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Despite its crucial importance in numerous physiological processes, iron also causes

oxidative stress and damage which can promote the growth and proliferation of leukemic

cells. Iron metabolism is strictly regulated and the related therapeutic approaches to date

have been to restrict iron availability to tumor cells. However, since a new form of iron-

catalyzed cell death has been described, termed ferroptosis, and subsequently better

understood, iron excess is thought to represent an opportunity to selectively kill leukemic

cells and spare normal hematopoietic cells, based on their differential iron needs. This

review summarizes the physiology of iron metabolism and its deregulation in leukemia,

the known ferrotoposis pathways, and therapeutic strategies to target the altered iron

metabolism in leukemia for the purposes of initiating ferroptosis in these cancer cells.
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INTRODUCTION

Iron is a crucial nutrient for the enzymes that are involved in ATP production (mitochondrial
chain complex), DNA synthesis (ribonucleotide reductase), oxygen transport, antioxidant defense
(peroxidase and catalase), oxygen sensing factors (hypoxia-inducible factor – HIF – and prolyl
hydroxylases), and many others. The ability of iron to gain and lose electrons between its oxidized
Fe3+-ferric- and Fe2+-ferrous- forms enables it to participate in free radical-generating reactions.
Among these processes is the Fenton reaction, in which a ferrous iron donates an electron to
hydrogen peroxide to yield hydroxyl radicals, thereby inducing highly reactive oxygen species
(ROS) (1). The aberrant accumulation of iron and subsequent excess ROS levels generate oxidative
stress, induces damage to DNA, proteins or lipids and even causing cell death. Significantly, these
oxidative effects of iron can contribute to oncogenesis and iron is thought to be essential for the
development of cancer (2).

Acute myeloid leukemia (AML) results from oligoclonal proliferations arising from the
transformation of immature myeloid hematopoietic cells, characterized by a differentiation
blockage and acquisition of a survival advantage and proliferation gain. AML displays
high heterogeneity at the phenotypic, genetic and molecular levels (3). Recurrent molecular
abnormalities resulting frommutations or translocations define the prognostic subgroups of AML,
which vary in their sensitivity to conventional treatments such as chemotherapy and bone marrow
transplantation (4). The prognosis for AML remains largely poor but new therapeutic strategies
are emerging, stemming from better pathophysiological knowledge. Lastly, the association of
the BCL2-BH3 mimetic venetoclax and demethylating agents (azacytidine or decitabine) directly
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targets the leukemic stem cell (LSC) compartment via oxidative
metabolism perturbation and has shown compelling effectiveness
in elderly patients with AML (5, 6).

To enable growth, leukemic cells exhibit an increased
iron demand compared with normal cells (7). Accumulating
evidence indicates that targeting iron homeostasis can induce
differentiation and apoptosis in some leukemic cells (8–10), and
these studies almost exclusively focused on intra-leukemic iron
depletion by chelating agents. However, this iron dependency
may also render cancer cells more vulnerable to iron-mediated
cell death, referred to as ferroptosis (11), in which iron
metabolism plays a key role. Hence, strategies aimed at targeting
leukemic cells by increasing the intracellular iron pool could
constitute a new therapeutic approach in AML. We therefore
highlight the phenomenon of iron metabolism deregulation in
AML in this review and focus on the opportunity of targeting this
process to improve AML treatment.

IRON METABOLISM: AN OVERVIEW

Iron homeostasis is a highly tuned process. Dietary iron
(predominantly in the form of Fe3+) is absorbed in the
duodenum via divalent metal transporter 1 (DMT1) after the
action of a ferric reductase, duodenal cytochrome b (Dcytb),
which converts Fe3+ to Fe2+. Alternatively, heme iron is
imported into enterocytes through an unknown mechanism and
is thereafter, degraded by heme oxygenase 1 (HO-1), liberating
Fe2+. Iron exits the basolateral surfaces of the enterocytes
across the sole iron efflux pump yet known, ferroportin (FPN),
along with hephaestin which oxidizes Fe3+ to Fe2+, and then
is loaded onto transferrin (Tf). The holo-transferrin complex
Tf – Fe3+ circulates in the plasma to deliver iron to its
sites of utilization, mostly to the bone marrow to enable
erythropoiesis. After binding to transferrin receptor 1 (TFR1),
the Tf-Fe3+/TFR1 complex is subsequently taken into cells by
receptor-mediated endocytosis, reduced to Fe2+ by the six-
transmembrane epithelial antigen of prostate 3 (STEAP3), and
transported into the cytosol by DMT1. The Tf/TFR1 complex
is finally recycled to the cell surface. Recycling from senescent
red blood cells by macrophages is by far the main source of
iron, whereas dietary intake is marginal and compensates for iron
losses only. The released Fe2+ constitutes the labile iron pool
(LIP) and is either stored in ferritin (FTH) or used for metabolic
needs, or even exported into the circulation via FPN after being
re-oxidized by ceruloplasmin (12).

