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Suppressing epileptic activity 
in a neural mass model using a 
closed-loop proportional-integral 
controller
Junsong Wang1, Ernst Niebur2, Jinyu Hu3 & Xiaoli Li4

Closed-loop control is a promising deep brain stimulation (DBS) strategy that could be used to suppress 
high-amplitude epileptic activity. However, there are currently no analytical approaches to determine 
the stimulation parameters for effective and safe treatment protocols. Proportional-integral (PI) 
control is the most extensively used closed-loop control scheme in the field of control engineering 
because of its simple implementation and perfect performance. In this study, we took Jansen’s neural 
mass model (NMM) as a test bed to develop a PI-type closed-loop controller for suppressing epileptic 
activity. A graphical stability analysis method was employed to determine the stabilizing region of the 
PI controller in the control parameter space, which provided a theoretical guideline for the choice of 
the PI control parameters. Furthermore, we established the relationship between the parameters of 
the PI controller and the parameters of the NMM in the form of a stabilizing region, which provided 
insights into the mechanisms that may suppress epileptic activity in the NMM. The simulation results 
demonstrated the validity and effectiveness of the proposed closed-loop PI control scheme.

Epilepsy is thought to be a dynamical disorder of the brain at the systems level1–3, which makes it particularly suit-
able to be studied from the perspectives of computational modelling and system theory1,4,5. Closed-loop control 
is a promising deep brain stimulation (DBS) strategy for suppressing abnormal neural activities, such as epilepsy 
and Parkinson’s disease, and it has thus become the focus of current experimental and theoretical studies6–18.

Control theory is an emerging method that is used to develop closed-loop controllers for suppressing epileptic 
seizures11, and some advanced control strategies are involved in the design of closed-loop DBS control10,13,14. A 
closed-loop controller was developed based on a recursively identified autoregressive model that described the 
relationship between stimulation input and local field potential output10. A responsive neuron modulator, based 
on a radial basis function neural network, was employed to control seizure-like events in a computational model 
of epilepsy13. In addition, optimal control theory was used to design a desynchronizing control stimulus for a 
network of pathologically synchronized neurons14. Although these control schemes performed excellently, the 
control algorithms were somewhat complex. These results suggest that a simple control algorithm may be pre-
ferred in closed-loop control of epileptic activity.

A proportional-integral-derivative (PID) controller is the most extensively used closed-loop controller in 
the field of control engineering because of its simple implementation and robust performance19. In this context, 
the PID-type controller was introduced to control various pathological neural activities12,20–23. Proportional and 
proportional-derivative amplitude control were proposed for the closed-loop DBS of patients with Parkinson’s 
disease24. Proportional feedback stimulation was employed to control seizures in rats25. Integral feedback control 
was developed for the charge-balanced suppression of epileptic seizures26 and the modulation of brain rhythms in 
Parkinson’s disease27. Proportional controllers, differential controllers and filter controllers were used to eliminate 
seizing activity in a mathematical model of human cortical, electrical activity28. A reactive and adaptive control 
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scheme was proposed to suppress epileptiform discharges in realistic, computational, neuronal models with bista-
bility29. In this model, the cumulative sum of the difference between the measured ictality and the pre-defined 
acceptable limit over all previous epochs was used to determine the modulating factor for the instantaneous 
stimulation strength during the current epoch. Therefore, the control scheme was, in essence, integral feedback 
control in a discrete form. Furthermore, delayed feedback control is another representative control scheme that 
has been used to suppress pathological brain rhythms by desynchronizing the neural activities30,31.

PID-type controllers have achieved great success in controlling various pathological neural activities. 
However, the control parameters are currently chosen empirically by using a “trial and error” approach. This 
makes the outcome strongly dependent on the designer’s experience. Additionally, the work is time-consuming 
and its efficiency is not guaranteed, which makes the choice of control parameters quite challenging. Thus, an 
analytical design method of the PID-type controller is urgently needed. Furthermore, because epilepsy is caused 
by an unbalance between excitation and inhibition32, the control parameters should be related to the excitatory 
and inhibitory parameters. However, it still remains unclear how to build a quantitative relationship between the 
two sides.

