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The canine corpus luteum (CL) is able to synthetise, activate and deactivate

17b-estradiol (E2) and also expresses nuclear estrogen receptors in a

time-dependent manner during diestrus. Nevertheless, we are still missing a

better comprehension of E2 functions in the canine CL, especially regarding

the specific roles of estrogen receptor alpha (ERa) and ERb, encoded by

ESR1 and 2, respectively. For that purpose, we analyzed transcriptomic data

of canine non-pregnant CL collected on days 10, 20, 30, 40, 50 and 60

of diestrus and searched for di�erentially expressed genes (DEG) containing

predicted transcription factor binding sites (TFBS) for ESR1 or ESR2. Based on

biological functions of DEG presenting TFBS, expression of select transcripts

and corresponding proteins was assessed. Additionally, luteal cells were

collected across specific time points during diestrus and specificity of E2

responses was tested using ERa and/or ERb inhibitors. Bioinformatic analyses

revealed 517 DEGs containing TFBS, from which 67 for both receptors. In

general, abundance of predicted ESR1 targets was greater in the beginning,

while abundance of ESR2 targets was greater in the end of diestrus. ESR1/ESR2

ratio shifted from an increasing to a decreasing pattern from day 30 to 40 post

ovulation. Specific receptor inhibition suggested an ERa-mediated positive

regulation of CL function at the beginning of diestrus and an ERb-mediated

e�ect contributing to luteal regression. In conclusion, our data points toward

a broad spectrum of action of E2 and its nuclear receptors, which can also act

as transcription factors for other genes regulating canine CL function.
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Introduction

The canine corpus luteum (CL) has been considered as a

source and target of steroid hormones, mainly progesterone (P4)

and 17b-estradiol [E2, (1)]. The local production and role of P4

has been addressed earlier and there is a consensus that P4 is

the primary hormone that maintains corpus luteum function

and consequently, pregnancy (2, 3). Regarding E2, it is known

that the canine CL produces E2 (4, 5), expresses enzymes for E2

activation (STS, steroid sulfatase) and deactivation [SULT1E1,

sulphotransferase 1E member 1 (6)], and that the expression

of E2 receptors (ERa and ERb, encoded by ESR1 and ESR2

genes, respectively) fluctuates during diestrus in pregnant and

non-pregnant CL (1, 6). The ratio between ESR2/ESR1 varies

along non-pregnant diestrus, being greater on day 40 post-

ovulation (p.o.) compared to days 10, 20, 30 and 60 p.o. (6).

The gene HSD17B7, encoding 17b-hydroxylase, the enzyme

converting estrone to E2, increases from day 10 to 20 and

further to day 40 p.o. (6), whereas CYP19A1, encoding P450

aromatase, is greater expressed between days 35 and 45 p.o.

(1). Expression of STS mRNA peaks on day 30 p.o., that of

SULT1E1, on days 50 and 60 p.o. (6), indicating an established

local machinery modulating E2 production and activity, which

shows a turning point around day 40 p.o., when early luteal

regression starts.

The effect of E2 on luteal function appears to be species-

specific. For example, E2 presents a luteotropic role, as observed

in rabbits and rats or a luteolytic function, as observed in

humans and cattle (7–9). The luteotropic or luteolytic effect

depends apparently on which receptor E2 binds to, ERa or ERb,

which belong to the nuclear receptor family of intracellular

receptors, exhibiting similar structures, but distinct regulatory

functions. In general, ERa promotes cell proliferation, whereas

ERb appears to have an anti-proliferation role (10). Moreover, in

cells that express both receptors, it appears that ERb inhibits the

transcriptional activity of ERa (11); consequently, E2 signaling

may also depend on the ratio of ERa /ERb (12).

Upon ligand activation, ERs induce genomic and non-

genomic effects (13, 14). Non-genomic effects can be mediated

through the G-protein-coupled estrogen receptor (GPER), also

expressed in granulosa cells and involved in E2 induced

VEGF expression (13). The genomic effects result in the

regulation of gene transcription and occur through direct

binding of ERs to estrogen responsive elements (EREs) in

the regulatory regions of E2 target genes. Alternatively, ERs

can interact with other transcription factors such as activating

protein-1 (AP1) and stimulating protein-1 (SP1) to influence

gene expression indirectly (10, 14, 15). Transcription factor

binding sites (TFBS) for ERa and ERb have been mapped

in MCF7 breast cancer cells through ChIP-PET and ChIP-

on-chip analysis (11, 16), which identified 1,234 and 1,457

high confidence ER binding sites, respectively. Around 75%

of all ER binding sites can be target by both ERa and ERb

receptors. Interestingly, only 5% of ERb binding sites contains

exclusively an ERE, but 60% of them contains AP-1 like binding

sites combined with ERE-like sites, and 45% among these

contains additionally forkhead family binding sites (11). The

ratio between ERa and ERb is also able to change the capacity

of ERb to bind its specific TFBS (17). Additionally, TFBS can

be activated by ERa and ERb independent of ligand (i.e., 17b-

estradiol) (18).

