicle structure of OMVs formed by lipid bilayers permits carriage of
drug, gene, or protein cargos (5). Anti-adhesion agents allow OMVs to complete with toxin-secreting
pathogens. Reproduced and modified with permission from [39] Copyright (2020) Elsevier.

Until recently, Gram-positive EV biogenesis and its contents remained poorly un-
derstood. Numerous studies have since characterized the protein content (or cargo) and
interaction of S. aureus EVs with eukaryotic host cells during infections [40,41]. For instance,
S. aureus vesicles are important in the development of atopic dermatitis (AD), a chronic
inflammatory skin disease [42,43]. EVs containing the pore-forming toxin α-hemolysin
increased necrosis and AD-like skin inflammation in mice compared to mice exposed to
soluble α-hemolysin [44]. Moreover, the complete cascade through which S. aureus EVs
activate the inflammasome in macrophages showed that EVs function as an efficient vir-
ulence factor delivery system [45]. Finally, the EV core proteome has been deduced by
comparing EVs from different S. aureus isolates (both human and animal) [46].

EV and OMV formation are considered an essential process involving several factors
influencing stress responses and specific gene expression [47]. In the lab, EV (SA) produc-
tion is initiated by growing then harvesting (growth and stationary phase) bacterial cultures
in the presence of a sub-inhibitory concentration of antibiotics such as vancomycin [48] and
when mimicking infection stress in the absence of a metal ion (usually iron) or ethanol [49].
In a recent study, Kim et al. investigated whether EVs from MRSA under stress conditions
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or normal conditions could reduce the susceptibility of bacteria in the presence of several
β-lactam antibiotics. EVs harvested from MRSA cultures under antibiotic (ampicillin)-
stressed conditions provided a 22.4-fold reduction in antibiotic susceptibility compared to
unstressed EVs. EVs secreted from ampicillin-stressed MRSA afforded some protection to
several species of Gram-negative bacteria, including Escherichia coli and Salmonella spp.
Proteins related to the degradation of β-lactam antibiotics were abundant in ampicillin-
induced EVs [25]. Similarly, EVs harvested from MRSA (USA 300 strain ATCC BAA-1717)
grown in sub-therapeutic concentrations (0.5 mg/L) of Van [50], doubled the Van MIC for
MRSA. Furthermore, the presence of EVs increased survival of MRSA pre-treated with
sub-MIC concentrations of Van in whole blood and upon exposure to human neutrophils
but not in human serum. In another study, Wang et al. [51] employed penicillin G (PenG)
to increase the EV yield from JE2, a S. aureus USA300 strain representative of the preva-
lent US CA-MRSA clone. Using mutated JE2, in which protein A and the toxins Hla,
Panton-Valentine leukocidin (Luk-PVL), LukED, HlgCB, SelX, and PSMs expression were
suppressed, the authors showed the resultant EVs to be non-toxic to mammalian cells and
capable of eliciting cytolysin-neutralizing antibodies, protecting the animals in a lethal
sepsis model, indicating that these naturally produced vesicles have potential as a novel
vaccine platform.

The ability of temperature to modulate antibiotic resistance has been known for
decades, requiring localized photodynamic therapies (PTT) to exceed >50 ◦C in order to
minimize the dissemination of resistant genes. Consequently, the effects of lower tempera-
ture on EV production have been overlooked. However, in a recent study, Briaud et al. [52]
demonstrated the importance of lower temperature in vesicle production and packaging.
At high temperatures 40 ◦C, packaging of virulence factors and protein and lipid concen-
tration increased with a reduction in the overall RNA abundance and protein diversity. In
contrast, the EVs secreted at 34 ◦C were more cytotoxic toward THP-1 cells(macrophages),
and the EV proteome was more diverse. These results suggest that vesicle content can be
modulated by applying small changes in ambient temperatures (Temp and UV).

3. Multiple Roles of Nanomaterials in Rapid MRSA Diagnostics

Rapid, cost-effective identification of causative pathogens and determination of their
antibiotic resistance profiles should ideally precede initiation of therapy [53]. The first
stage in MRSA identification (inoculation and blood cultures) can take from 18 to 48 h,
depending on the sample volume and quality, which may be too long for critically ill
patients who require administration of a specific antibiotic therapy within 24 h after the
onset of sepsis [54,55]. To date, methicillin resistance (MR) SA strains, such as hospital-
acquired (HA)-MRSA and community-acquired (CA)-MRSA, represent the most serious
challenge to public health [56]. Genotypic identification relies on detecting SA-specific
genes, such as spa, nuc, and fem, combined with the mecA gene [57]. The mecA gene codes
for the penicillin-binding protein (PBP2a) and is carried by the staphylococcal cassette
micro chromosome (SCCmec), a mobile genetic element [58]. Fourteen types (I-XIV) of SCC
elements have been reported, all carrying the mec and cassette chromosome recombinases
(CCR) gene complexes [59]. CA-MRSA can be distinguished from HA-MRSA by the
presence of SCCmec types IV and V and the Panton-Valentine Leukocidin (PVL) exotoxin,
the latter often associated with necrotizing pneumonia and severe skin infections [60].

In the last two decades, immunomagnetic magnetic nanoparticles (MNPs), particu-
larly superparamagnetic nanoparticles (SPMNPs), have attracted a lot of commercial and
academic attention due to their excellent magnetic properties, low cost, assay versatility,
and higher capture efficiency [61].

In addition to sample preparation, SPMNPs (e.g., Fe3O4-Ag, FeO4-Au, and FePt-Ag)
can be used directly or as part of a multifunctional composite to improve the sensitivity
of optical and electrochemical immunoassays. The unique chemical properties of noble
metal NPs, particularly AuNPs, render them compatible with various optical and electro-
chemical methods such as UV spectroscopy, colourimetry, fluorimetry, and electrochemical
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impedance spectroscopy (EIS) [62]. In 2017, Kearns et al. combined lectin-functionalized
silver-coated MNPs with optically active antibody-coated silver NPs to isolate and detect
three bacterial pathogens, including MRSA, in an Eppendorf tube using surface-enhanced
Raman spectroscopy (SERS) [63]. Li et al. differentiated MRSA from MSSA isolates in blood
samples by magnetic separation and SERS in several stages. Firstly, polyethyleneimine-
modified magnetic microspheres (Fe3O4@PEI) were used to capture bacteria directly on
blood samples. Following 20 min of incubation with Fe3O4@PEI, the complex Fe3O4@PEI–S.
aureus (magnetically isolated bacteria) was plated on agar with and without antibiotics
and incubated overnight. Then, using SERS fingerprints from a single colony, 11 MSSA
and 13 MRSA were correctly identified by analyzing their Raman signature regarding
lipids, amino acids, and nucleic acid content [64]. The outstanding capture efficiency of
streptavidin–magnetic beads was also utilized by Potluri et al. in the simultaneous de-
tection of mecA and femA genes by surface-enhanced Raman spectroscopy. The authors’
SERS–PCR system successfully quantified mecA and femA in 14 MRSA clinical samples and
four non-staphylococcal species in Eppendorf tubes [65]. Silver nanoparticles (AgNPs) are
routinely employed in bacteria detection, but their negative surface limits SERS applica-
tions. Recently, Chen et al. reported a novel SERS method using positively charged AgNPs
(AgNPs+) to rapidly identify MRSA [66]. Employment of AgNPs+ enabled superior SERS
enhancement, which provided higher-quality and reproducible SERS fingerprinting spectra.
Researchers subsequently identified differences in DNA, lipids, and protein spectra for
MSSA and MRSA cell membranes. These differences allowed the researchers to distinguish
MSSA (52 strains) and MRSA (215 strains) from clinical samples using partial least squares
discriminant analysis (PLS-DA). The advantages of combining optical and electrochemical
techniques were also explored by Lv et al. [67], in which a doxorubicin (DOX) probe and a
nanostructured Au-modified indium tin oxide electrode surface were used to simultane-
ously measure the SERS and EIS of multidrug-resistant MDR SA (MDR-SA) in pure and
contaminated milk. The combined approach exhibited an LOD of 1.5 × 102 CFU/mL of
MDR-SA in real samples.