The predominant pathway for iron output into the cytosol
from ferritin is controlled by nuclear receptor coactivator 4
(NCOA4)-mediated selective autophagy, whereby NCOA4 binds

Abbreviations: AA, arachidonic acid; AdA, adrenic Acid; ACSL4, acyl-CoA

synthetase long chain family member 4; AML, acute myeloid leukemia; DMT1,

divalent Metal (Ion) Transporter 1; FTH, ferritin; FPN, ferroportin; GPX4,

gluthatione peroxydase 4; GSH, glutathione; HSC, hematopoietic stem cell; IRE,

iron responsive element; IRP, iron regulatory protein; LIP, labile iron pool; LOX,

lipoxygenase; LPCAT, lysophosphatidylcholine acyltransferase 1; LSC, leukemic

stem cell; NCOA4, nuclear receptor coactivator 4; PE, phosphatidylethanolamine;
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ferritin to traffic it to the lysosome where it is degraded and iron
is then released for use by the cell (13). Non-stored cytoplasmic
iron is either transported to mitochondria for heme synthesis or
incorporated in Fe-S clusters. It can serve as a cofactor for several
enzymes, such as prolyl hydroxylase 2 (PHD2), lipoxygenases
(LOX), and others. At the systemic level, the iron balance is
maintained via a strictly regulated absorption of dietary iron in
the duodenum, which is mainly achieved by the ferroportin –
hepcidin regulatory axis (14). The peptide hormone hepcidin,
secreted primarily by hepatocytes, is the cardinal regulator of iron
homeostasis. In conditions of excess iron, hepcidin binds to FPN
and promotes its phosphorylation and subsequent lysosomal
degradation in enterocytes and macrophages, thus blocking the
delivery of iron into the circulation (15). At the cellular level,
iron homeostasis is regulated at the post-transcriptional level
by the binding of regulatory proteins IRP1 and IRP2 to the
iron-responsive elements (IREs) within mRNAs. The IREs are
hairpin structures located in 5′or 3′ untranslated regions (UTRs)
of mRNAs and control either transcript stability or the initiation
of translation. The role of the IRPs is to adapt, according to the
cellular iron availability, and control the expression of proteins
that regulate the import (TFR1, DMT1), storage (FTH), and
export (FPN) of intracellular iron (16).

IRON AND ACUTE MYELOID LEUKEMIA

The normal mechanisms of iron handling are altered in cancer
cells in order to facilitate tumor growth. Evidence for iron
overload involvement in promoting cancer came some time
ago from in vivo experiments (17), epidemiological studies (18),
and cancer susceptibility in hemochromatosis-affected patients
(19), but the underlying biological mechanisms have been more
precisely understood for a decade (2). In particular, because of the
high red blood cell transfusion needs in cancer patients due to
normal erythropoiesis impairment and chemotherapy-induced
anemia, iron excess is a common finding in leukemic patients.
The organism response consists of limiting iron bioavailability,
referred to as “the withholding response,” and therapeutic
developments to date that are based on iron metabolism have
mostly focussed on enabling this withholding response.

Iron is crucial for normal hematopoiesis since TFR1 inhibition
and subsequent iron depletion impair the proliferation and
differentiation of hematopoietic precursor cells, and reduce the
regeneration potential of hematopoietic stem cells (HSCs) (20).
Notably however, excess iron and ROS catalytic production
also promote the malignant transformation of HSCs through
nicotinamide adenine dinucleotide phosphate oxidases (NOX)
and the subsequent depletion of glutathione (GSH) (21).
DNA damage and double-strand breaks induced by ROS
in myelodysplastic syndromes, a pre-leukemic disorder, may
foster the transformation process in AML (22). On the
other hand, HSC aging is associated with increasing ROS
production, impaired HSC self-renewal and regeneration (23),
and decreased erythropoiesis trough growth differentiation
factor-11 (GDF11) secretion (24). However, in particular stress
contexts, ROS promote short-term HSC repopulation, motility
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and differentiation (25), thus acting as a kind of bone marrow
microenvironment messenger. Moreover, in monocytic AML,
blasts produce high amounts of ROS via NADP oxidase (NOX)
and thereby induce apoptosis in adjacent NK cells, and in CD4
and CD8 T-cells, through poly-ADP-ribose polymerase-1 (PARP-
1), and a subsequent ineffective anti-leukemic adaptive response
(26). Iron overload also disrupts the T-lymphocyte Th1/Th2 ratio
and promotes regulatory T-cell production (Treg) (27).