E2 can trigger apoptosis in human granulosa cells via

binding to ERb1 (the only splice variant of human ERb able

to bind the hormone) (19), but depending on the cell line, for

example in human breast cancer cells, apoptosis can be triggered

by E2 binding to ERa (20). Although apoptosis signals are not

strong enough to justify regression of a cyclic canine CL (21),

E2 has been implicated in human CL regression via apoptosis

(22). Moreover, a recent study comparing regressing canine

CL and pre-partum luteolysis indicated activation of estrogen

receptors as one of themain represented functional terms related

to structural changes in the regressing CL (23).

Collectively, canine CL expresses both ESR1 and ESR2,

and the ratio of ESR1 /ESR2 varies throughout diestrus.

There is a greater ESR1 expression in early-luteal phase (1)

and greater ESR2 expression in the late-luteal phase (6).

However, the role of E2 and its receptors in regulating

canine CL function is still unknown. We hypothesize that

E2 binding to ERa and ERb is time-dependent and might

activate different E2-responsive genes, and therefore, different

biological functions throughout canine CL lifespan. The aim

of the present study was (1) to access differentially expressed

genes (DEG) in canine CL with over-represented transcription

factor binding sites (TFBS) related to ESR1 and ESR2 to

gather an idea of the presupposed broad action of E2 along

diestrus, and (2) characterize luteal cell responses to ERa and

ERb inhibition to gain further insights into the role of E2 in

specific aspects of the canine CL physiology, particularly on

its regression.

Materials and methods

Animals and experimental design

Thirty healthy mongrel bitches were included in this

study after approval by the Committee of Ethics in the

Use of Animals of the School of Veterinary Medicine and

Animal Science of the University of São Paulo (protocol

number 2719/2012). After the onset of proestrus bleeding,

blood samples were collected on alternate days to determine

plasma progesterone (P4) concentrations. An additional

blood collection for plasma P4 measurement was made

on the day of surgery, prior to anesthesia. Ovulation was

considered to have occurred when P4 plasma concentrations

reached at least 5 ng/ml (24). The CLs were collected via
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ovariosalpingohysterectomy on days 10, 20, 30, 40, 50,

and 60 post-ovulation (p.o.; n = 5 animals per day). After

collection, CLs were dissected from the surrounding ovarian

tissue and 3 CLs of each animal were frozen immediately in

liquid nitrogen for total RNA extraction, qPCR and western

blotting analysis; remaining CLs were fixed in 4% buffered

formalin for 24 h and used for immunohistochemistry. For

cell culture, all CLs collected on days 20, 40 and 60 p.o.,

from 12 different dogs were immediately washed and kept

in sterile phosphate buffered solution prior to processing as

described below.

Hormone assay

Plasma progesterone concentrations were measured to

define the day of ovulation using a validated chemiluminescence

immune assay (Elecsys Progesterone III, Roche Diagnostics).

The analytical sensitivity of the P4 assays was 0.10 ng/mL. The

inter-assay coefficient of variation (CV) was 7.51% and the

intra-assay CV was 6.11% as described by (25). The reagents

used for P4 determinations came in the cobas R© e pack PROG3

(Roche Diagnostics).

RNA-seq data analysis

RNA-seq data was generated and firstly analyzed as

described previously (26), using CL of three different dogs per

group. Data are publicly available at NCBI Gene Expression

Omnibus under the number GSE89293. A total of 3,300

DEGs resulting from the contrasts 20×10, 30 × 10, 30 ×

20, 40 × 10, 40 × 20, 40 × 30, 50 × 10, 50 × 20, 50

× 30, 50 × 40, 60 × 10, 60 × 20, 60 × 30, 60 × 40

and 60 × 50 were converted into their human orthologs

using the Mammalian Annotation Database (MAdb: http://

madb.ethz.ch), which is a collection of pairwise ortholog

groups among human, cow, pig, horse, rabbit, mouse and dog

genomes. Finally, we used oPOSSUM3 (27, 28) to identify

the overrepresented, conserved TFBS related to ESRs. The

same list containing 3,300 DEGs was submitted to oPOSSUM3

twice: in the first run, genes containing predicted TFBS

for ERa/ESR1 were shown, and in the second run, the

ones containing predicted TFBS for ERb/ESR2. A gene was

included in the DEG list if the false discovery rate (FDR)

was < 0.01 and the respective p-value < 0.001. Ingenuity

Pathway Analyses (IPA, Qiagen, Redwood City, CA, USA),

revealed canonical pathways and upstream regulators for

DEGs showing TFBS for ERa and ERb. A Venn Diagram

was generated (https://bioinfogp.cnb.csic.es/tools/venny/index.

html) to visualize upstream regulators related to both ESR1 and

ESR2 (intersection).

Quantitative real-time reverse
transcription PCR

Total RNA was isolated from CL in different stages

of diestrus by Trizol
R©

reagent (Life Technologies, Grand

Island, NY, USA) according to manufacturer’s instructions.

