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Ribosomal RNA genes shape chromatin domains associating with the nucleolus
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ABSTRACT
Genomic interactions can occur in addition to those within chromosome territories and can be
organized around nuclear bodies. Several studies revealed how the nucleolus anchors higher
order chromatin structures of specific chromosome regions displaying heterochromatic features.
In this review, we comment on advances in this emerging field, with a particular focus on a recent
study published by Quinodoz et al., that developed a new method to characterize simultaneous
genomic interactions in the same cell. Highlighting studies conducted in animal and plant cells,
we then discuss the establishment of inactive chromatin at nucleolus organizer region (NOR)-
bearing chromosomes.

ARTICLE HISTORY
Received 15 November 2018
Revised 23 January 2019
Accepted 31 January 2019

KEYWORDS
Chromatin; genome
organization; nucleolus;
rRNA genes

Introduction

In 1928, the cytogeneticist Heitz described twomajor
chromatin states that differ according to their con-
densation level in the nucleus [1,2]. He named the
condensed chromatin regions heterochromatin,
while more loosely packed chromatin regions were
named euchromatin. The identification of genome-
wide chromatin–chromatin interactions maps con-
firmed this bipartite organization. Today, euchroma-
tin and heterochromatin are generally referred to as
A/B compartments [3]. This type of organization is
relevant to both plant and animal cells [4]. However,
this bipartite organization can be subdivided into
several states according to their epigenetic signatures
such as, but is not restrictive to, DNA methylation,
histonemodifications, histone variant distribution or
nucleosome positioning [5–7]. Notably, these differ-
ent states strongly participate in gene transcriptional
regulation by modifying the access, or the attractive-
ness, of any loci to the transcriptional machineries.

At the nucleus scale, cytological analyses already
revealed the existence of chromosome territories that
can be distributed randomly, as in Arabidopsis thali-
ana or non-randomly, as in human cells, within
interphase nuclei [8–11]. In addition, recent techni-
cal advances deeply increased our knowledge of how
the genome is organized within the nucleus. For

example, the development of the chromosome con-
formation capture (3C) approach to a genome-wide
scale revealed in various organisms and cell-types
how inter and intra-chromosomal DNA contacts
shape this 3D organization [12]. These studies
revealed the existence of topologically associating
domains or (TADs) that are self-interacting genomic
regions, separated by boundaries, and confined
either in A or B compartments, depending on their
chromatin signatures. In plants, although the pre-
sence of TADs is not obvious in Arabidopsis thali-
ana, they were described in other plant species with
larger genomes [4,13].

Recent studies pushed forward our understand-
ing of the 3D genome organization, by taking into
consideration the subnuclear compartments such
as the nucleolus and the nuclear speckles. In this
review, we aim to combine data of recent studies
that demonstrate an important role of ribosomal
RNA genes distribution and expression in global
genome organization.

The nucleolus, a platform for genome
organization

Ribosomal RNA (rRNA) genes are organized as
tandem repeats in specific genomic regions
named nucleolus organizer regions (NORs) by
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Barbara McClintock [14]. The nucleolus is the site
of ribosome biogenesis, starting with rRNA tran-
scription, and is present in most eukaryote cells.
Its size is dependent on the ribosome biogenesis
activity, but can represent a large volume of the
cell, especially in actively dividing cells [15]. In
human cells, several nucleoli are usually present,
while in A. thaliana, usually one round nucleolus
is present. The nucleolus is a direct consequence of
ribosome biogenesis. However, this large subnuc-
lear compartment is also implicated in other cel-
lular processes, especially in the maturation or
sequestration of several ribonucleoproteins com-
plexes such as the spliceosome, the proteasome,
the RNA telomerase and others implicated in
RNA degradation [15–20].