IRON DYSREGULATION AT THE
CELLULAR AND SYSTEMIC LEVEL

Iron markers of intake, storage and export are commonly
concurring to iron overload. TFR1 expression, known as CD71,
is generally increased in leukemic cells compared to normal
counterparts and its level may be directly correlated to the degree
of differentiation as AML, whether minimally differentiated or
not, has the highest level of CD71 expression (28). The prognostic
significance of this observation is debatable however as even
if high levels of TFR1 are associated with complex karyotypes
and other features such as c-kit receptor expression (CD117),
the survival outcomes seem to be unaffected (29). Notably,
transferrin receptor 2 (TFR2) is also upregulated in different
AML subtypes such as AML1, AML2, and erythroleukemia
(AML6) (30, 31), and TFR2 α-subtype expression may be
positively associated with a favorable prognosis (32). TFR2 is
mostly present at the surface of hepatocytes and erythroid cells
and acts as an iron sensor and hepcidin modulator (33). Since
both TFR1 and TFR2 increase intracellular iron, the former, by
increasing iron uptake and the latter via hepcidin upregulation
through HFE binding, the prognosis discrepancies between each
isoform likely imply an iron-independent pathway for TFR2. It
is worth mentioning also that other forms of non-transferrin
bound iron may penetrate cancer cells, such as for instance
via lipocalin 2 (LCN2), also referred as neutrophil gelatinase-
associated lipocalin (NGAL), whose expression is detected in
leukemic cells, but at a lower rates than in normal HSC
counterparts (34, 35). LCN2 overexpression at the transcriptional
level is associated with a better prognosis, especially in normal
karyotype AML with FLT3 wild-type expression (36).

Regarding the iron storage counterpart, serum ferritin is also
frequently increased in leukemic patients and is a pejorative
factor in overall and relapse-free survival in chemotherapy-
treated patients (37–40) as well as in patients undergoing
allogeneic stem cell transplantation (41). Ferritin comprises
24 polypeptide subunits of heavy chain (FTH and light chain
(FTL). In an inflammation context, FTH appears to be a NF-
κB downstream effector that suppresses TNFα-driven apoptosis
via the inhibition of Jun N-terminal kinase (JNK) (42). In
AML patients, a gene expression signature associated with FTH
overexpression encompasses NF-κB and pro-oxidant pathways,
leading to chemotherapy resistance (37).

Dysregulation of the ferroportin-hepcidin axis is a common
feature in AML, entailing reduced iron efflux. Notably,
low ferroportin expression in AML seems to correlate with
improved outcomes and greater chemotherapy sensitivity, and

is consistently found in core binding factor (CBF) AML subsets
(43). Hepcidin expression varies heterogeneously, depending on
the amount of iron, and the degree of anemia and inflammation.
In AML patients, positive correlations have been shown between
hepcidin and both ferritin and IL-6, whereas a high EPO
level and anemia are associated with lower levels of hepcidine
(44). Notably however, despite the expected high levels of
hepcidin under conditions of inflammation and overexpression
of ferritin, balancing strategies to counteract anemia such
as erythroblast secretion of erythroferrone (ERFE) can foster
hepcidin downregulation (45). An example of this is seen in
myelodysplastic syndromes with an SF3B1 mutation (46). In
response to systemic limitations in iron availability, autocrine
secretion of hepcidin to degrade FPN has been described in
several cancer models, although not yet shown in AML (47–49).

THERAPEUTIC STRATEGIES: MOVING
FROM IRON CHELATION TO OVERLOAD

The ability of tumor cells to fuel iron availability that
enables sustained proliferation, ROS accumulation and evasion
of adaptative host immunity has prompted research into
iron chelation strategies. Moreover, such strategies became of
paramount interest in the context of iterative blood transfusions
in leukemic patients, in whom chronic iron overload leads to
secondary hemochromatosis responsible for cardiac, hepatic, or
endocrinal damage.