Unless otherwise stated, all reagents and equipment were

from Life Technologies. Concentration and quality of RNA

were determined using a BioPhotometer (Eppendorf, Hamburg,

Germany), and integrity was analyzed by electrophoresis

through a 2% agarose gel. Following DNase treatment, 1 µg

of total RNA (extracted from CLs) and 0.5 µg of total RNA

per sample (extracted from luteal cells in culture) was reverse

transcribed using Superscript III reverse transcriptase according

to the manufacturer’s instructions. DEPC-treated water was

used as negative control. PCR reactions were performed with

an automated fluorometer (ABI Prism R© 7500), using 96-

well optical plates. Each sample (25 ng of total RNA) was

analyzed at least in duplicate. Negative controls were set up

by replacing cDNA with water. Validated genes were selected

according to biological processes they participate in (cell

proliferation, luteal maintenance, cell death, luteal regression)

and the presence of TFBS for ERa and ERb. The gene-

specific primers used are listed in Table 1. After evaluation

of three different reference genes, glyceraldehyde 3-phosphate

dehydrogenase (GAPDH), cyclophilin A (PPIA) and ribosomal

protein L32 (RPL32), we used the NormFinder software (29),

which selected GAPDH as the best reference gene for our

analyses. The relative expression of estrogen receptor 1 (ESR1),

estrogen receptor 2 (ESR2) lymphoid enhancer-binding factor

1 (LEF1), catenin-beta 1 (CTNNB1), cyclin D1 (CNND1),

marker of proliferation Ki-67 (MKI67), N-Myc downstream-

regulated gene 2 (NDRG2), ATPase Na+/K+ (ATP1A1), caspase

3 (CASP3), caspase 8 (CASP8), caspase 9 (CASP9), cell surface

death receptor (FAS), and BCL2 associated X apoptosis regulator

(BAX), cytochrome P450 family 19 subfamily A member 1

(CYP19A1), cytochrome P450 family 11 subfamily A member

1 (CYP11A1), hydroxy-delta-5-steroid dehydrogenase, 3 beta-

and steroid delta-isomerase 1(HSD3B1) and solute carrier family

two member 4 (SLC2A4) was calculated as described previously

(30) followed by linear regression (LingRegPCR 7.0) fluorescent

analysis (31).

Immunohistochemistry

Luteal tissue protein distribution of caspase 3, caspase 8,

caspase 9 and BAX proteins, all involved in cellular death and

most likely in canine luteal regression, was evaluated by an

immunoperoxidase method on 2µm tissue sections prepared

from four CLs per dog, using one section per CL and four dogs

per group to assure accuracy (32). The primary antibodies used
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TABLE 1 List of qRT-PCR primers.

Gene Primer Sequence Probe GenBank N◦

LEF1 cf02686726_mh FJ374770.1

CTNNB1 Forward

Reverse

5′ ACTGAGCCTGCCATCTGTGC 3′

5′ TCCATAGTGAAGGCGAACAGC 3′

TTCGTCATCTGACCAGCCGACACCA FJ268743.1

CCND1 cf02626707-m1 AY620434.1

NDRG2 Cf02722935_m1 XM_858273.1

ATP1A1 Cf02627969_m1 L42173.1

GAPDH ID cf04419463_gH AB038240.1

CASP8 ID cf02627553_ml DQ223013.1

CASP9 ID cf02627331_ml DQ116956.1

CASP3 ID cf02622232_ml AB085580.1

FAS ID cf 02651136_ml XM_543595.2

BAX ID cf02622186_ml AB080230.1

MKI67 ID cf0263588_gl XM_533319.2

CYP11A1 ID cf02635588_gl XM_533319.2

HSD3B1 Forward 5′ TCCCCAGTGTTTCTGATTC 3′ AY739720.1

Reverse 5′ CACCAACAAATGCACGATTC 3′

SLC2A4 Forward

Reverse

5′ GCCTGCCAGAAAGAGTCTGAAG 3′

5′ GCTTCCGCTTCTCCTCCTT 3′

CAGTCCCCAGATACAT NM_001159327

ESR1 Forward 5′CCTGCAAAGCCTTCAAGAG 3′ TCAATGCTCCCCTGGATGG AJ313195.1

Reverse 5′ GGAAGCCGGACAGCTGTAC 3′

ESR2 Forward 5′ CCTGCAAGGCCTTCTTCAAGA 3′ CATCCAAGGGAACATC AJ313196.1

Reverse 5′GGCTGGGCAGCTGTACTC 3′

CYP19A1 Forward 5′ GTACCGGCCTGACCAGTT 3′ CATGCCAGAGCGCTTC NM_001008715.1

Reverse 5′ ACTTAATGATGGAGAAGATGAGCTGACT 3′

were polyclonal anti-rabbit for caspase 3, caspase 8, caspase 9

and BAX (Table 2). Negative controls were prepared using rabbit

IgG (Santa Cruz Biotechnologies, Dallas, TX, USA). Positive

controls were mouse lymph node sections prepared according

to the manufacturer’s protocol [as previously shown by (33)].

Western blotting

CL samples were homogenized in buffer containing

50mM potassium phosphate (pH 7.0), 0.3M sucrose, 0.5mM

dithiothreitol (DTT), 1mM ethylenediaminetetraacetic acid

(EDTA, pH 8.0), 0.3mM phenylmethylsulfonyl fluoride

(PMSF), 10mM NaF, and phosphatase inhibitor cocktail

(1:100; Sigma-Aldrich). Total protein content was determined

spectrophotometrically using the Bradford method (34), and

calculated by interpolation of a standard curve constructed

with increasing concentrations of albumin, read at 595 nm. For

each sample, 50 micrograms of total protein were resolved on

15% SDS–PAGE minigels and electrophoretically transferred

onto polyvinylidene difluoride membranes (PVDF, Bio-Rad

Laboratories, Hercules, CA, USA). CASP3, CASP8, CASP9,

and BAX were detected with specific antibodies (Table 2)

and visualized using an Enhanced Chemiluminescence

(ECL) kit (Amersham Biosciences, Piscataway, NJ, USA).