Computational models have become attractive due to their ability to model complex neurological phenom-
ena with relative ease1,33–35. A neural mass model is based on a biologically plausible parameterization of the 
layered neocortex dynamic behaviour. Neural mass model was initially proposed to study the origin of the alpha 
rhythm, and subsequently improved and extended to describe more general cortical, electrical activities34, such 
as electroencephalogram (EEG)36,37, functional magnetic resonance imaging (FMRI) signals38 and event-related 
potentials39. Specifically, the NMM was successfully used to generate epileptic activity similar to that experi-
mentally observed40–43. Jansen’s neural mass model (NMM) is characterized by the interaction of the interlinked 
excitatory and inhibitory feedback loops44. Previous studies have demonstrated that Jansen’s NMM can generate 
high-amplitude epileptic activity caused by the abnormal values of the external input43,45 and the connection 
strength of the model41. Our recent bifurcation study found that the imbalance of the excitatory and inhibitory 
feedback loops in Jansen’s NMM resulted in the generation of high-amplitude epileptic activity42. Therefore, we 
used Jansen’s NMM as a test bed to develop the closed-loop PI controller for suppressing epileptic activity in the 
model (for simplicity, we use NMM to represent Jansen’s NMM in the remainder of this article).

Here, we used feedback control theory to develop a proportional-integral (PI) controller to suppress the 
high-amplitude epileptic activity in the NMM. A graphical stability analysis method was employed to determine 
the stabilizing region of the PI controller in the control parameter space. Our main goal was to develop an analyt-
ical design method for a PI controller that suppresses epileptic activity and to provide theoretical guidelines for 
choosing PI control parameters. If the PI controller stabilizing region was known for a given set of excitatory and 
inhibitory parameters of the NMM, then the time-consuming stability check for each set of control parameters 
could be avoided and the PI controller tuning time could be reduced. Furthermore, we determined the relation-
ship between the parameters of the PI controller and the excitatory and inhibitory parameters of the NMM in the 
form of a stabilizing region, which was helpful for understanding the mechanism of suppressing epileptic activity.

Methods
Model.  The schematic and block diagram of the NMM is shown in Fig. 1A,B44, respectively. The NMM was 
composed of the following three interacting subpopulations: the main subpopulation (middle part), the excitatory 
(top part) and inhibitory (bottom part) feedback subpopulations. C1, C2, C3 and C4 are connectivity constants that 
represent interactions between the subpopulations and characterize the average numbers of synaptic contacts; 
p(t) is the input of the NMM and modelled by Gaussian noise; and y(t) is the output of the NMM, corresponding 
to the average synaptic activity of the pyramidal cells, that is interpreted as an EEG signal.

Each subpopulation of the NMM was composed of an excitatory, he(t), or inhibitory synaptic dynamic func-
tion, hi(t), and a sigmoid static function, S(v). The synaptic functions, he(t) and hi(t), transform the average 
pre-synaptic firing rates into average post-synaptic membrane potentials and are defined as τ= τ−h t H te( ) /e e

t
e

/ e  

Figure 1.  Structure of the neural mass model. (A) The schematic diagram of the NMM. “E” and “I” represent 
excitatory and inhibitory subpopulations, respectively, that are defined as groups of statistically similar 
excitatory or inhibitory neurons that share the same inputs and connectivity. (B) Block diagram of the NMM. 
The red and blue blocks correspond to excitatory and inhibitory subpopulations, respectively.
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and τ= τ−h t H te( ) /i i
t

i
/ i 44, where He and Hi represent the excitatory and inhibitory synaptic strengths and τe and 

τi are the membrane time constants. The sigmoid function, S(v), transforms the average membrane potential into 
the average firing rate and is defined as = + −S v e e( ) 2 /[1 ]r v v

0
( )0 46, where 2e0 is the maximum firing rate, v0 is the 

post-synaptic potential corresponding to a firing rate of e0, and r describes the steepness of the sigmoid function. 
The parameter values of the NMM are listed in Table 144.

Graphical stability analysis method.  A graphical stability analysis method was employed to determine 
the stabilizing region of PI controller for suppressing epileptic activity in the NMM. The key point of designing 
the PI controller was to choose the control parameter values such that homeostasis of the NMM was maintained. 
To achieve this objective, we wanted to determine the stabilizing region of the PI controller.