In 2010, two studies conducted in human cells
demonstrated the direct role of the nucleolus in
genome organization [21,22]. DNA co-purified
with nucleoli from two types of human cells were
analyzed, demonstrating that all chromosomes con-
tain, at least, one region associating with the nucleo-
lus. These genomic regions were named NADs for
nucleolus-associated chromatin domains. In parallel,
a network composed by nuclear lamina also anchors
genomic regions with repressive epigenetic features
at the nuclear periphery [23]. These regions are
named LADs for lamina-associated domains.
NADs were subsequently identified in A. thaliana
cells [24]. In both plant and animal cells, excluding
rRNA genes, NADs are composed of around 4% of
the genome and display repressive chromatin fea-
tures [24]. Interestingly, genes are also present in
NADs and tend to be lowly expressed. Majority of
NADs are presumed to be located at the nucleolus
periphery, but cytological analyses demonstrated
that the DNA inside the nucleolus is not only com-
posed of rRNA genes [24]. Since RNA polymerase II
is absent from inside the nucleolus, it has been pro-
posed that the nucleolus would have a negative
impact on gene expression [25,26].

Among the important aspects pointed out by
Nemeth et al. [22], is the potential redundancy
between NADs and LADs. Additional studies con-
firmed this observation and demonstrated that
a portion of LADs, identified as facultative LADs,
can reshuffle stochastically either at the nuclear or
the nucleolar periphery after mitosis [27,28].
Conversely, LADs remaining at the nuclear

periphery in the daughter cells are now identified
as constitutive LADs [29]. In plant cells, no homo-
log of nuclear lamina proteins have been identified
so far, but putative homologs like nuclear matrix
constituent protein (NMCP), nuclear envelope-
associated proteins (NEAPs) or CROWDED
NUCLEI (CRWN) proteins, all localized at the
nuclear periphery, are suspected to play a similar
role [30–33]. Chromatin domains associating with
proteins located at the nuclear periphery have not
been identified so far, but Chang Liu’s laboratory
was able to identify the genomic regions associated
with the nuclear periphery using a derived chroma-
tin immunoprecipitation (ChIP) protocol. The
nucleoporin NUP1, which is one of the subunits
of the nuclear pore complex, was used as a bait [34].
As for NADs, chromosome regions identified in
this study (hereafter referred to as NUP1-enriched
domains) are enriched in repressive chromatin sig-
natures, transposable elements and contain genes
that tend to be lowly expressed [34]. Since at least
a portion of NADs overlap with LADs in human
cells, we analyzed the potential connection between
NADs and NUP1-enriched domains in A. thaliana
(Figure 1). At the chromosome scale, NADs corre-
spond to genomic regions flanking telomeres, as
well as the short arm of chromosome 4, where
active rRNA genes are located [35,36]. In contrast,
NUP1-enriched domains mainly correspond to
peri-centromeric regions, and large portions of
chromosome arms (Figure 1(a)) [24,34]. The partial
overlap observed on the short arm of chromosome
4 could potentially link the nucleolus and the
nuclear periphery. Interestingly, the heterochro-
matic knob, corresponding to the conspicuous gap
located between the 3,5 and 4,5 MB region, only
associate with the nucleolus.

Therefore, the overlap between NADs andNUP1-
enriched domains appears minor, and genes usually
either associate with the nuclear periphery or with
the nucleolar periphery (Figure 1(b)).

Influence of RNA genes in
nucleolus-associated chromatin domains and
inactive hubs

The Hi-C approach allows the detection of direct or
indirect chromatin interactions in a cell population
[12]. However, Hi-C is not compatible to detect
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simultaneous chromatin interactions and cell-to-cell
variability. Single-cell Hi-C has recently been devel-
oped to counteract this problem, but sequencing
depth remains an issue, leading to very low genome
coverage [37]. In a recent study, Quinodoz and col-
leagues enable the detection of simultaneous interac-
tions via the development of a new technique named
SPRITE for split-pool recognition of interactions by
tag extension [1]. SPRITE allows the detection of
multiple chromatin interactions mediated by an indi-
vidual complex within a nucleus, revealing the context
of the interactions. Briefly, unique complex, from
which all RNA, DNA and protein components are
covalently crosslinked, are sorted in individual wells.
Therefore, all DNA reads from one individual com-
plex are identified as a SPRITE cluster [1]. In other
words, a chromatin loop can be associated with its
TAD and its compartment. Using the SPRITE techni-
que, Quinodoz et al., linked some A/B compartments
with nuclear bodies. They identified active hubs, cor-
responding to A compartments, in association with
nuclear speckles. In parallel, inactive hubs, corre-
sponding to B compartments, were shown to associate
with the nucleolus [1]. This corroborates previous