Images were captured by ChemiDoc MP Image system

(Bio-Rad Laboratories) and normalized to the abundance

of actin-beta (ACTB; 42 kDa) using ImageJ Software

(Bio-Rad Laboratories).

Cell culture

Cell culture was performed to verify the effects of

ERa and ERb blockers on canine luteal cells derived from

different timepoints in diestrus. Canine luteal cells were

isolated from twelve healthy mongrel female dogs at early

(day 20 p.o.), mid (day 40 p.o.), and late diestrus (day

60 p.o.; n = 4 animals/group). After washing with fresh

phosphate buffered saline (PBS) containing 1% antibiotic-

antimycotic solution (A5955, Sigma-Aldrich), CLs were minced.

Fragments were transferred to 1ml Dulbecco’s modified Eagle’s

medium (DMEM) supplemented with 5% fetal bovine serum

(FBS; Sigma-Aldrich), 1% L-glutamine (Sigma-Aldrich.), 20mM
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TABLE 2 List of antibodies for immunohistochemistry and western blotting (WB).

Antibody Isotype Immunogen DilutionWB Catalog no

Caspase 3 Polyclonal rabbit IgG Recombinant catalytically active human caspase-3 1:2500 IMGENEX (IMG-5700)

Caspase 8 Polyclonal rabbit IgG Recombinant catalytically active human caspase-8 1:2500 IMGENEX (IMG-5703)

Caspase 9 Polyclonal rabbit IgG Recombinant catalytically active human caspase-9 1:2500 IMGENEX (IMG-5705)

BAX Polyclonal rabbit IgG Full length recombinant mouse Bax 1:2500 IMGENEX (IMG-5684)

HEPES (Sigma-Aldrich), 1% antibiotic-antimycotic solution

(A5955, Sigma-Aldrich), and 1 mg/ml collagenase type 1

(C0130; Sigma-Aldrich). Samples were incubated for 1 h

with shaking (60 shakes/min) at 37◦C. The suspension was

centrifuged at 200 ×g for 10min, re-suspended in DMEM,

and filtered through a cell strainer (70µm; BD Falcon; BD

Biosciences, Durham, NC, USA). The filtrate was centrifuged

at 200×g for 10min, re-suspended in DMEM (v/v) for 10min,

centrifuged at 200 ×g for 10min, and re-suspended in DMEM.

Subsequently, cells were seeded in 24-well plates and incubated

(5% CO2) at 37◦C until 90% confluence.

17b-estradiol, MPP and PHTPP treatment

After cultures reached 90% confluence, cells were serum-

starved for 24 h. Cultures were divided into six groups:

Control, E2 (treated with 100 nM 17β-Estradiol; (Sigma-

Aldrich; E2), ERa block (treated with 10 nMmethyl-piperidone-

pyrazole; TOCRIS Biosciences, Bristol, UK;), ERb block (treated

with 10µM pyrazole (1,5-a) pyrimidine; TOCRIS Biosciences;

PHTPP), E2 + ERa block (treated with E2 + MPP), and

E2 + ERb block (treated with E2 + PHTPP). To determine

which concentration of MPP and PHTPP should be used, dose-

response curves were performed and minimal concentrations

necessary to achieve stimulation of CYP19A1 expression were

chosen. For RNA preparations, culture medium was discarded

and 1ml of TRIzol R© was added to the cells, followed by scraping

of the cell layer, freezing in liquid nitrogen, and storage at−80◦C

until further processing by qRT-PCR.

Statistical analysis

Data were tested for homogeneity of variance and normality

of residues using the F-test and the Kolmogorov-Smirnov test,

respectively. Data are presented as mean ± SEM. The qPCR

and hormone data were compared by one-way analysis of

variance (ANOVA), for the main effect of day, followed by the

Bonferroni correction for normally distributed data. Differences

were considered statistically significant when the p-value was

<0.05. All statistical analyses of validation procedures were

performed using GraphPad Prism 5 (GraphPad Software, Inc.,

San Diego, CA, USA).

Results

ESR1 and ESR2 gene expression in the
canine CL during diestrus

The ESR1 (Figure 1A) and ESR2 (Figure 1B) mRNA

expression changed significantly during diestrus (P < 0.0001);

ESR1 expression was greater on day 20 than on day 10 p.o. (P <

0.0001) decreasing on day 40 and further on day 60 p.o., whereas

ESR2 decreased from day 20 to 30 p.o., increased from day 30

to 40 p.o. and increased further on day 60 p.o. ESR1/ESR2 ratio

(Figure 1C) shows an increased from day 20 to 30 p.o. and a

decrease from day 30 to 40 p.o., remaining low until day 60 p.o.

Transcription factor binding sites related
to the E2 receptors

In a previous work of our group, we compared the temporal

gene expression among days 10, 20, 30, 40, 50 and 60 p.o.