If it is assumed that the characteristic polynomial of one control system is denoted as Δ​(s), then all of the 
coefficients of Δ​(s) are real; therefore, the characteristic roots of Δ​(s) must be complex conjugates. According 
to linear stability theory47, the stability boundary of the control system is defined by Δ​(jω) =​ 0. Hence, it is suffi-
cient to consider the following two cases: ω =​ 0 and ω ∈ (0, ∞​). The stability boundary of the control system was 
defined as follows48:

=H H HU , (1)1 2

where

ω ω
ω ω

= Ω ∆ Ω = =
= Ω ∆ Ω = ∀ ∈ ∞ .

H j
H j

{( ) ( ; ) 0, 0},
{( ) ( ; ) 0, (0, )}

1 1 1

2 2 2

where Ω1 and Ω2 represent the control parameter sets of the employed controller to be determined for the two 
cases ω =​ 0 and ω ∈ (0, ∞​), respectively. In this study, Equation (1) was utilized to determine the stabilizing region 
of the PI controller in the control parameters space.

Results and Discussion
Control Scheme.  The control scheme was developed based on the fact that epileptic activity can be charac-
terized as high-amplitude limit cycle oscillation born in Hopf bifurcation4,28,31,33,36,41,42,49–53, which indicates that 
the fixed point of the NMM lost its stability. Thus, we aimed to design a PI controller to stabilize the unstable, 
fixed point to prevent the generation of the Hopf bifurcation and to further suppress high-amplitude epileptic 
activity.

Epilepsy is thought to be caused by an imbalance between excitation and inhibition resulted from 
hyper-excitation or low inhibition32. Thus, the design objective was to determine the PI controller parameter 
values that stabilized the unstable NMM caused by abnormally large excitatory or small inhibitory parameter 
values32,42 such that homeostasis of the NMM was maintained and the high-amplitude epileptic activity was sup-
pressed. To do that, we employed a graphical stability analysis method that determined the stabilizing region of 
the PI controller in the parameter space.

The proposed PI control scheme for suppressing epileptic activity is shown in Fig. 2A, where u(t) is the output 
of PI controller, corresponding to the electrical stimulation signals, and y(t) represents the local field potential 
of a neural mass. The local electrical field in the neural mass was measured by the recording electrode and feeds 
back to the PI controller via the stimulating electrode. By using the NMM to model activity of the neural mass in 
Fig. 2A, we derived the block diagram of the proposed control scheme, shown in Fig. 2B, where y(t) is the output 
of the NMM and u(t) is the output of the PI controller.

To take advantage of the graphical stability analysis method used to design the PI controller, we replaced the 
nonlinear sigmoid function, S(v), with its linear approximation around the equilibrium point, v =​ v0, as follows: 

= ′ = =
= +

=

−

−
K S v( )s v v

e re

e v v

e r2

[1 ] 2

r v v

r v v0

0
( 0 )

( 0 ) 2

0

0 , where S′​(v) represents the derivative of S(v).

According to Fig. 2B, we derived the transfer function of the NMM as follows:

Parameter Description Standard value

He average excitatory synaptic gain 3.25 mV

Hi average inhibitory synaptic gain 22 mV

τe
average synaptic time constant for 
excitatory subpopulation 0.0108 s

τi
average synaptic time constant for 
inhibitory subpopulation 0.02 s

C1, C2
average number of synaptic contacts 
in the excitatory feedback loop C1 =​ 135; C2 =​ 0.8 ×​ 135

C3, C4
average number of synaptic contacts 
in the inhibitory feedback loop

C3 =​ 0.25 ×​ 135; 
C4 =​ 0.25 ×​ 135

v0, e0, r parameters of nonlinear S function v0 =​ 6 mV; e0  =​ 2.5 s −1; 
r =​ 0.56 mV −1

Table 1.   Physiological interpretation and standard values of the parameters in the NMM.
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where Y(s) and U(s) are the Laplace transform of y(t) and u(t), respectively. = τ

τ +
G s( )e

H

s( 1)
e e

e
2
 and = τ

τ +
G s( )i

H

s( 1)
i i

i
2
 

are the Laplace transform of he(t) and hi(t) in the NMM, respectively.
Figure 2B can be simplified as a standard form of typical control systems, shown in Fig. 2C, where r(t) is the 

desired output of the NMM, e(t) is the error signal of the closed-loop control system and the system is defined as 
e(t) =​ r(t) − y(t). For simplicity, in the remainder of the article, we will use PI-NMM to represent the closed-loop 
control system composed of the PI controller and the NMM.