The aggregation of NPs induces interparticle surface plasmon coupling, resulting in a
blue shift in the visible absorbance spectrum. This colorimetric change has been utilized
to detect bacteria-specific DNAs, proteins, and live cells. For example, as early as 2004,
Storhoff et al. used AuNPs to detect the mecA gene in MRSA genomic DNA samples [68].
The approach was effective in discriminating MRSA from methicillin-sensitive S. aureus
strains. More recently, Chan et al. also used AuNPs for direct colorimetric PCR detection
of MRSA in 72 clinical specimens; the performance was comparable with real-time PCR
assays but at a lower cost per reaction [69]. The cost per reaction can be reduced further if
the colourimetric mecA-based PCR qualitative test is conducted in an Eppendorf tube or on
a paper substrate. For example, Eldin and the group carried out the specific detection of the
mecA gene using AuNPs conjugated with complementary ssDNA strands in an Eppendorf
tube [70]. This method produced visible colour changes, which was confirmed using UV
spectroscopy and provided high sensitivity of 90.9% at 10 µL of DNA target per 200 µL of
the total volume of the reaction mixture.

Qualitative colourimetric identification of pathogenic bacteria utilizing Eppendorf
tubes or paper substrates by untrained personnel can potentially improve the global
surveillance capacity of antimicrobial resistance in a cost-effective manner [71]. With this
in mind, a novel paper-based visual sensing platform was fabricated by Zourob and co-
workers [72]. The sensing mechanism was based on the proteolytic activity of S. aureus
proteases on a specific peptide substrate, sandwiched between magnetic nanobeads and a
gold surface on top of a paper support. An external magnet was placed on the back of the
paper, which promotes the breaking of the peptide–magnetic nanobead complexes. The
paper-based method was an inexpensive technique with high sensitivity capable of visual
detection of MRSA. Another novel point of care device called Clear Read, a customized
colorimetric assay for detecting DNA molecules without any amplification, was developed
by Ramakrishnan et al. to detect the mecA gene in clinical samples. The procedure involved
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oligonucleotides bound to a solid matrix conjugated with AuNPs. The AuNPs were
catalytically coated with silver, resulting in a six-fold increase in the output signal while
requiring only about ~500 ng of DNA to detect target molecules such as the mecA gene [73].
With the advent of non-amplification genomic gDNA devices [74] and lateral flow tests
employed in the detection of S. aureus [75], the application of these tests during the flu
season would undoubtedly complement antibiotic stewardship. Failure to detect co or
secondary S. aureus resultant from flu infection can lead to pulmonary complications [76]
(excessive coughing, bilateral fracture), as shown in the computed tomography CT images
in Figure 3.
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flu infection; Day 1: 39.5 ◦C evening after school trip, sweating. Days 2–4: 38.5 ◦C violent coughing,
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Another novel gDNA assay utilized resistive pulse sensing (RPS), loop-mediated
isothermal DNA amplification (LAMP), and AuNPs in the rapid detection of the PVL
gene were reported by Kong et al. [77]. Resultant LAMP products called Lamplicons were
incubated with two gold nanoparticle probes and modified via biotin-avidin coupling.
These coupled particles were put in a tunable nanopore platform (qNano, IZON Science),
producing a measurable resistive pulse when the nano-assembly passed through the pore.
The resulting LOD for detecting MRSA DNA template was as low as 530 copies, with
the quantitative process completed within 2 h. This approach utilizes a straightforward
and sensitive protocol requiring one single temperature and four primers to isolate and
amplify target DNAs by LAMP. Results demonstrated that the combined LAMP-based
AuNP RPS was an effective tool for distinguishing CA-MRSA from nosocomial MRSA.
Furthermore, Lee and colleagues made a microfluidics-based diagnostic assay with sensing
probes attached to magnetic beads in the microfluidic channel to detect target DNA from
MRSA bacterial strains [78].

Nanostructure (NS) integrated systems incorporating aptamers have been increasingly
used in bacterial disease [79–81]. Aptamers are small, single-stranded DNAs or RNAs that
bind their specific targets with high affinity and selectivity and are produced by systematic
evolution of ligands by exponential enrichment (SELEX) or other modified SELEX strategies.
Aptamer-functionalized AuNP or gold nanorods (AuNR) solutions were separately added
to the MRSA solution containing 107 CFU/mL cells, and each mixture was incubated for
1 h at 37 ◦C. Under infra-red illumination, Apt@Au NP-MRSA was deemed suitable for
MRSA diagnostics, whereas apt@Au NRs was not [82]. Unfortunately, the authors did
not test other nanoparticulate geometries such as nano triangles and rings regarding the
selectivity of MSSA and h-VISA.
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Graphene Oxide and Fluorescent Nanomaterials

Graphene Oxide (GO) is hydrophilic, and its surface is easily modified with a host
of biocompatible polymers such as chitosan, [83] polyethylene glycol (PEG) [84], poly(ε-
caproplactone) [85], poly-L-lysine (PLL) [86], and polyvinyl alcohol [87]. Graphene and
functionalized graphene have been used effectively in various electrocatalysis and electro-
chemical biosensing applications, demonstrating significant promise. For example, Wang
et al. modified and functionalized a glassy carbon electrode (GCE) with reduced graphene
oxide (rGO) and amimopropyltriethoxysilane (APETS) coatings in <2 h. The sensing elec-
trode was prepared by conjugating ssDNA, complementary to target DNA. Electrochemical
impedance spectroscopy (EIS) measurements using the sensing electrode demonstrated an
LOD of 10–13 M for MRSA DNA [88]. In addition, GO has an incredibly high fluorescence
quenching efficiency. Thus, graphene-based nanomaterials can be utilized in the construc-
tion of fluorescent transducer-based biosensors. Chen and colleagues used a similar energy
transfer method using fluorescent probes and GO to detect the mecA gene [89]. The probes
consisted of two regions, and one made up of a complementary probe specific for the target
gene. The other was a primer responsible for amplifying fluorescent signals after the SYBR
Green I dsDNA. The fluorescent emission peaks were recorded at 514 nm for SYBR Green
I. FAM also emitted light of the same wavelength, resulting in the amplification of the
fluorescent signal. This novel biosensor detected the mecA gene with a linear range from
1 to 40 nmol/L and a lower detection limit of 0.5 nmol/L. The lower detection limit of
bacteria was 3 × 102 CFU/mL, with a linear range from 103 to 107 CFU/mL.