Hence, iron chelators such as deferoxamine (DFO) and
deferasirox (DFX), by lowering LIP and hampering ROS
production and iron-dependent enzymes such as ribonucleotide
reductase (50–53), exert anti-leukemic activity. Interestingly,
as mentioned earlier, FTH effects on the NF-κB pathway and
the subsequent inhibition of both TNF-JNK signaling pathway-
mediated apoptosis and iron chelators have been shown to restore
JNK and mitogen-activated protein kinase (MAPK) pathways
(54, 55). This ability, along with the use of other differentiating
agents, may overcome the impaired cellular differentiation in
AML (8). Likewise, iron chelators may interfere with hypoxia-
induced pathways such as that controlled by HIF1α (56) or
with the REDD1 – mammalian target of rapamycin (mTOR)
pathway (57). Iron chelators can also sensitize leukemic cells to
conventional chemotherapy drugs (58, 59) or to demethylating
agents such as decitabine in vitro (60), although the data are
conflicting (61).

Similarly, strategies aiming at modulating factors involved
in iron metabolism such as TFR1, have shown promising
efficacy since the early 1990’s (62, 63). To date, several
strategies have been developed for targeting TFR1, including
the use of its natural ligand Tf, targeting peptides, anti-TFR1
monoclonal antibodies, and antibody fragments (scFv) (64).
As an example of this, the A24 monoclonal antibody that
competitively binds to TFR1, inhibits Tf binding to TFR1,
thus leading to TFR1 endocytosis and its downregulation at
the cellular surface, and has shown proven efficacy against T-
NHL (65, 66). Such a strategy raises concerns however due
to high dependency of erythropoiesis on TFR1 (67). As well,
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clinical studies have reported only moderate and transient
efficacy against hematological malignancies (68), which can
be partly explained by the induced immunogenicity (69).
Hence, TFR1-targeted drugs have been developed as a delivery
system, harnessing the overexpression of TFR1 in leukemic
cells. For instance, TFR1-targeted lipid nanoparticles containing
an antisense oligonucleotide (ASO) against the antiapoptotic
protein Bcl-2 have been developed (70, 71), as well as TFR1
conjugated to the autophagy activator compound artemisinin
(72). In addition, TFR1 has been conjugated to nanoparticles
bearing chemotherapeutics that are designed to pass through the
blood-brain barrier (73). Ferritin is also a potential candidate to
shelter targeted drugs (74), such as doxorubicin (75), in order to
produce a longer circulation half-life and a higher tumor uptake.
Another intriguing drug delivery mechanism relies on a pro-drug
strategy via trioxolane conjugation, which takes advantage of the
higher amounts of iron in malignancies. In this mechanism, a
trioxolane-conjugated drug will react with Fe2+ in the tumor
microenvironment to activate drug release (76).

Despite the many clues that support iron chelation as an
anti-tumor strategy in leukemia and the advances in this field,
another way to exploit the increased iron needs in leukemic cells
is to consider the vulberability that this creates. Indeed, cancer
cells are far more susceptible to iron-catalyzed necrosis, referred
to as ferroptosis. Hence, strategies aimed at increasing LIP in
cancer cells may overcome the limited antioxidant defenses, thus
entailing ferroptosis.

FERROPTOSIS: A RECENTLY
RECOGNIZED IRON-DRIVEN FORM OF
CELL DEATH

Ferroptosis is a form of programed cell death, that differs from
apoptosis, necroptosis or pyroptosis in terms of the characteristic
morphological changes i.e., mitochondria with decreased crista,
condensed membranes and rupture of the outer membrane, and
an intact nucleus (11). Biologically, ferroptosis is characterized
by the iron-catalyzed peroxidation of polyunsaturated fatty acids
(PUFAs) containing phospholipids (PLs), thereby producing
lipid ROS. Arachidonic acid (AA) or adrenic acid (AdA) are
key membrane phospholipids that are processed by acyl-CoA
synthase 4 (ACSL4) and lysophosphatidylcholine acyltransferase
3 (LPCAT3) to produce their esterification and generate
phosphatidylethanolamine (PE)-AA/AdA that undergoes further
oxididation to phospholipid hydroperoxides (PE-AA/AdA-
OOH) by the lipoxygenases (LOXs) (77). Excessive Fe2+ fuels
electron-driven lipid peroxidation (LOOH) from an alkoxyl or
an hydroxyl radical via the Fenton reaction in the presence of
peroxide (H2O2). These reactions are not mutually exclusive
and can operate together, especially since the LOXs are iron-
containing enzymes (78). Meanwhile, lipid ROS can also
be formed spontaneously by autoxidation enzyme-catalyzed
processes (79). Once formed, lipid peroxides can diffuse across
lipid bilayers in a self-feedback loop manner and compromise
membrane integrity (80). To prevent the lethal accumulation
of lipid ROS, several protective mechanisms are involved.