The analysis revealed the presence of 3300 DEGs in at least

one comparison (26). We converted these DEGs into their

human orthologs in order to identify the over-represented TFBS

related to ERs. In our ortholog approach for the transcription

factor (TF) analysis, we assumed that the TF binding sites

are evolutionarily conserved, as demonstrated previously (35).

Seventy-seven DEGs exhibited TFBS for ERa and 450 exhibited

TFBS for ERb (Supplementary Tables 1, 2), whereas TFBS for

both ERa and ERb were found in 67 DEGs.

Genes presenting TFBS for ERa were related to several

canonical pathways (Supplementary Table 3), among which

the most significant, based on -log p-value, were G beta

gamma signaling, sulfite oxidation, glycine biosynthesis, retinol

biosynthesis, insulin signaling pathway, growth hormone

signaling. ERb TFBS were encountered in genes participating

in canonical pathways related to epithelial adherens

junction signaling, nitric oxide signaling, GABA receptor

signaling, signaling by Rho family GTPases, among others

(Supplementary Table 3). We found 384 and 778 upstream
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FIGURE 1

Gene expression of ESR1 (A), ESR2 (B) and ratio of ESR1/ESR2 (C) in canine CL during diestrus (10 to 60 days p.o.). Data are presented as mean ±

standard error of relative gene expression (n = 4 animals/group). Bars with di�erent letters indicate significant di�erences among groups (P <

0.05).

regulators for ERa and ERb TFBS, respectively, from which

204 were common to both receptors (Supplementary Table 3).

Different miRNAs, E2, P4, interleukins, PPARG, MAPK1and

CTNNB1 were found among the upstream regulators of both

ERa and ERb TFBS-containing genes. CCND1 and LEF1

were found among the upstream regulators for ERb and

ERa TFBS-containing genes, respectively. Moreover, LEF1,

NDRG2 and ATP1A1 participated as target molecules in several

intracellular pathways triggered by ESR2 upstream regulators,

including 17b-estradiol.

Validation of mRNA levels of selected
genes by qPCR

The selected genes included upstream regulators for ESR1

(LEF1), ESR2 (CTNNB1 and CCND1), genes regulated by E2

(NDRG2 and ATP1A1), proliferation markers (MKI67) and

apoptosis markers (CASP3, CASP8, CASP9, BAX and FAS),

which expression has not yet been shown in canine CL

along diestrus. Additionally, we measured RNA expression of

genes related to glucose uptake (SLC2A4) and steroidogenesis

(CYP19A1, CYP11A1 and HSB3B1) after E2 receptor inhibition

in our cell culture model, from which the in vivo expression in

canine CL was published elsewhere (1, 36, 37).

No significant differences in mRNA expression were

observed for LEF1, CTNNB1, CCND1 (Figures 2A–C) or

NDGR2 and ATP1A1 during diestrus (Figures 2D,E).

MKI67 expression decreased from day 20 to 30 p.o. and

remained lower until day 60 p.o. (P < 0.05; Figure 3A). FAS

expression showed highest expression levels on days 40 and 50

p.o. (P= 0.0002, Figure 3B). BAX expression increased from day

30 to day 40 p.o. (P < 0.0001), being greater on the second half

of diestrus (Figure 3C).

There was an effect of time (P < 0.0001) on CASP8, which

increased on day 20 and further on day 60 p.o. (Figure 3D).

CASP9 expression increased on day 40 and 60 p.o. in comparison

to day 10 p.o. (P < 0.0001), reaching maximum values on day 60

p.o. (Figure 3E). CASP3 expression increased from day 30 to 40

p.o., reaching maximum values on days 40 and 60 p.o. (P < 0.05,

Figure 3F).

Caspase 3, caspase 8, caspase 9 and BAX
protein localization in the canine CL
during diestrus

We verified the localization of apoptosis-related proteins

(caspase 3, caspase 8, caspase 9, and BAX) in the canine

corpus luteum over diestrus. Caspase 3 staining could be

observed in the cytoplasm and nucleus of luteal, endothelial,

and stromal cells from day 10 to day 60 p.o. (Figure 4).

Caspase 8, caspase 9, and BAX followed the same expression

pattern as caspase 3; however, the nuclear staining was not

evident. Although immunohistochemistry is not a quantitative

method, and despite the background staining observed, in

particular at later luteal stages, the intensity of signals appeared

to increase over time, matching the western blotting results

described below.

Caspase 3, caspase 8, caspase 9 and BAX
protein expression in the canine CL
during diestrus

Western blotting analysis revealed that caspase 3, 8 and 9 as

well as BAX expression was increased at the end of diestrus and

the highest or greater expression was observed on day 60 p.o.

(Figure 5).
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FIGURE 2

Gene expression of CTNNB1 (A), LEF-1 (B), CCND1 (C), NDGR2 (D), and ATP1A1 (E) in canine CL during diestrus (10 to 60 days p.o.). Data are

presented as mean ± standard error of relative gene expression (n = 4 or 5 animals/group). No di�erence among groups were observed (P >

0.05).