Similarly, Ning et al. [90] reported a method for the fluorometric determination of
MRSA by exploiting target-triggered chain reactions and deoxyribonuclease I (DNase
I)-aided target recycling. This experimental bioassay study was carried out using FAM
labelled probe with two sections over GO for FRET-based detection of 16 rRNA of MRSA
bacterial strain. The FAM-labelled probe adsorbed to the GO by π-stacking, quenching its
fluorescence protecting it from DNase I cleavage. After introducing the target sequence,
DNA/RNA hybrids resulted, permitting FAM enzyme cleavage to occur, producing a
target-induced fluorescence signal. The limit of detection for MRSA 16S rRNA was 0.02 nM.
The LOD for bacterial samples was 30 (Colony Forming Unit) CFU mL−1 with a linear
range from 102 to 106 CFU/mL. A selection of the various nanomaterials used to detect
MRSA are summarized in Table 1.

Table 1. Various techniques utilizing nanomaterials in the detection of MRSA.

Technique Nanoparticulate LOD Detection Target Assay Time Ref.

SERS Ag NPs 10 CFU/mL MRSA / [64]
SERS AgNPs+ / MRSA 45 min [67]

Colourimetric
PCR AuNPs 500 ng mecA <25 min [70]

Colourimetric AuNPs 100 ng mecA <100 min [71]
Colourimetric AuNPs 500 ng DNA mecA <60 min [73]

Resistive
pulse sensing AuNPs 530 copies PVL gene 120 min [77]

Fluorescence GO 0.02 nM MRSA 16S rRNA / [90]
LRET UCNs 0.18 nM mec-Tar / [91]
FRET CdTe QD 0.5 ng/mL Antibodies / [92]

More recently, Liu et al. [91] developed an efficient and versatile method for detecting
MRSA DNA sequences in which a nanoparticle-based luminescence resonance energy
transfer (LRET) system was utilized. The technique was based on the upconversion of
nanoparticles (UCNs) and LRET between NaF4: Yb, Er UCNs, and carboxytetramethyl-
rhodamine (TAMRA), the energy acceptor. MRSA-captured nucleotides were immobilized
on the surface of UCNs and released in the vicinity of TAMRA-labelled DNA reporter
oligonucleotides. Upon sandwich hybridization, with specific MRSA DNA sequences
(Mec-Tar), a shift (543–580 nm) and an increase in the emission wavelength was observed.
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An LOD of 0.18 nM for MRSA DNA sequences was reported using the UCN-based LRET
system. As well as LRET, fluorescent energy transfer (FRET) assays have also been em-
ployed to detect S. aureus. TNase is a nonspecific endonuclease specifically produced by
S. aureus. A bacterial count above 103 CFU/g will generate 1 ng/mL of TNase enzyme.
Furthermore, Chandan et al. conjugated anti-TNase antibodies to a CdTe QD-streptavidin
probe and used them in a simple and inexpensive FRET immunoassay [92]. The assay was
successfully validated on naturally contaminated samples, showing good linearity and an
LOD of 0.5 ng/mL.

4. Antibacterial Agents
4.1. Metallic Nanoparticles

The increasing use of MNPs in medicine has led to a growing number of studies
exploring the antibacterial mechanisms of MNPs and the potential for resistance [93].
MNPs’ physicochemical properties include their size, shape, charge, zeta potential, surface
morphology(roughness), and crystal structure, which are significant elements that regulate
the actions of MNPs on bacterial cells. Current research suggests MNPs employ three
antibacterial mechanisms: oxidative stress [94], non-oxidative stress [95], and metal ion
release [96]. Different MNPs have been used to investigate their efficacy against MRSA,
of which the most explored are silver and gold NPs (Ag and Au NPs) [97–100]. Regard-
ing commercial MNPs applications, AgNPs are the most common, found in cosmetics,
nanomedical devices, and food products. Although generally less toxic than silver ions,
their ability to induce oxidative stress for a prolonged period in eukaryotic cell lines and
subcellular organelles(mitochondria) suggests they could contribute to the early onset
of various metabolic diseases (neurodegenerative, cardiac) [101–104]. The source of this
toxicity is open to debate, with many experts suggesting that it is not uncontrolled silver ion
release but the shape and size of the particles. Uncontrolled ion release aside, reports can
vary regarding AgNP toxicity and the animal models used. Another potential source of tox-
icity is the solvents employed during particle synthesis. Consequently, many researchers
have turned to greener methods, resulting in significant reductions (enhanced particle
stability) in geno and cytotoxicity in cell lines, graphene being a notable example [104].
Regarding biomedical usage, lifetime matching, i.e., particle stability to device function, is
routinely applied in implants and topical applications in order to minimize toxic events.

Cheaper alternatives to Ag and AuNPs, such as zinc oxide (ZnO) NPs and tita-
nium dioxide (TiO2) NPs, have effectively killed MRSA under in vivo and in vitro condi-
tions [105,106]. For example, the application of ZnO NPs to reduce the bacterial burden
in MRSA-associated skin infection in murine models has proven effective [107], with
one study reporting antibacterial activity of ZnO NPs in MRSA at a concentration of
1875 mg/mL [108]. Similarly, another study reported the bactericidal activity of ZnO
NPs with additional insights into the mechanisms of these NPs, which inhibit multiple
metabolic pathways, such as amino acid synthesis, in S. aureus [109]. TiO2 NPs have also
been successfully applied with different combinations of antibiotics, such as cephalosporins,
glycopeptides, and azalides, showing anti-MRSA activity in a disk diffusion assay. Under
UV photoactivation, TiO2 (NPs) form free radicals that lead to their enhanced killing of
MRSA [110].

ZnO NPs’ excellent biomedical properties have resulted in their employment in di-
agnosis, bio-imaging, drug delivery, antimicrobial, and cancer treatments, etc. [111,112].
However, new approaches are needed for ZnO NPs to meet the non-agglomeration re-
quirements of clinical settings. Doping modification is one of the most effective methods
to minimize ZnO NPs–bacterial agglomerates. For example, Cu-doped ZnO nanorods
exhibit better photocatalytic and antibacterial characteristics than pure ZnO nanorods [113].
Recent work by Khalid et al. [114] tested the antibacterial effects of the Cu-doped ZnO NPs
against four bacterial strains, two of which were Gram-positive (S. aureus, S. pyogenes) and
two Gram-negative (E. coli, K. pneumonia). Studies showed that Gram-positive microbes
were more susceptible to Cu-doped ZnO NPs than Gram-negative microbes. Further-
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more, Cu-doped ZnO NPs exhibited better antibacterial activity (than pure ZnO) towards
Gram-positive bacteria than Gram-negative bacteria. The same group also investigated
the antibacterial activity of cobalt-doped zinc oxide cylindrical microcrystals using similar
parameters [115]. The results showed that Co-doped ZnO MCs had better antibacterial
activity against Gram-negative bacteria than Gram-positive bacteria.