One is glutathione peroxidase 4 (GPX4), which was shown
to constitutively hydrolyze lipid hydroperoxides (LOOH) into
inactive redox alcohol radicals (LOH), thereby protecting the
cell from ferroptosis. GPX4 is a selenocysteine enzyme that uses
glutathione (GSH) as a cofactor and can be covalently inhibited
by molecules such as (1S,3R)-RSL3 (RSL3), or indirectly blocked
by the small molecules FIN56 or FINO2 through a still elusive
mechanism (81). Moreover, GSH synthesis requires the rate-
limiting amino acid cysteine, which is imported in its oxidized
form cystine from the extracellular space via the sodium-
independent cystine/glutamate antiporter system x−c (consisting
of two subunits SLC7A11 and SLC3A2). Inhibitors of system x−c ,
such as the oncogenic RAS-selective lethal small molecule erastin,
sulfasalazine or sorafenib, subsequently triggers ferroptosis in
different cellular contexts (11, 82). In contrast, several lipophilic
radical-trapping agents (RTA), such as ferrostatin-1 (Fer-1),
liproxtatin-1, or α-tocopherol, acting as ROS-lipid scavengers,
are able to halt ferroptosis. Mitochondria can play a key role
in ferroptosis depending on the context i.e., whilst they are
crucial in the case of cysteine deprivation, they may not be
required under conditions of GPX4 inhibition (83). Moreover,
CDGSH iron sulfur domain 1 (CISD1), an iron-containing outer
mitochondrial membrane protein, modulates mitochondrial iron
uptake and respiratory capacity and mitigates ferroptosis (84).
Interestingly, ferroptosis can also modulate tumorigenic immune
defenses as immunotherapy-activation of CD8+ T cells by
checkpoint inhibitors such as anti-PD1 or anti-CTLA4 enhances
ferroptosis-specific lipid peroxidation in tumor cells via system
x−c downregulation (85). Figure 1 summarizes the currently
understood biology of ferroptosis, including its mechanisms and
links with iron metabolism.

FERROPTOSIS RELIES ON IRON
METABOLISM

A hallmark of ferroptosis is the requirement for iron, supported
by the fact that iron chelation by deferoxamine (DFO)
prevents the experimental induction of ferroptosis (Dixon,
cell 2012), although it cannot do so once ferroptosis is
launched (86). In addition, transferrin has been shown to be
critical for this pathway since its deprivation dramatically
decreases ferroptosis (gao, mol cell 2015), as well as the
silencing of iron metabolism master regulator 2 (IREB2)
(11). TFR1 endocytosis recycling inhibition by heat-shock
protein beta-1 (HSPB1) overexpression and subsequent iron
intake inhibition also alleviates ferroptosis (87). On the other
hand, precluding TFR1 and FTH degradation by proteasome
inhibitors such as bortezomib along with iron overload can
cooperate to trigger ferroptosis (88). Likewise, DMT1 has been
shown to be up-regulated upon ferroptosis induction (89).
Ferritinophagy is another key component of the iron supply
mechanism regulating ferroptosis. Indeed, autophagy inhibitors
or NCOA4 cargo receptor genetic deletion suppress ferroptosis
(90), whilst ferritin overexpression consistently mitigates
ferroptosis in a neuronal model (91). Dihydroartemisinin
(DHA), a semi-synthetic derivative of artemisinin known for
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FIGURE 1 | The ferroptotic cascade. Accumulation of free iron is a key initiator of ferroptosis. After loading onto Tf, the Fe3+/Tf complex binds to TFR1, and iron is

thereafter released into endocytosis vesicles under lower pH conditions, where Fe3+ is reduced into the ferrous form Fe2+ under the action of ferrireductase STEAP3.