observations made in both animal and plant cells
[25,38], regarding the important role of the nucleolus
in organizing inactive chromatin regions at the
nucleolar periphery.

Importantly, inactive hubs are present on rRNA-
genes bearing chromosomes [1]. In other words,
inactive hubs correspond to genomic regions flank-
ing rRNA genes. This raises the question of the role
of rRNA gene expression and location on chromo-
somes in defining the identity of inactive hubs at the
nucleolar periphery. In A. thaliana, NADs are
mainly composed of genomic regions corresponding
to the NOR-bearing chromosomes 2 and 4, as well as
genomic regions from the subtelomeric regions [24].
In wild-type leaves, only NOR4-derived rRNA genes
associate with the nucleolus and are actively tran-
scribed, while NOR2-derived rRNA genes are silent
and excluded from the nucleolus [35,36,39–42].
Interestingly, NOR2-derived rRNA genes expression
provokes a complete reorganization of the short arm
of chromosome 2 that associates with the nucleolus
[24]. Collectively, these data suggest that rRNA
genes expression or silencing impact the global het-
erochromatin nuclear distribution. To test the

a b

Figure 1. Overlap between NADs and NUP1-regions in Arabidopsis thaliana. (a) Genome-wide view of NAD-genes and the regions
enriched at the nuclear periphery (NUP1-enriched regions) in the A. thaliana genome produced by Circos [49]. Considering the
concentric circles from the outside inward, the outermost (and first) circle indicates the five chromosomes of A. thaliana. The next
two circles are showing the location of NADs-genes (blue) and NUP-enriched regions (green) throughout the genome. (b) Venn
diagram of NAD-genes and NUP1-enriched regions corresponding to protein-coding genes in TAIR10. Data from [24,34] were used to
generate this figure.
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potential presence of inactive hubs inA. thaliana, we
analyzed the global gene expression of nucleolus-
associated genomic regions. As in mammalian cells,
the short arms of NOR-bearing chromosomes tend
to contain low-expressed genes compared to the
entire genome (Figure 2). However, we do not see
such correlation for genes of the subtelomeric
regions that also associate with the nucleolus in
a wild-type (Col-0) A. thaliana line [43].

Conclusions and perspectives

Overall, recent studies revealed the importance of
nuclear bodies in the distribution of the epigenome.
In these cases, nuclear body specific proteins play
crucial roles in these regulations. For example, the
nucleolar protein Nucleolin was demonstrated to reg-
ulate (i) telomere nucleolar clustering in A. thaliana
[24], (ii) the two-cell embryo master regulator gene
DUX in human embryonic stem cells [44] or (iii)
centromere nucleolar clustering in drosophila [45].
A missing aspect is an overlap between inactive hubs
identified using the SPRITE method and NADs iden-
tified in human cells [1,19,20]. We indeed expect
NADs and inactive hubs to overlap. To further
demonstrate how rRNA genes distribution in the
genome defines NADs or inactive hubs, it will be
important to identify these regions in cells with the
variable NOR chromosomal location, or in mutant
showing reduction or increase numbers of rRNA
genes. Previous observations in yeast and in droso-
phila demonstrated that reducing the number of
rRNA genes alter heterochromatin organization and
genome stability [46–48]. In the light of these new

data, we expect to observe changes in global genome
organization in cells with a reduced number of rRNA
genes.
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