4.2. Liposomes

Due to the ease of formulation, low cost, and compatibility with a plethora of estab-
lished therapeutic agents, liposomes remain one of the most widely used nano-drug deliv-
ery systems. The basic liposome consists of one or more spherical lipid bilayers surrounding
an aqueous core incorporating either hydrophilic or hydrophobic compounds [116,117].
The size and the number of layers determine the drug encapsulation efficiency (EE). The
circulatory half-life of liposomes is enhanced via pegylation, which improves osmotic
stability and inhibits the binding of undesired plasma proteins destined for the reticuloen-
dothelial system (RES) [118]. With the re-emergence of vancomycin-intermediate S. aureus
(VISA), heterogeneous VISA (h-VISA), and vancomycin-resistant S. aureus (VRSA), par-
ticularly in Africa, cost-efficient systems that increase the efficacy of vancomycin would
be advantageous. Studies involving Van-encapsulated liposomes usually employ the
hydration–dehydration or rehydration–dehydration method. For example, in a study to
improve the MRSA killing efficiency of Van, Sande et al. [119] prepared two liposomal for-
mulations (Dicethylphosphate (DCP) and dimyristoylphoshatidylglycerol (DMPG)) loaded
with Van using the rehydration method. The study reported that both liposomal formu-
lations were approximately two-fold more effective than free-form VAN with minimum
inhibitory concentrations (MICs) ranging from 0.3 to 1.25 mg/mL for both liposomes formu-
lations, enhancing the clearance by a magnitude compared to free form Van with minimum
bactericidal concentrations (MBCs) ranging from 0.6 to 1.25 mg/mL for both liposomes and
2.5 to 5 mg/mL for free form Van in a systemic murine infection model. Serri et al. [120]
investigated the efficacy of a Van-loaded liposomal formulation using conventional lipids,
prepared by the lipid film hydration method and evaluated against S. aureus and MRSA.
The study reported low encapsulation efficiencies (EE), ranging from 0.1% to 9% for the
various liposomal formulations. Due to the low EE, the liposomal formulations showed
inferior MIC values (3.47 µg/mL) compared to free-form Van (2.4 µg/mL) against S. aureus
and MRSA (6.95 µg/mL and 4.8 µg/mL), respectively. MBC values also followed a similar
trend. Recently, another research group has evaluated Van-loaded conventional liposomes
for their antibacterial efficacy against MRSA in an in vivo study. In 2020, Abrishami et al.
prepared Van-loaded nanoliposomes using the solvent evaporation method. The study
reported the particle size of the liposomal formulation to be 381.93 ± 30.13 nm, having
an encapsulation efficiency of 47%. The liposomal formulation was significantly more
effective than the freeform vancomycin at each tested time interval (p < 0.05). Their results
indicated that positively charged and nanosized liposomes showed enhanced therapeutic
effects [121].

Novel lipids and pH-responsive lipids have been shown to overcome the acidic micro-
environment [122], permitting fusion to the negatively charged cell wall of MRSA at low
pH [123]. For example, the work by the Omalo group [124] utilized an advanced nano-
drug delivery system composed of oleic acid (OA) and a novel quaternary lipid (QL) to
encapsulate Van. Encapsulation efficiencies were 43.06 ± 5.86% and 16.95 ± 1.23% for
pH-responsive and non-pH-responsive liposomes. The study revealed that pH-responsive
liposomes exhibited better antibacterial activity than free Van at pH 7.4. Results indi-
cated MICs were 2 to 4 times lower for pH-responsive liposomes than Van and non-pH
responsive for S. aureus (0.98 µg/mL, 3.9 µg/mL, and 1.95 µg/mL, respectively) and
MRSA (1.95 µg/mL, 7.8 µg/mL, and 3.9µg/mL, respectively). Moreover, MICs were 8
to 16 times lower at pH 6.0 for pH-responsive liposomes than free Van and non-pH re-
sponsive for S. aureus (0.488 µg/mL, 3.9 µg/mL, and 1.95 µg/mL, respectively) and for
MRSA (0.488 µg/mL, 7.8 µg/mL, and 3.9 µg/mL, respectively). In vivo studies showed
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that MRSA recovered from mice treated with formulations was 189.67- and 6.33-fold lower
than the untreated and bare Van-treated mice. OA-QL liposomes also demonstrated a
1266.67- and 704.33-fold reduction in the intracellular infection for TPH-1 macrophage and
HEK293 cells, respectively.

In another study [125], a novel two-chain fatty acid-based lipid (FAL) containing amino
acid head groups in the formulation of pH-responsive liposomes for the targeted delivery
of vancomycin was reported. The liposomes were characterized by size, surface charge,
polydispersity index (PDI), and morphology. In addition, the drug-loading capacity, drug
release, cell viability, and in vitro and in vivo efficacy of the formulations were investigated.
A sustained drug release profile was observed; SA and MRSA MICs were two- to four-fold
times lower for encapsulated Van at pH 7.4 and 6.0 than purified Van. In vivo studies
showed similar reductions in MRSA recovered from mice treated with encapsulated Van
compared to the control.

Fusogenic liposomes consisting of dioleoyl-phosphatidylethanolamine (DOPE) and
cholesterol hemisuccinate (CHEMS) increase the fluidity of the lipid bilayer. Under normal
conditions, fusogenic liposomes adopt a liquid crystalline state; however, in the presence of
cations, the bi-layer arrangement relaxes, permitting fusion with other membranes. Recent
work by Scorboni et al. [126] comparing the in-vitro antimicrobial activity of encapsulated
vancomycin in different liposomal formulations against S. aureus biofilms showed that
vancomycin encapsulated in fusogenic liposomes demonstrated enhanced antimicrobial
activity against mature S. aureus biofilms. Mature biofilms can play an important role in the
persistence of chronic SA infections by decreasing the susceptibility of microbes to antimi-
crobials by impairing the host immune response [127]. Impairment, specifically phagocytic
(macrophage) impairment, can extend the host’s infection length and recovery time. Conse-
quently, there is mounting focus on immunogene therapy to augment the immune system’s
initial response. A potential immunotherapy to alleviate macrophage impairment was
employed by Kim et al., in which fusogenic liposomes as part of a (small interfering RNA)
siRNA–SiNP delivery platform were utilized to bypass the cellular endocytosis’s primary
uptake pathway, achieving potent gene knockdown efficacy (Figure 4) [128]. Results
showed that the said platform enhanced macrophages’ clearance capability and survivabil-
ity in a SA pneumonia mouse model. In addition, Liu et al. also used liposomal delivery of
antisense siRNA for mecA knockdown to restore MRSA susceptibility to oxacillin under
both in vitro and in vivo conditions [129].
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As well as pH gradients, a-toxin (alpha-hemolysin) (Hla) has also been used to trig-
ger localized drug release from phosphatidylcholine cholesterol-rich liposomes [130,131].
Alternatively, Gram-positive peptidoglycan-specific lysostaphin (LV) can be employed.
Recent studies by Hajiahmadi et al. [132] explored the antibacterial activity of vancomycin
(free Van) and lysostaphin (free Lys), and lysostaphin–vancomycin (lys/van), liposomal
vancomycin (LV), lysostaphin-conjugated liposomes without vancomycin (LysL), and
lysostaphin-conjugated liposomal vancomycin (LysLV) against MRSA and S. aureus. The
authors reported that LV and Van had a similar antibacterial effect against MRSA, whereas
the MIC value for free Lys was lower than LysL. In addition, in vivo and MRSA mortality
murine studies showed LysLV was the most effective, followed by free Lys/Van, with
LysLV significantly reducing the number of bacteria in the surgical site compared with
other formulations at the end of the 9th and 14th days.