In addition to epileptic activity, the NMM may feature multiple parallel states, such as low-amplitude oscil-
lation and fluctuation output at a fixed point33,50,51,54,55. Thus, as shown in Fig. 2C, the feedback loop was closed 

Figure 2.  The proposed PI control scheme for suppressing epileptic activity in the NMM. (A) Schematic 
diagram of the PI-based control scheme. (B) Block diagram of the PI-based control scheme that modelled the 
activities of the neural mass using the NMM. The purple dashed block represents the NMM. (C) The simplified 
equivalent form of the proposed PI control scheme that replaced the purple dashed block in Fig. 2B with the 
transfer function GNMM(s) of the NMM.
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only when the amplitude of the output of the NMM exceeded a predetermined threshold. Correspondingly, the 
control signal u(t) is defined as

∫=







+ >u t K e t K e t dt amplitude A

otherwise
( ) ( ) ( ) ,

0, (3)

p i 0

where Kp and Ki are the proportional and integral coefficients of the PI controller, respectively. A0 is the predeter-
mined amplitude threshold beyond which stimulation is applied.

By conducting a Laplace transform of Equation (3), we can obtain the transfer function of the PI controller 
as follows:

= = +G s U s
E s

K K
s

( ) ( )
( )

,
(4)pi p

i

where E(s) is the Laplace transform of the error signal, e(t).
According to feedback control principles47, the control objective of a feedback control system is to make the 

error signal e(t) →​ 0. This indicates that the output of the PI-NMM control system will approach the desired out-
put under the control of the PI controller, i.e., y(t) →​ r(t). In this study, our goal in implementing the PI controller 
was to suppress the high-amplitude epileptic activity in the NMM; thus, the desired output of the PI-NMM con-
trol system was set to zero, i.e., r(t) =​ 0.

Theoretical results of the stability analysis.  To determine the stabilizing region of the PI controller 
in the (Kp, Ki) parameter space in which the PI-NMM control system was stable, we used the graphical stability 
analysis method to determine the stability boundary of the PI controller in the Kp, Ki plane.

According to Fig. 2C, we can derive the characteristic equation of the PI-NMM control system as

∆ = + =s G s G s( ) 1 ( ) ( ) 0, (5)pi NMM

where Δ​(s) is the characteristic polynomial of the PI-NMM control system.
Defining s =​ jω and substituting it into Equation (5), one can obtain

ω ω ω∆ = + =j G j G j( ) 1 ( ) ( ) 0, (6)pi NMM

Equation (6) defines the stability boundary of the PI-NMM control system.
According to the graphical stability analysis method shown in Equation (1), we can discuss the two cases ω =​ 0 

and ω >​ 0.
Case 1: ω =​ 0. Substituting Equations (2) and (4) into Equation (5), we can derive the characteristic equation 

of the PI-NMM control system as follows
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Let s =​ jω. Thus, Equation (7) can be rewritten as
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For ω =​ 0, Equation (8) can be simplified as

ω
τ

τ τ τ
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We can derive
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Thus, we can obtain the stability boundary for the case ω =​ 0, i.e., H1, as follows:

=K 0 (9)i

This equation is a line in the (Kp, Ki) plane that is shown in Fig. 3 (the purple line).
Next, according to Equation (7), we can further derive the characteristic equation of the PI-NMM control 

system as follows:
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Note that the coefficient of s7 in the characteristic polynomial, i.e., τ τe i
4 2, is positive. According to the Routh 

stability criterion47, if the system is stable, then all of the coefficients of the characteristic equation should have the 
same sign. The constant term should also be positive, i.e., KiHeτe >​ 0. Thus, it follows that

>K 0, (10)i

Therefore, we can obtain the following lemma 1.
Lemma 1 For the case ω =​ 0, the region above the Ki axis in the (Kp, Ki) plane is the stabilizing region of the 

PI controller.
Case 2: ω =​ 0. Supposing that δR_NMM(ω) and δI_NMM(ω) are the real and the imaginary components of 

GNMM(jω), respectively, then Equation (6) can be rewritten as

ω
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Equation (11) can be split into the following two parts
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where δR(ω) and δI(ω) are the real and imaginary components of Δ​(jω), respectively.
Note that both δR(ω) and δI(ω) are dependent on Kp and Ki. Thus, the stability of the characteristic 

Equation (12) can be investigated in the parameter space (Kp, Ki).
According to Equation (12), we can further derive
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where ω δ ω δ ω= +_ _G j( ) ( ) ( )NMM I NMM R NMM
2 2  is the complex modulus of GNMM(jω).