FIGURE 3

Gene expression of, MKI67 (A), FAS (B), BAX (C), CASP8 (D), CASP9 (E) and CASP3 (F) in canine CL during diestrus (10 to 60 days p.o.). Data are

presented as mean ± standard error of relative gene expression (n = 4 or 5 animals/group). Bars with di�erent letters indicate significant

di�erences among groups (P < 0.05).
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FIGURE 4

Immunolocalization of CASPASE 3, CASPASE 8, CASPASE 9 and BAX in canine CL during diestrus. Lines 10, 20, 30, 40, 50, 60, days after

ovulation. NC, negative control. Black arrows indicate the cytoplasmic and white arrows indicate nuclear staining. Scale bar 50µm.

CASP3, CASP8, CASP9, BAX, FAS, MKI67,

CYP19A1, CYP11A1, HSB3B1, and SLC2A4

gene expression in the canine luteal cells
in culture after inhibiting ERa and ERb

We studied genes associated with the specific inhibiting

of E2 receptors in luteal cells in three different stages

of diestrus: full secretory activity (day 20), early and late

luteal regression (days 40 and 60 p.o., respectively). The

mRNA expression of genes related to proliferation (MKI67),

steroidogenesis (CYP11A1, CYP19A1 andHSD3B1) and glucose

uptake (SLC2A4) was evaluated after inhibiting ERa and/or

ERb (Figure 6). MKI67 gene expression was increased when

canine luteal cells were treated with 17b-estradiol plus ERb

inhibiting; however, it was decreased under 17b-estradiol plus

ERa inhibition. This suggests that E2 effects onMKI67 happened

through the ERa receptor. CYP19A1 and CYP11A1 followed the

same pattern ofMKI67 response to ERa and ERb inhibition.

There was a significant decrease in the expression ofHSD3B1

when canine luteal cells collected on days 20 and 40 were treated

with E2, whereas luteal cells treated with E2 plus ERb inhibition

showed a significant increase in the relative expression of

HSD3B1. The expression of SLC2A4 was identified only in cells

collected on day 20 p.o. The glucose transporter 4 transcript was

up-regulated in cells treated with E2+ ERb inhibition compared

to the E2 + ERa inhibition, emphasizing again the luteotropic

effects of ERa.

Expression of apoptosis associated genes in luteal cells

after treatment is shown in Figure 7. CASP3 gene expression

was increased when canine luteal cells were treated with 17b-

estradiol plus ERa block. However, luteal cells collected on day

60 p.o. also showed an increase in CASP3 when treated with
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FIGURE 5

Protein expression of Caspase 3 (A), Caspase 8 (B), Caspase 9 (C) and BAX (D) in canine corpus luteum. Representative blots on top of each

column, which represent mean ± standard error (n = 4/group). Di�erent letters indicate significant di�erences among groups (P ≤ 0.05).

E2 alone if compared to control cells. CASP8, CASP9, BAX, and

FAS expression followed the same pattern of response to ERa

and ERb inhibition, i.e., they always increase under E2 + ERa

inhibition but not under ERa inhibition without E2 treatment;

moreover, CASP8 showed a significant increase on day 40 under

the stimulus of E2 alone, which was not observed for the other

apoptosis-related genes in any studied phase.

Discussion

Due to its long lifespan, as well as some uncertainties

regarding the role of 17b- estradiol in its control, the canine CL

has been chosen to study diestrus-related 17b-estradiol actions.

The present study was based in the concept raised by Papa and

Hoffmann (1) that the CL is both source and target of steroid

hormones. Our transcriptome results followed by oPOSSUM

analysis, revealed predicted DEGs over diestrus with enriched

TFBS for the E2-receptor complex, suggesting E2 is involved

both in the proliferative and regression phases of the canine CL.

Although there are limitations of this analysis based on human

ortholog genes, the assumption of evolutionarily conserved

TFBS seems to be plausible (35). Such contrasting roles were

possibly mediated by the selective binding of E2 to ERa and

ERb, as well to the switch on ESR1/ESR2 ratio observed from

day 30 to 40 p.o. Moreover, the inhibition of either ERa or

ERb in canine luteal cells added to our understanding of the

possible roles of both receptors, as described previously for other
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FIGURE 6

Gene expression MKI67, cytochrome P450, family 19, subfamily A, polypeptide 1 (CYP19A1), cytochrome P450, family 11, subfamily A,

polypeptide 1 (CYP11A1), 3-β-hydroxysteroid dehydrogenase/1-5-4 (HSD3B1), solute carrier family 2 (facilitated glucose transporter), and

member 4 (SLC2A4) in luteal cells collected at 20, 40, and 60 days after ovulation in diestrous bitches. Bars indicate six di�erent groups: Control

(no treatment), E2 (treated with 100 nM E2), ERa block (treated with 10 nM methyl-piperidone-pyrazole [MPP]), ERb block (treated with 10 uM

(1,5-a) pyrimidine [PHTPP]), E2 + ERa block (treated with E2 + MPP), and E2 + ERb block (treated with E2 + PHTPP). Data represent mean ±

standard error of relative gene expression (n = 4 animals/group). Bars with di�erent letters indicate significant di�erences among groups

(P < 0.05).

species (38) and tissues (39, 40). Comparative aspects of E2 on

CL function in dogs and other species have also been recently

reviewed in (41).