In addition to glycopeptides, other antibiotic classes have efficaciously benefited from
liposomal encapsulation, many of which are addressed in numerous reviews [133,134].
The narrow-spectrum antibiotic Dicloxacillin (DLX) is particularly noteworthy as it has
significant activity against Gram-positive β-lactamase-producing microorganisms. In a
recent study, researchers [135] prepared a dicloxacillin-loaded liposome using a lipid film
hydration method and a chitosan-coated dicloxacillin-loaded liposome via an electro-
static deposition method. Particle sizes of both liposomal formulations were in the nano
range (178.5 ± 13.6 nm for DLX-liposomes and 263.4 ± 19.1 nm for chitosan-coated DLX-
liposomes). In addition, DLX encapsulation was higher in the chitosan-coated liposomes
than the uncoated-liposomes, with encapsulation values of 62% and 38%, respectively.
Chitosan-coated and uncoated liposomal formulations exhibited enhanced anti-MRSA
activity (inhibition zone of 33.0± 0.89 mm for free DLX; 34.3± 0.51 mm for chitosan-coated
liposomes; and 55.0 ± 1.70 mm for DLX-liposomes), compared to the free drug. These
liposomes are believed to show promising potential for their application as a delivery
system for DLX, subject to extensive validation studies.

Conventional liposomes (CLs), deformable liposomes (DLs), propylene glycol-containing
liposomes (PGLs), and cationic liposomes (CATLs) encapsulating azithromycin (AZT)
represents a promising approach for the efficient topical treatment of skin infections. In a
study by Vanic et al. [136], AZT encapsulated in CATLs, DLs, and PGLs liposomes resulted
in markedly improved in vitro antibacterial activity against planktonic bacteria compared
to (aq) free AZT. In addition, these liposomes were superior to free AZT in preventing
biofilm formation, exhibiting MIC and minimal biofilm inhibitory concentrations up to
32-fold lower than those of AZT solution, thus confirming their potential for improved
topical treatment of MRSA-caused skin infections.

4.3. Polymeric Nanoparticles

Chitosan (CS) is a natural biopolymer obtained from one of the most abundant polysac-
charides in nature, chitin. CS nanoparticles have been used in oral, nasal, mucosal, ocular,
pulmonary, and gene–drug delivery platforms [137]. Positively charged chitosan exhibits
good antibacterial activity and the ability to re-potentiate antibiotics [138]. For example,
Jamil et al. utilized CS to synergistically enhance the bactericidal activity of β-lactam
antibiotics against MRSA biofilms [139]. Chitosan may also improve the applicable lifetime
of antimicrobial essential oils (EOs), such as curcuminoids [140–142] and cardamom. For
example, researchers recently prepared cardamom oil–chitosan nanoparticles by the ionic
gel method, demonstrating an encapsulation rate greater than 90%, biocompatibility, and
antibacterial activity against MRSA [143].

Approved for a multitude of biomedical applications by the FDA, bovine serum
albumin (BSA)-stabilized poly (lactide-co-glycolide acid) (PLGA) exhibits excellent bio-
compatibility, non-toxicity, and low immunogenicity [144]. Furthermore, the versatility
of PLGAs NPs has been successfully utilized in the targeted delivery of antibacterial and
anti-inflammatory agents in a sepsis model [145]. The resistance of MRSA primarily lies in
its ability to reduce the uptake of free antibiotics and enhance drug efflux. Thiyagarajan
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et al. sought to circumvent these hurdles by developing a pyridinium amphophilic PLGA
nanoparticle system (C1-PNPs) loaded with either gentamicin or ciprofloxacin [146]. De-
ployment of this combined system restored the susceptibility of MRSA to the antibiotics
since C1-PNPs enhanced the cell uptake of gentamicin by MRSA and inhibited the efflux
mechanism of MRSA for ciprofloxacin; the authors also postulated that the system has the
potential to restore the phagocytic activity of MRSA-infected macrophages.

Similarly, Pei et al. developed a PLGA-based functional nanosystem consisting of
PEG-PLGA, Eudragit E100, and a chitosan derivative for intracellular delivery of van-
comycin [147]. They found that the nanosystem (500–1000 nm) exhibited increased re-
lease at acidic pH and significantly higher uptake levels and MRSA clearance in infected
macrophages compared to the control. More recently, Cabral et al. [148] investigated
the antibacterial potential of conjugated holo-transferrin (h-Tf) VM-loaded PLGA-PVA
nanoparticles against MRSA. Unfortunately, bioconjugation with h-Tf did not increase
the antimicrobial effect compared to the unconjugated control. However, the authors did
suggest further investigations involving MRSA films and the h-Tf conjugate would be
more fruitful.

4.4. Solid Lipid Nanoparticles

Solid lipid nanoparticles (SLNPs), also known as lipid carriers, have been under
intensive research over the past decade. SLNPs are extensively studied worldwide and
have demonstrated significant promise when delivering anti-MRSA antibiotics. Solid
lipid nanoparticles (SLNP) consist of solid lipids, surfactants, and co-surfactants. Com-
pared to most other lipid-based nanocarriers (liposomes), SLN remains in the solid state
after administration, making them more stable in the gastrointestinal GI environment,
shielding cargo (protein and drugs) from enzyme degradation [149]. SNLPs are fabri-
cated from a blend of solid lipids or wax, resulting in a lipid core at room and body
temperature. The size and physicochemical properties of SLNPs are readily tunable, de-
pending on the lipids and surfactants used. SNLPs have been shown to act as carriers
for hydrophilic vancomycin by ion-pairing the drug with triethylamine and a lipophilic
contra-ion (linoleic acid). Sonawane et al. rendered vancomycin SNLPs pH-responsive
using a stearic acid-based, cleavable lipid [150]. These site-specific targeting particles
gave a 22-fold improvement in MRSA clearance in a mouse skin infection model com-
pared to the controls. More recently [151], researchers utilized an N-(2-morpholinoethyl)
oleamide (NMEO) pH-responsive lipid for vancomycin delivery and examined its sta-
bility and antibacterial activity in neutral and acidic pH. The study revealed that drug
release and antibacterial activity were significantly better at pH 6.0 than pH 7.4. Moreover,
the MRSA load was 4.14 times lower (p < 0.05) in Van NMEO SLNPs treated mice than
bare VM-treated specimens. Govender et al. also demonstrated the improved efficacy
of Van delivered via novel oleylamine-based zwitterionic lipid (OLA), chitosan-based,
pH-responsive lipid–polymer hybrid nanovesicles (Van-OLA-LPHVs1) in the treatment
of MRSA [152]. Van release from the Van-OLA-LPHVs1 was faster at pH 6.0 than pH 7.4,
with 97% release after 72 h. The Van-OLA-LPHVs1 had a lower MIC value of 0.59 µg/mL
at pH 6.0 compared to 2.39 µg/mL at pH 7.4 and a 52.9-fold antibacterial enhancement
compared to the control. In vivo studies in a BALB/c mouse-infected skin model treated
with Van-OLA-LPHVs1 revealed a 95-fold lower MRSA burden than the bare Van group.
The same group also [153] addressed the problem of intracellular infection by developing
novel pH-responsive lipid–dendrimer hybrid nanoparticles (LDH-NPs) for the intracellular
delivery of vancomycin. Bacterial cell viability studies showed that LDH-NPs killed 84.19%
of the MRSA, compared to Van (49.26%) at the same MIC, confirming its enhanced efficacy.
Cell uptake studies showed that LDH-NPs intracellularly accumulated in HEK 293 cells,
demonstrating significant clearance (p < 0.0001) of intracellular bacteria.