Figure 3.  The stabilizing region of the PI controller to suppress epileptic activity in the NMM 
(He = 4.5 mV). The arrows represent the direction of the curve (Kp(ω), Ki(ω)) in which ω increases. The light 
blue curve is defined by Equation (13), and the purple line is defined by Equation (9). The parameter space to 
the right of the curve and above the line is the stabilizing region of the PI controller.
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Equation (13) defines the stabilizing region H2 of the PI controller in the (Kp, Ki) plane for the case ω >​ 0. 
According to Equation (13), we can draw the stability boundary curve (Kp(ω), Ki(ω)) for ω >​ 0, as shown in Fig. 3 
(the light blue curve).

According to Equation (1), the stability boundary is composed of the stability boundary line defined by 
Equation (9) and the stability boundary curve defined by Equation (13). As illustrated in Fig. 3, the stability line 
and the stability boundary curve divide the (Kp, Ki) plane into two regions, which are denoted R1 and R2, respec-
tively. In the following section, we investigate which is the stabilizing region of the PI controller.

Next, we introduce the following proposition56. If one travelled along the curve defined by H2 in the direction 
of increasing ω, then the right side is the stabilizing parameter region where det J <​ 0 and the left is where det 
J >​ 0. Here, J is the Jacobian matrix defined as
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Substituting the above four equations into Equation (14), we can obtain = −
ω

ω
Jdet G j( )NMM

2
. Because ω >​ 0 

and ω >G j( ) 0NMM
2 , it follows that

<Jdet 0, (15)

Therefore, we derive the following lemma 2.
Lemma 2 For the case ω >​ 0, following the curve (Kp(ω), K(ω)) in the direction of increasing ω, the parameter 

space to the right of the curve defined by Equation (13) is the stabilizing region of the PI controller.

Main theoretical results.  Combining Lemma 1 with Lemma 2 yields the following theorem.
Theorem 1 For the PI-NMM control system depicted in Fig. 2, the exact stabilizing parameter region of the PI 

controller is the parameter space above the line defined by Equation (9) and to the right of the curve defined by 
Equation (13) if it is followed in the direction of increasing ω.

Thus, according to Theorem 1, the region denoted by R1 in Fig. 3 was identified as the stabilizing region of 
parameters (Kp, Ki), and R2 was the destabilizing parameter region.

Effect of excitatory and inhibitory NMM parameters on the stabilizing region of the PI controller.  
Epileptic activity is caused by the imbalance of excitation and inhibition in the NMM, which is caused by 
extremely large excitatory, He, or small inhibitory parameters, Hi, respectively. Therefore, we discussed the effect 
of the two parameters on the stabilizing region of the PI controller.

Figures 4 and 5 illustrate the stabilizing regions of the NMM PI controller for different abnormal values of 
He and Hi, respectively. Figures 4B and 5B show the stabilizing region of the PI controller for small values of the 
integral coefficient, Ki. The results demonstrate that the stabilizing region of the PI controller becomes smaller 
with increasing He (hyper-excitation) and decreasing Hi (low inhibition).

Theoretical results of the steady-state performance analysis.  According to Fig. 2C, we can derive 
the closed-loop transfer function of the PI-NMM from the input, r(t), to the error signal, e(t), as

φ = =
+

s E s
R s G s G s

( ) ( )
( )

1
1 ( ) ( )

,
(16)

e
pi NMM

where E(s) and R(s) are the Laplace transforms of e(t) and r(t), respectively. According to Equation (16), one can 
obtain

φ=E s R s s( ) ( ) ( ) (17)e

In this study, the desired output of the PI-NMM was set to a constant value, r(t) =​ a, and its Laplace transform 
is derived as follows:

=R s a s( ) / , (18)

Substituting Equations (16) and (18) into Equation (17), we further obtain

=
+

E s a
s G s G s

( ) 1
1 ( ) ( )

,
(19)pi NMM

According to feedback control principles47, the control error at steady state, ess, is as follows:

= =
→∞ →

e e t sE slim ( ) lim ( ) (20)ss
t s 0
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Substituting Equations (2), (4) and (19) into Equation (20), we derive