Iron then exits into the cytosol via DMT1 to form the labile iron pool (LIP). The LIP represents a very slight per se, whereas most iron is either stored in FTH, either used

as a cofactor for several iron-containing enzymes, or for the synthesis of heme. Excess iron is carried in the extracellular space through FPN after being reoxydized by

hephaestin. FTH autophagic degradation, a process termed ferritinophagy, is mediated by NCOA4, a cargo receptor that binds to the heavy chain of FTH delivering it

to the early-stage autophagosome, inducing the subsequent release of iron into the cytosol. Iron release from heme through HO-1 is another way to increase the LIP.

Inside mitochondria, CISD1 modulates mitochondrial iron uptake and respiratory capacity and mitigates ferroptosis. The hormone hepcidin, mostly secreted by

hepatocytes in the systemic circulation, triggers ferroportin lysosomal degradation, thus hindering iron exit. AA or AdA are key membrane phospholipids esterified by

ACSL4 and LPCAT to generate PE-AA/ AdA, and further oxidized to phospholipid hydroperoxides (PE-AA/AdA-OOH) by LOXs. Free iron can also interact with ROS,

specifically hydrogen peroxide, to form hydroxyl/peroxyl (LOH/LOOH) toxic radicals via the Fenton reaction. Therefore, iron can then abstract a hydrogen atom from

PUFAs, forming a lipid radical which promptly reacts with oxygen to generate a lipid peroxide (PUFA-OOH). In a steady state, lipid peroxides and their degradation

products are neutralized by GSH-based redox reactions. The xCT antiporter (consisting of two subunits SLC7A11 and SLC3A2) exports glutamine and imports

cystine into the cell. Inside the cell, cystine is reduced to cysteine by cystine reductase and then GCL and GSS add L-glutamate and glycine respectively, to produce

GSH. Another way to generate cysteine is via the trans-sulfuration pathway converting methionine in homocystein, and later cysteine by CBS. Many redox enzymes

use GSH, including GPX4, which reduces reactive lipid peroxydes to their alcohol counterparts. Additionally, CoQ10, a byproduct of the mevalonate pathway, acts as

a complemental RTA to mitigate ferroptosis. CoQ10 is reduced to CoQ1O-H2 by FSP1, enabling its activity. GPX4 and SLC7A11 are target genes of the master

antioxidant regulator NRF2, as well as the enzymes contributing to GSH synthesis, GCL, GSS, and CBL. NRF2 additionally mediates iron metabolism by upregulating

the transcriptional level of FTH, FPN, and HO-1. In the absence of redox stress, NRF2 is downregulated by the E3-ubiquitine ligase KEAP1. If the key redox regulator

is genetically disrupted or pharmacologically inhibited, lipid peroxides and their degradation products accumulate, and thereby initiate ferroptosis through a yet

unknown mechanism involving membrane destabilization, cytoskeletal changes, and cell death. AA, arachidonic acid; AdA, adrenic acid; ACSL4, acyi-CoA synthetase

long chain family member 4; CBS, cystathionine-13-synthase; CISD1, CDGSH iron sulfur domain 1; CoQ10, coenzyme Q10/Ubiquinone-10; DMTl, divalent metal

transporter 1; FSP1, ferroptosis-suppressor-protein 1; FPN, ferroportin; FTH, ferritin; GCL, glutamate-cysteine ligase; GPX4, glutathione peroxidase 4; GSH,

glutathione; GSS, glutathione synthetase; HO-1, heme oxygenase 1; KEAP1, Kelch-like ECH-associated protein 1; LOXs, lipoxygenases; LPCAT,

lysophosphatidylcholine acyltransferase; NCOA4, nuclear receptor coactivator 4; NRF2, nuclear factor (erythroid-derived 2)-like 2; PE, phosphatidylethanolamine;

PUFA, polyunsaturated fatty acids; RTA, radical trapping agent; STEAP3, six-transmembrane epithelial antigen of the prostate 3; TFR1, transferrin receptor 1.

its anti-tumor properties, was shown to induce ferritinophagy
by regulating the activity of the AMP-activated protein
kinase AMPK/mTOR/p70S6K pathway, thereupon triggering

ferroptotic cell death (92). Interestingly, mitochondrial function
is critical for iron metabolism and subsequent ferroptosis.
Indeed, mitochondrial iron intake inhibition by CDGSH iron
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sulfur domain 1 (CISD1) overexpression markedly inhibits
ferroptosis (84), as does the overexpression of iron-sulfur
cluster assembly enzyme (ISCU), a mitochondrial protein
which plays a crucial role in Fe-S cluster biogenesis (92).