A more direct method in inhibiting MRSA growth involves the employment of tran-
scription factor decoys (TFDs). TFDs are short-length oligonucleotides (10–80 base pairs)
carrying a bacterial essential transcription factor [154]. When a bacterial cell is trans-
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formed with these molecules, the TFDs outnumber the native promoter binding sites in the
chromosome [155]. However, the efficient intracellular delivery of the TFDs is critical in
realizing the antibacterial potential of this technology. Initial studies utilizing specific TFDs
complexed with either cationic nanostructured lipid carriers (cNLCs) or chitosan-based
nanoparticles (CS-NCs) found that both carriers were adept at complexing and protecting
TFDs in a range of physiological and microbiological buffers up to 72 h. Initials tests
showed that the “anionically” charged chitosan-TFD particles demonstrated no visible
improvements in effect when co-administered with vancomycin. However, co-delivery of
cNLC-TFD with vancomycin reduced the MIC of vancomycin by over 50% in MSSA and
resulted in significant decreases in viability compared with vancomycin alone in MRSA
cultures. Optimizations of the nanocarrier composition and the sequence and structure of
the TFD molecule are being carried out to improve their combined efficacy against MRSA.

Plants contain rich sources of bioactive phytochemical compounds that exhibit broad-
spectrum antibacterial activity; 18β-glycyrrhetinic acid is such a compound [156]. In a
recent study [157], the targeting capability of pH-responsive lipid(oleic)-polymer hybrid
nanoparticles (LPHNPs) was employed in the co-delivery and enhancement of the antibac-
terial activity of vancomycin and 18β-glycyrrhetinic acid. By co-encapsulating Van and
18β-glycyrrhetinic acid within LPHNPs, their pharmacokinetic profiles and therapeutic
indices were remarkably enhanced. Moreover, studies revealed that LPHNPs loaded with
18β-glycyrrhetinic acid and Van exhibited sustained and faster release in acidic conditions
and a 16-fold increase in antibacterial activity against MRSA compared to bare Van sug-
gesting encapsulated Van and 18β-glycyrrhetinic acid acted synergistically. Given that
18β-Glycyrrhetinic acid (GA) has the ability to regulate the production of haemolysins,
leukotoxins, and adhesins [158,159], it would seem that this platform has the potential
to modulate virulence as well. Furthermore, 18β-glycyrrhetinic acid is readily available,
suggesting this platform represents a cost-effective, non-toxic treatment option for MRSA.
A compilation of the various carriers encapsulating vancomycin used in the treatment of
MRSA is shown in Table 2.

Table 2. Comparison of in vitro anti-MRSA activity of encapsulated free vancomycin.

Carrier Cargo MIC MIC
Free Form Ref.

Liposome Van 0.3 mg/L 1.25 mg/L [119]
Liposome Van 0.48 µg/mL 7.68 µg/mL [124]

OLA-LPHVs Van 0.59 µg/mL 31.25 µg/mL [152]
LDH-NPs Van 3.90 µg/mL 31.25 mg/mL [154]
LPHNPs Van & 18β-glycyrrhetinic acid 0.48 µg/mL 7.81 mg/mL [157]

4.5. Stealth Coatings (Delivery and Detoxification)

PEGylated liposomes, LNPs, and other lipid-based drug delivery systems (DDS) were
originally thought to be immunologically inert. However, repeated administration of
PEG-nanoparticles resulted in the production of antibodies (IgM and IgG) against carrier
components resulting in infusion reactions such as complement (C) activation-related
pseudo allergy (CARPA) [160]. CARPA may be perceived as an immunological response
to structural similarities common to nanomedicines and viruses [161]. The entailing acute
inflammatory reaction may result in reduced efficacy, anaphylaxis, and immunogenicity
(antibody generation) [162,163]. Alternatives to PEG, such as polyglycerol [164], are beyond
the scope of this review. For those readers interested in naïve PEG antibodies, their
prevalence within the general populous and the potential impact on therapeutics, the
review by Hong et al. is recommended [165].

In contrast to PEGs’ susceptibilities to clearance, alternative coatings, such as ery-
throcyte membrane and platelets, have been used to extend the circulatory lifetime of
(PLGA) (NPs), perfluorocarbons (PFCs)–PLGA nanoparticles, up-conversion nanoparticles,
and metal–organic frameworks (MOFs) [166–168]. Recently, Huang et al. [169] exam-
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ined the antibacterial potential of platelet encapsulated Ag-MOF loaded with vancomycin
(PLT@Ag-MOF-Vanc) against S. aureus and MRSA. PLT@Ag-MOF-Vanc showed better
antibacterial activity against MRSA in vitro than free vancomycin and Ag-MOF, Ag-MOF-
Vanc groups (Figure 5). In addition, the carrier exhibited targeted release, killing MRSA
through multiple approaches, including interfering with the metabolism of bacteria, catalyz-
ing reactive oxygen species production, destroying cell membrane integrity, and inhibiting
biofilm formation. Moreover, PLT@Ag-MOF-Vanc demonstrated reduced phagocytic up-
take compared to the controls (Ag-MOF, Ag-MOF-Vanc groups and vancomycin group).
Furthermore, the study also evaluated the anti-infection effect of PLT@Ag-MOF-Van in an
MRSA pneumonia model of Kunming mice. The results showed better and faster recovery
in the lung condition in the PLT@Ag-MOF-Vanc group compared with other groups, and
the alveoli recovered from the third day of the treatment, with no apparent inflammatory
cell infiltration.
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Rich in complement and transmembrane proteins such as CD47 [170], CD59 [171],
decay-accelerating factor (DAF) [172] and complement receptor 1(CR-CD35) [173], flexible
RBC membranes have been shown to delay the opsonization of nanoparticles for several
months. This, in turn, has allowed researchers to explore the encapsulation of vancomycin
by RBC membrane-derived vesicles supplemented with exogenous cholesterol [174]. Van-
RBC nanoformulations demonstrated higher retention at MRSA-induced infection sites
in murine models and reduced skin lesion formations. In addition, bacterial enumeration
revealed that Van-RBC could outperform the free drug by three orders of magnitude.