= ⋅ ⋅

+ 

+ 

















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=
→

+






−






τ

τ

τ

τ

τ

τ

τ

τ

+

+ + +

e s a
s

K

lim 1

1

0,

(21)

ss
s

p
K
s K C C C C

0

1

i

He e

es

s
He e

es

Hi i

is

He e

es

( 1)2

2
( 1)2 3 4( 1)2 1 2( 1)2

which shows that the output, y(t), of the NMM is equal to the desired output, r(t), at steady state.
In this study, we set r(t) =​ a =​ 0; in this case, Equation (21) still holds. This result indicates that the PI con-

troller can achieve an error-free control performance at steady-state and, thus, successfully suppresses epileptic 
activity in the NMM. It should be noted that the input of the NMM was noise signal; therefore, the PI-NMM 
control system could not be operated at steady-state57 and a small control error existed, as shown in Figs. 6 and 7.

Simulation results.  Simulations were conducted to illustrate the efficiency of the proposed PI control 
scheme to suppress epileptic activity in the NMM. We simulated the following two cases: hyper-excitation 
(He =​ 7.0 mV) and low inhibition (Hi =​ 17.0). According to Figs. 4 and 5, we determined the parameter val-
ues of the PI controller to be Kp =​ 310 and Ki =​ 2 for the hyper-excitation case and Kp =​ 90 and Ki =​ 2 for the 
low-inhibition case, respectively. The simulation results are illustrated in Figs. 6 and 7. The results showed that the 
output of the NMM without the PI controller was high-amplitude epileptic activity, which became low-amplitude 
activity under the control of the PI controller. Thus, the high-amplitude epileptic activities were successfully sup-
pressed by the designed PI controller.

Limitations.  To determine the stabilizing region of the PI controller, we used the graphical stability analysis 
method and conducted a linearized approximation of the NMM sigmoid function, which is extensively used in 
previous NMM studies27,46,58–60. It should be noted that the linearized approximation may provide a conservative 
estimate of the PI controller stabilizing region. In the future, a non-linear method, such as the bifurcation analysis 
method28,42,43,45, should be employed to determine a more specific stabilizing region for the proposed PI-based 
control scheme.

Conclusions
In the present study, we used Jansen’s neural mass model as a test bed to develop a systematic design approach to 
determine the control parameters of a PI controller. It should be noted that the proposed design method of the 

Figure 4.  The effect of excitatory parameter, He, on the stabilizing region of the PI controller, (B) is an enlarged 
version of (A). The parameter space to the right of the red, green and blue curves are the stabilizing region of the 
PI controller for suppressing epileptic activity in the NMM with He =​ 5, 7 and 9, respectively.
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PI controller was independent of a specific model. Thus, it can be extended to other neural models37,40,45,46,50–55, 
such as the epileptic activity model developed by Wendling et al.40, and other low-order closed-loop control-
lers24–31, such as the proportional controller and the proportional-derivative controller. Here, we took a para-
metric approach to seizure behaviour to demonstrate how to use the PI controller to suppress epileptic activity. 
However, there are other factors that cause epilepsy1 in addition to the excitatory and inhibitory parameters, such 
as the stimulus43,45. The design method and process were not dependent on the factors that cause epilepsy; thus, 
the proposed design method can be extended to other cases involving epileptic activity that is characterized as 
high-amplitude oscillations1,4,28,40,41,45,49,52.

A graphical stability analysis method was utilized to determine the stability region of the PI controller in the 
parameter space. This provided a region of the PI control parameters that would suppress epileptic activity in the 
NMM. The proposed method ensured that the design of the controller was analytical, enabled theoretical analysis 
and revealed cause and effect relationships in a theoretical manner. This allowed us to explore the relationship 

Figure 5.  The effect of inhibitory parameter, Hi, on the stabilizing region of the PI controller, (B) is an enlarged 
version of (A). The parameter space to the right of the red, green and blue curves are the stabilizing region of the 
PI controller for suppressing epileptic activity in the NMM with Hi =​ 15, 17 and 19, respectively.

Figure 6.  The output of the NMM without (before the eighth second) and with (after the eighth second) the 
PI controller during hyper-excitation (He = 7.0). 
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between control parameters and model parameters that induced epileptic activity, which helped us understand 
the mechanism that suppresses neural diseases through closed-loop neurological electrical stimulation. In future 
work, we should attempt on-line seizure suppression by applying the proposed control scheme to standard animal 
models of epilepsy, with the long-term goal of applying it to human patients.
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