TARGETING IRON IN LEUKEMIA TO
TRIGGER FERROPTOSIS

Ferroptosis has gained considerable interest as a potential
widespread anti-cancer strategy, although most of the research
thus far has been restricted to in vitro or murine in vivo models
(93–98). GPX4 dependency and ferroptosis susceptibility can be
acquired by cells in a therapy-resistant cell state (99), as for
instance cells undergoing an epithelial-mesenchymal transition
(EMT) (100). Hence, targeting leukemic cells via ferroptosis
represents a promising new treatment approach, though very
few data are available in AML models as yet. Recently,

ferumoxytol (Feraheme©), an FDA approved intravenous iron
nanoparticle for treating iron deficiency in patients with

chronic kidney disease, showed anti-leukemic effects in vitro
and in murine models bearing leukemia cells with low FPN
expression (101). Iron salophen complexes, a kind of chemically
engineered transition-metal complex, display in vitro anti-
leukemic properties via ferroptosis or necroptosis (102). Notably,
GPX transcription level in AML is associated with a worse
prognosis and correlates with the reponse to oxidative stress,
inflammation and the immmune response (103). Ferroptosis
inducers such as erastin can also enhance the anticancer
capacity of conventional chemotherapeutics like cytarabine or
doxorubicin (104) in RAS-mutated AML cell lines. Moreover,
erastin can boost the activity of more recent compounds such
as APR-246, a p53-mutant reactivating compound in cancer
(105). Erastin-induced ferroptosis in AML cell lines has been
shown to involve high mobility group box 1 (HMGB1) cytosolic
translocation, the RAS-JNK/p38 pathway and subsequent TFR1
up-regulation (106). Furthermore, autophagy-mediated ferritin
degradation and iron subsequent supply play a key role in
ferroptosis, explaining at least in part the anti-tumor activity
of dihydroartemisin via the activation of the AMPK-mTOR
signaling pathway (92). Recently, iron has shown the capacity

FIGURE 2 | Lipid ROS homeostasis. (A) Schema showing enzymatic or substrate modulators of lipid ROS. The size of the box is proportional to the functional

importance of the modulator. (B) Theorical imbalance of lipid ROS homeostasis, in this example caused by enhanced ferritinophagy through NCOA4 upregulation.
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to catalyze the oxidative demethylation of protein residues and
nucleobases in association as a cofactor of demethylases like
PHF8, which is a great interest in AML since demethylating
agents have proven efficacy in this context (107). A putative
model of the iron metabolism modulation that triggers
ferroptosis is provided in Figure 2.

CONCLUSION

Recent insights into iron metabolism along with the recent
discovery of ferroptosis have opened new avenues in the field
of anti-tumor therapies. Metabolism rewiring between glycolysis
and mitochondrial oxphos respiration in tumors has proven to
be an anchor for new and effective therapeutic combination
strategies such as the association of the BCL2-BH3 mimetic and
hypomethylating agents, which are able to specifically target the
LSC compartment. Additionally, iron metabolism dysregulation
toward increased iron demands is a specific feature of tumor
cells which has been considered almost exclusively until now
as an opportunity to test iron deprivation approaches against
the tumor cells, whether than using it as an Achilles heel.
Opportunities to tailor new strategies that also utilize ferroptosis
will arise in the coming years.

Because non-targeted iron supplementation could increase
tumorigenicity and cause deleterious systemic effects, feeding

tumor cells with iron or reshaping iron metabolism mechanisms
to trigger ferroptosis will be a complex problem to solve.
First, because of the heterogeneous sensitivity to iron-catalyzed
necrosis among cancers, thorough analyses using in vitro and
murine AML models are required to assess the feasibility
of such strategies. Data are currently lacking in this regard
for hematological malignancies and specifically for AML, thus
hindering further therapeutic perspectives. Second, in addition to
the iron supplementation or iron metabolism actor modulation,
combination strategies using ferroptosis inducers are probably
desirable to lower the sensitivity threshold of cancer cells to
ferroptosis and thus avoid iron-mediated off-target damage. This
point is of major interest since great efforts have been made to
identify and develop ferroptosis triggers over the past decade.
Hence, a widespread introduction of iron-based treatments into
the mainstream oncology arsenal in a personalized fashion and
with the purpose of inducing iron-catalyzed death is a promising
anti-cancer strategy.
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