The deadly nature of S. aureus is attributable to the release of bacterial toxins, including
α-, β-, γ-, and δ-pore-forming toxins, exfoliatin, enterotoxins that cause toxic shock and
scalded skin syndrome, and poisoning from infected food. In addition, many of these
pore-forming toxins activate intracellular K+ sensors, leading to a pathway that modifies
histones and subsequent gene expression, predisposing the host to recurring and secondary
infections [175,176]. An insightful approach employed by Zhang et al. to accelerate the
removal of these toxins was to combine the capturing capacity of erythrocyte membranes
with freshly prepared vancomycin nanosponges (NS) in the treatment of MRSA infec-
tions [177]. Compared with free Van and nonresponsive nanogels, the coated nanogels
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exhibited remarkable antibacterial activity. Furthermore, researchers demonstrated the
intracellular antibacterial efficacy of vancomycin-loaded RBC-nanogel in an in vitro model
of MRSA USA300-infected macrophages sourced from human THP-1 monocytes. How-
ever, nanogels prepared using the cross-linker N, N, N′, N′-Tetramethylethylenediamine
(TEMED) and catalyst ammonium persulfate (APS) [177] may compromise biocompatibility
and limit its translational applicability.

An alternative approach is to employ “smart” thermosensitive hydrogels based on
Pluronic F127 (an FDA-approved novel temperature-sensitive hydrogel material) that rely
on physical methods for cross-linking [178]. In a recent study, Zhang et al. [179] successfully
used RBC-derived nanosponges and the FDA-approved Pluronic F127 hydrogel to construct
a novel biocompatible, biodegradable detoxification system denoted as “NS-pGel”. NS-
pGel was shown to preserve the Hlα neutralization capability of the incorporated NSs and
significantly prolonged retention of NSs in both biological buffers and mouse subcutaneous
tissues. Moreover, the prophylactic detoxification potential of NS-pGel showed better
preventive effects than NSs alone.

In addition to detoxification, eukaryotic or prokaryotic sourced EVs have been used
to enhance the immunogenetic or therapeutic effects for preventing and treating bacterial
infections. For example, S. aureus EV-coated magnetic mesoporous silica loaded with
indocyanine green triggered multi-antigenic vaccination and modulated antigen presen-
tation pathways to activate T cells responses [180]. In another study [181], S. aureus EVs
were utilized to coat poly (lactide-co-glycolide acid) (PLGA) nanoparticles preloaded with
antibiotics. Due to their antigenic properties, the EV-coated nanoparticles were effec-
tively internalized by S. aureus-infected macrophages and released antibiotics to kill the
intercellular pathogens, offering significantly improved efficacy in alleviating S. aureus
burdens.

5. Biofilms

A potential consequence of the pandemic [182] is a rise in the frequency of biocide re-
sistance genes qacA/B and qacC in clinical staphylococci isolates, particularly MRSA [183],
which may enhance antibiotic cross-resistance within the broader community. A typical
example of cross-resistance (CR) is that of (quaternary ammonium compounds) “QAC”
transporters, which enhance the efflux of clinically relevant antibiotics [184], particularly
aminoglycosides. CR can occur in environments where poor or inexperienced sanitation
practices are adopted, leading to resident microbes being exposed to sub-lethal concentra-
tions of biocides. Moreover, Pereira et al. [185] recently demonstrated that the evolution of
40 Escherichia coli strains in sub-inhibitory concentrations of 10 (including chlorhexidine)
widespread biocides resulted in 17 strains exhibiting reduced susceptibility to medically
relevant antibiotics. In addition, 11 of those strains showed a greater capacity for biofilm
formation. Perhaps more concerning were the studies by Durna and Speck et al. [186,187],
which showed sub-MICs of sodium hypochlorite enhanced the biofilm-forming ability
of MRSA and increased resistance to oxacillin in Staphylococcus aureus after exposure to
sub-lethal sodium hypochlorite concentrations.

Greater capacity for MRSA biofilm generation lies in the upregulation of pro-biofilm
genes such as fnb, agr, sarA, and icaADBC [188]. The ability of MRSA to colonise and persist
(as biofilm) on implants [189,190] (orthopaedic, heart valves, and shunts) and medical de-
vices, such as catheters, endotracheal tubes [191], and pacemakers, are well known. MRSA
infections can be chronic and recurrent. In addition, the pathogen can colonize virtually
any biological or inanimate surface and has been identified in industrial and domestic
settings [186]. Biofilm formation occurs in four stages [192]: planktonic cell adhesion to
a substrate; early micro-colony proliferation and polysaccharide intercellular adhesion
(PIA) production; secretion of extracellular eDNA (biofilm maturation); and surfactant-
aided detachment of bacteria. The primary oligosaccharide in SA biofilm matrices is a
polymer of N-acetyl-β-(1-6)-glucosamine (polysaccharide intercellular adhesin or PIA),
and accumulation-associated protein (Aap), a common biofilm-associated protein [193].
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The characteristic features of a biofilm that afford it resistance to biocides and antibiotics
alike are depicted in Figure 6. For a more extensive review on alternative strategies used in
biofilm elimination, the study by Koo and colleagues is recommended [194].
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Since biofilms usually house multispecies and are 100–1000 times more antibiotic-
resistant than their planktonic counterparts (and other microorganisms), attempts to elim-
inate these diverse bacterial communities with high-dose, single antibiotics can result
in toxicological damage to the host. Consequently, many researchers have focused on
developing inhibitory strategies. Such strategies have included the coating or doping of
surfaces (implants and devices) with antibacterial agents such as antibiotics [195], silver
nanoparticles [196], MgB2-polyvinylpyrrolidone (PVP) composites [197], antimicrobial
peptide (AMP) [198], and F-18 bio-glass [199,200]. Antibiotics can be tethered to the sur-
face of an implant or incorporated as a part of a nanocomposite scaffold. In a recent
study [201], the antibacterial activity of a gelatin–strontium-incorporated hydroxyapatite
(SrHAP)-forming HG scaffold and vancomycin-loaded chitosan–gelatin polyelectrolyte
complex-incorporated gelatin-SrHAP-forming HV scaffold (HV1–0.5 wt% and HV2–1 wt%
vancomycin) were investigated. The HV-2 sample showed significant antibacterial activity
for MRSA and MSSA compared to HV1 and the controls. A more conventional approach
is to coat the base material with Ag, Cu, Zn, Au, and Ni particulates. The antibacterial
mechanism of AgNPs via Ag+ (ROS elevation) release on planktonic microbes is well
known [202]. Moreover, silver nanoparticles have broad-spectrum appeal killing both
Gram-negative and Gram-positive bacteria alike [202]. Currently, the biggest challenge
facing AgNPs is sustained ion release. To meet this challenge, researchers have used Ti
nanotubes loaded with polydopamine (PDA)-coated Ag2O NPs. Investigations showed
long term improvements in sustained release and reduced host toxicity compared with
uncoated AgNPs [203]. Similarly, TiO2 nanorods and AgNPs were used by Guan et al. [204]
to measure the antibacterial coating efficacy of Ag-TiO2@PDA in a series of in vitro experi-
ments. Experiments showed that Ag-TiO2@PDA NRDs coatings demonstrated controlled
Ag+ release with anti-MRSA effects on Days 7 and 14, exhibiting efficiencies of 88.6 ± 1.5%
and 80.1 ± 1.1%, respectively. The anti-MRSA activity of Ag+ was confirmed in-vivo
following implantation in the tibia of an osteomyelitis rat model. Aside from implants,
for the past 30 years, silver-coated medical devices have been intensely investigated [205].
Several studies have shown that silver-coated endotracheal tubes can reduce the occurrence
of early-onset ventilator-associated pneumonia by preventing biofilm formation [206,207].
Silver nanoparticle-based antimicrobials can promote a long-lasting bactericidal effect
without detrimental toxic side effects. However, translation to the clinical settings remain
slow as no clear and complete protocol defines the particles’ specific toxicity (size, shape,
surface charge, and ionic content), restricting clinical application [208].