Increased expression of ESR1 and consequently of the

ESR1/ESR2 ratio has been shown to be associated to aggressive

prognostic and worse overall survival in patients with papillary
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FIGURE 7

Gene expression of CASP3, CASP8, CASP9, BAX, and FAS in canine luteal cells collected on days 20, 40, and 60 after ovulation and cultivated for

10 days until confluence was reached. Bars indicate six di�erent groups: Control, E2 (treated with E2), ERa block (treated with

methyl-piperidino-pyrazole [MPP]), ERb block (treated with pyrazolo (1,5-a) pyrimidine [PHTPP]), E2 + ERa block (treated with E2 + MPP), and

E2 + ERb block (treated with E2 + PHTPP). Data represent mean ± standard error of relative gene expression (n = 4 animals/group). Bars with

di�erent letters indicate significant di�erences among groups (P < 0.05).

thyroid carcinoma (42), whereas decreased ESR1/ESR2 ratio

in endometriosis-like phenotype mice lead to low response

to P4 and subfertility (43). Moreover, during physiological

development of rat Sertoli cells, it has been reported that

ESR1/ESR2 ratio decreases with age and this shift seems

to be important for termination of proliferation and begin
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of differentiation period (44). Also in canine CL the ratio

ESR2/ESR1 has been shown to be dependent on the pregnancy

and developmental stages (6) (also addressed below). These

previous studies, using different species, cells, and organmodels,

further highlight the different biological effects mediated by

the two E2 receptors. Similarly, our results show a switch of

ESR1/ESR2 ratio from day 30 to 40 p.o. matching the end of

CL maintenance phase and the start of the regression phase.

Sonnack (45) used transmission electronmicroscopy to illustrate

morphological changes in canine non-pregnant CL on day

45 p.o. (early luteal regression): the smooth endoplasmatic

reticulum of luteal cells shows the first morphological changes

and signs of degenerative transformation accompanied by fatty

degeneration, mirrored by the deposition of lipid vacuoles in

the cytoplasm.

Cancer related research corroborates the idea of ERa acting

as a proliferative mediator and ERb as an anti-proliferative agent

(42). Moreover, when present in the same cell, as in the case

of canine luteal cells, ERb induces the formation of ERa/ERb

heterodimers that are less active than ERa homodimers, and

thereby work as an ERa repressor (46). Recently, the ESR2/ESR1

ratio was reported for the gestational and non-gestational canine

CL (6) and, although not matching completely the ratio reported

in the present work, one could observe the mentioned transition

in the abundance of transcripts reflected in the increased

ESR2/ESR1 ratio (6). More in detail, authors describe a gradual

and significant increase in the ESR2/ESR1 ratio between days 10

and 30, and further toward day 40 p.o. followed by a decrease

toward the end of luteal phase (6). Interestingly, in the same

study (6), the abundance of SULT1E1 was assessed and was

increased during late dioestrus, at days 50 and 60. Based on that,

the authors proposed the functional involvement of SULT1E1

(converts active oestrogens into biologically inactive estrogen

sulfates) in the functional withdrawal of E2 in regressing CL (6).

Similar conclusions were implied from transcriptomic studies,

showing increased expression of SULT1E1 in regressing CL (23).

Our results from canine luteal cells in culture demonstrated

that E2 + ERb block can induce an increase in MIK67

mRNA expression on days 20 and 40 p.o. in comparison to

control group, which cannot be achieved by E2 alone or in

combination with ERa block (Figure 6, p < 0.05). The same

pattern was observed for mRNA expression of steroidogenic

enzymes (CYP19A1 and CYP11A1). These mRNAs encode

luteotropic proteins (1, 36, 37) aimed to drive luteal function,

i.e., progesterone production to its plenitude. Besides LH

and prolactin, insulin can also be considered an endocrine

luteotropic factor in the canine CL (36) and its contribution

to E2 production cannot be ruled out (25). The mechanism of

E2 binding to ERa and leading to proliferation is opposed to

binding to ERb (47) leading to expression of anti-proliferative

genes such as p-53, PI3K and Akt, as well as the increase of stress

associated and apoptosis related proteins (48), as also observed

in our study.

Although caspase expression is normally associated with

apoptosis, other functions in homeostasis have been attributed

to them: e.g., caspase 3 participates in bone marrow stromal

stem cell differentiation together with caspase 8, which is

also involved in T-cell maintenance (49), both mechanisms

dissociated from apoptosis. Caspases also participate as

regulators of tumorigenesis, since genes involved in cell

death have normally a tumor suppressor function (49). This

explanation sounds reasonable to justify the increasing amounts

of caspases and BAX observed in the second half of diestrus,

especially in the phase of late luteal regression (day 60 p.o.),

emphasizing the role attributed to E2 binding to ERb, which

leads to an anti-proliferative effect. It is worth mentioning

that the canine non-pregnant CL does not show signs of

apoptotic degeneration during regression (45) and no over-

represented biological function was associated with apoptosis

when analyzing transcriptomic data (23, 26). On the contrary,

the canine pregnant CL shows apoptosis as one of the over-

represented biological functions during luteolysis (23).

These findings correlate very nicely with in vivo E2 plasma

concentration (5) and ERs expression, which acquired an

opposite pattern after day 40 p.o. The authors hypothesize

that a slight E2 increase as well as the switch of increasing

to diminishing ESR1/ESR2 ratio support the canine CL to

initiate programmed regression mechanisms, which deserves

further experimental confirmation, especially because E2

concentrations used in cell culture, which were able to elicit

a response, are above the plasma physiological concentrations.