In addition to silver-based nanoparticulate coatings, other elements composed of
copper have been used to prevent biofilm formation. The antibacterial ability of Cu
largely depends on its form (ion or nanoparticle), oxidation state (Cu0, Cu1+, or Cu2+),
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and concentration. In addition, the contact distance between microorganisms and Cu-
containing surfaces, application form (dry or wet), and ambient temperature significantly
affect its antibacterial potential [209]. For those readers wanting to explore current research
on antibacterial metals and alloys used in implants, the reviews by Jiao [210] and Liu et al.
are recommended [211].

6. Clinical Translations

Nanoparticulate pharmaceutical drug delivery systems (NDDSs) are commonly used
to increase the efficacy of medicines. However, less than 60 drug-loaded nanoparticles have
been approved for commercial use [212–214]. Cancers naturally dominate the treatment
landscape, followed by blood disorders, chronic diseases, and fungal infections. Regarding
MRSA [215], following phase I trials, the latest Egyptian observational study involving
150 patients (ClinicalTrials.gov Identifier: NCT04431440), using topical silver nanoparticles,
has shown promising results; the stability data are yet to be published. Other trials
(NCT04775238) involving copper and silver nanoparticles synthesized using laboratory
procedures are still recruiting patients.

Several criteria have to be met for a nanoparticle formulation to succeed in the clinic.
These include reliably scaling up synthesis, high throughput optimization, and predicting
nanoparticle efficacy and performance. Small batches of nanoparticles sourced from a
conventional laboratory usually suffer from a high degree of variability in size and toxicity,
preventing scaling up synthesis by manufacturers. High-throughput nanoparticle optimiza-
tion involves large-scale screening of numerous formulations performed preclinically for
specific biological functions or in vitro release profiles, utilizing selective iterations, leading
to a single specific function. Unfortunately, this technology remains in its infancy; thus, a
strong correlation between human and animal models is still relied upon at the preclinical
stage, despite the issue of nephrotoxicity. To further optimize nanoparticle performance,
individual taxon-based gut analysis before a study could provide an additional level of
specificity, as there is a strong preclinical and clinical rationale (doxorubicin-metabolite)
to incorporate this iteration [216]. However, this would require metagenomic information
sharing between individuals, biotech (microbiome), and drug companies. In the future, one
could envision microbial host–animal surrogate models with virome specificity, although
without governmental assistance, this may prove economically unfeasible for the public
at large.

7. Conclusions

The MRSA arsenal of toxins, resistant genes, and adhesins [217] represents a unique
set of challenges in terms of vaccine development, diagnostics, treatment, and biofilm inhi-
bition. Multiple MRSA vaccine trials have failed to meet their endpoints, whilst EV-based
MRSA/SA vaccination platforms remain in their infancy. Thus, the potential to reduce
the spread of multi-drug resistant SA and antibiotic usage via vaccination is currently
unavailable. However, EV versatility represents a unique opportunity for the development
of novel toxins, vaccines, stealth, and antibiotic carriers [218]. Conversely, in antibiotically
challenged bacterial hands, EVs can act as membrane decoys, carrying lactamases into the
microenvironment whilst enabling the transfer of AMR genes to susceptible bacteria. Moni-
toring or sensing EV production would magnify our understanding of AMR gene transfer
and host toxicity issues stemming from free-form antibiotics. In this regard, nanomaterials
may play a pivotal role in MRSA EV diagnostics and infection control [219].

Nanomaterials (metallic, polymer, and liposomal) have proven to increase the sensitiv-
ity of a wide variety of optical and electrochemical MRSA bacterial diagnostic assays and
sensors. The application of these materials is so prevalent that NP-based colorimetric lateral
flow assays can now be conducted in remote, low-resource settings, with results relayed
instantaneously via mobile applications to city medical centres. In addition, further studies
utilizing these materials may allow for the effective monitoring of potential surges in MRSA
and VRSA infections in isolated regions where the risk of an outbreak is the strongest. Yet
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however simple a POC device is, training in the field or a doctor’s surgery is required,
which in its absence may hinder compliance. In addition, a field device might need to
be more robust and resistant to contaminants and interferents (increase costs) than those
employed in the clinic. Finally, the question of extra information provided by enhanced
sensitivity imparted by nanomaterials and clinical relevance. Extra information is required
in recurrent/sepsis (MRSA) infections and pandemics in which the patient’s condition can
rapidly change. For those readers interested in the translation of POC devices into health
care, the review by Dhawan et al. is recommended [220]

Given eukaryotic toxicity issues surrounding the administration of free-form Van,
multiple attempts to improve its efficacy via encapsulation (EE > 50%) using a variety of
nanomaterials, including pH-responsive fusogenic liposomes and SLNPs, have resulted
in improvements in efficacies by more than an order magnitude. Moreover, these carriers
would be ideally suited for the delivery of Van adjuvants(b-lactams) as well. However,
the usage of antibacterial nanoparticles such as silver and gold often fails to meet clinical
requirements, leading to agglomerates in peripheral tissues, limiting their application to
antibacterial coatings and topical applications.

In addition to pH targeting and adjuvants, a carrier that delivers a toxin modula-
tor could limit infection severity. To this end, researchers encapsulated Van and 18β-
Glycyrrhetinic acid (GA) (a known toxic regulator) using a pH-responsive carrier, resulting
in more than a magnitude increase in Van efficacy and a significant reduction in hemolysin
production, representing a non-toxic, cost-effective treatment option for MRSA in low-
resource settings.
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MRSA methicillin-resistant Staphylococcus aureus
AS antibiotic stewardship
AMR antimicrobial resistance
NDM Delhi Metallo
SA S. aureus
VISA vancomycin-intermediate S. aureus
h-VISA heterogeneous VISA
VRSA vancomycin-resistant S. aureus
NSA narrow-spectrum antibiotics
MAD NAAT multiplexable autonomous disposable nucleic acid amplification tests
Hla a-hemolysin
PVL Panton-Valentine leukocidin
PSM phenol-soluble modulin
EV extracellular vesicles
OMVs outer membrane vesicles
PAMPs pathogen-associated molecular patterns
LPS lipopolysaccharide
LukED leukotoxin ED
SelX staphylococcal enterotoxin-like toxin X
PTT photodynamic therapies
HA-MRSA hospital-acquired MRSA
CA-MRSA community-acquired MRSA
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