In the absence of E2-ERb drive, the canine diestrous CL could

deviate from the physiologic path and go into uncontrolled

proliferative conditions, as described for some breast cancers in

which ERb expression was dysregulated (50).

In general, inhibition of ERa or ERb in the absence of E2 did

not affect gene expression. In contrast, under E2 influence, ERa

inhibition permitted upregulation of anti-proliferative factors

such as caspases, BAX and FAS, and ERb inhibition stimulated

transcription of proliferative and luteotropic factors such as

MIK67 and steroidogenic enzymes, suggesting the need of the

ligand to promote different biological functions. Based on the

presented results, it could be hypothesized that manipulating the

functionality of ERs could provide a good future tool to regulate

luteal life span in dogs, which certainly deserves further research.

No significant difference was observed formRNA expression

validated by qPCR of the selected upstream regulators (LEF1,

CTNNB1 and CCND1) of ERa and ERb, or E2 target molecules

(NDRG2 and ATP1A1). RNAseq analyses were carried out with

3 samples per group, and when adding another three samples

for the validation process, no significant difference was observed.

Other studies have reported a high variation in gene and protein

expression among canine CL samples from the same stage of

diestrus (26, 51) not always matching RNAseq data, which

made the present observations not surprisingly. Nevertheless,

in accordance with the bioinformatic analyses performed for
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the above-mentioned genes, which were differentially expressed

over canine diestrus, as depicted from RNAseq, and presented

a TFBS for ERa and/or ERb concomitantly, it was possible to

visualize canonical pathways (Supplementary Table 3) in which

LEF1, CTNNB1, CCND1, NDRG2 and ATP1A1 might be part

during canine CL lifespan.

As target molecule for E2, NDGR2 was qualitatively (qPCR)

and quantitatively (RNAseq) more expressed after day 40 p.o. in

canine CL. It is considered a tumor suppressor gene, activated in

non-cancer cells under stress situations, leading to suppression

of cell proliferation, protein synthesis and inducing cell death

(52). Besides being a target molecule for E2, via binding to ERb,

which in turn regulates NDGR2 expression via transcriptional

activation (53), it participates in other canonical and non-

canonical pathways, such as CTNNB1 and NF-kb, respectively;

both genes also present a TFBS for ESR2, which expression

in this and other study (6) increases after day 40 p.o. In

many malignant tumors, NGDR2 is able to suppress endothelial

cell proliferation and enhance apoptosis by increasing p53

expression (54, 55). The highest p53 gene expression in canine

non-pregnant CL was found on day 60 p.o. (26), suggesting a

possible contribution of E2 in CL regression mediated by ERb,

involving also the apoptotic mechanism and corroborating our

functional studies in canine luteal cell culture.

In the present study ATP1A1 expression increased

qualitatively just before the structural regression started and

it has already been reported to show a positive correlation

with NDGR2 protein and gene expression (56). In porcine

preovulatory luteinized follicles, ATP1A1 was functionally

classified as a cell growth inhibitor (57). A decrease in ATP1A1

expression has also been observed in several human cancers

such as prostate, kidney and bladder, which lead to accelerated

proliferation (56, 58, 59). The increased expression of ATP1A1,

as seen in our RNAseq data, points toward an activation

of ATP1A1 transcription after binding of E2 to ERb, which

seems to be necessary to reduce canine CL proliferation and

initiate regression.

The CTNNB1 gene, encoding for catenin b, and CCND1,

encoding for cyclin D1, are in one hand direct upstream

regulators of ESR1 and ESR2. According to their pattern

of expression depicted by RNAseq and their function

(Supplementary Table 3), they act as repressors of ESR2 and

enhancers of ESR1 transcription in canine CL in the first half of

diestrus. It was also reported that LEF1 can act as transcriptional

repressor for E2 by competing with ERs to bind to DNA (60).

LEF1 also participates in several canonical pathways driven by

ESR2 upstream regulators (Supplementary Table 3). Although

its mRNA expression did not show time-dependent differences,

RNAseq data pointed toward an increased expression in the

beginning of diestrus, which corroborates its presumable

repressive action on ESR2. On the other hand, E2 and related

compounds have been shown to exert their proliferative

effects by binding to ERa (61), inducing for example CCND1

transcription, a key regulator of cell cycle progression (62–64).

Cell proliferation was reported to be greater in the first half of

diestrus and highest until day 15 p.o. in canine non-pregnant

CL (1), matching our reported ESR1/ESR2 ratio, E2 plasma

concentrations (5) and cell culture inhibiting assays (Figure 6).

It is noteworthy that new approaches we used to unravel E2

mechanisms of action in the canine CL brought complementary

data in complete agreement with previously published data.

In conclusion, E2 plays a pleiotropic role in canine corpus

luteum, from formation until regression. Several genes and

proteins are affected by E2 through its binding to ERs in

a time-dependent manner. The number of predicted genes

differentially regulated over diestrus in the canine CL showing

transcription factor binding sites for ESR1 and ESR2 points

toward a much broader role of E2. Additionally, the ESR1/ESR2

ratio associated with E2 fluctuations (5) over diestrus suggests

possible underlying regulatory mechanism involved in autocrine

and paracrine regulation of canine CL lifespan.
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