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Assortative mixing in networks is the tendency for nodes with the
same attributes, or metadata, to link to each other. It is a property
often found in social networks, manifesting as a higher tendency
of links occurring between people of the same age, race, or politi-
cal belief. Quantifying the level of assortativity or disassortativity
(the preference of linking to nodes with different attributes) can
shed light on the organization of complex networks. It is com-
mon practice to measure the level of assortativity according to
the assortativity coefficient, or modularity in the case of categori-
cal metadata. This global value is the average level of assortativity
across the network and may not be a representative statistic when
mixing patterns are heterogeneous. For example, a social network
spanning the globe may exhibit local differences in mixing pat-
terns as a consequence of differences in cultural norms. Here, we
introduce an approach to localize this global measure so that we
can describe the assortativity, across multiple scales, at the node
level. Consequently, we are able to capture and qualitatively eval-
uate the distribution of mixing patterns in the network. We find
that, for many real-world networks, the distribution of assorta-
tivity is skewed, overdispersed, and multimodal. Our method pro-
vides a clearer lens through which we can more closely examine
mixing patterns in networks.
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Networks are used as a common representation for a wide
variety of complex systems, spanning social (1–3), biological

(4, 5), and technological (6, 7) domains. Nodes are used to rep-
resent entities or components of the system, and links between
them are used to indicate pairwise interactions. The link for-
mation processes in these systems are still largely unknown, but
the broad variety of observed structures suggests that they are
diverse. One approach to characterize the network structure is
based on the correlation, or assortative mixing, of node attributes
(or “metadata”) across edges. This analysis allows us to make gen-
eralizations about whether we are more likely to observe links
between nodes with the same characteristics (assortativity) or
between those with different ones (disassortativity). Social net-
works frequently contain positive correlations of attribute val-
ues across connections (8). These correlations occur as a result
of the complementary processes of selection (or “homophily”)
and influence (or “contagion”) (9). For example, assortativity has
frequently been observed with respect to age, race, and social
status (10), as well as behavioral patterns such as smoking and
drinking habits (11, 12). Examples of disassortative networks
include heterosexual dating networks (gender), ecological food
webs (metabolic category), and technological and biological net-
works (node degree) (13). It is important to note that, just as cor-
relation does not imply causation, observations of assortativity are
insufficient to imply a specific generative process for the network.

The standard approach to quantifying the level of assortativ-
ity in a network is by calculating the assortativity coefficient (13).
Such a summary statistic is useful to capture the average mixing
pattern across the whole network. However, such a generaliza-
tion is only really meaningful if it is representative of the popu-
lation of nodes in the network, i.e., if the assortativity of most
individuals is concentrated around the mean. However, when

networks are heterogeneous and contain diverse mixing patterns,
a single global measure may not present an accurate descrip-
tion. Furthermore, it does not provide a means for quantify-
ing the diversity or identifying anomalous or outlier patterns of
interaction.

Quantifying diversity and measuring how mixing may vary
across a network becomes a particularly pertinent issue with
modern advances in technology that have enabled us to capture,
store, and process massive-scale networks. Previously, social
interaction data were collected via time-consuming manual pro-
cesses of conducting surveys or observations. For practical rea-
sons, these were often limited to a specific organization or group
(1, 2, 15, 16). Summarizing the pattern of assortative mixing
as a single value may be reasonable for these small-scale net-
works that tend to focus on a single social dimension (e.g., a
specific working environment or common interest). Now, tech-
nology such as online social media platforms allow for the auto-
matic collection of increasingly larger amounts of social interac-
tion data. For instance, the largest connected component of the
Facebook network was previously reported to account for∼10%
of the global population (17). These vast multidimensional social
networks present more opportunities for heterogeneous mixing
patterns, which could conceivably arise, for example, due to dif-
ferences in demographic and cultural backgrounds. Fig. 1 shows,
using the methods we will introduce, an example of this variation
in mixing on a subset of nodes in the Facebook social network
(14). A high variation in mixing patterns indicates that the global
assortativity may be a poor representation of the entire popula-
tion. To address this issue, we develop a node-centric measure of
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Fig. 1. Local assortativity of gender in a sample of Facebook friendships
(14). Different regions of the graph exhibit strikingly different patterns, sug-
gesting that a single variable, e.g., global assortativity, would provide a poor
description of the system.

the assortativity within a local neighborhood. Varying the size of
the neighborhood allows us to interpolate from the mixing pat-
tern between an individual node and its neighbors to the global
assortativity coefficient. In a number of real-world networks, we
find that the global assortativity is not representative of the col-
lective patterns of mixing.

1. Mixing in Networks
Currently, the standard approach to measure the propensity of
links to occur between similar nodes is to use the assortativity
coefficient introduced by Newman (13). Here we will focus on
undirected networks and categorical node attributes, but assor-
tativity and the methods we propose naturally extend to directed
networks and scalar attributes (Supporting Information).

The global assortativity coefficient rglobal for categorical attri-
butes compares the proportion of links connecting nodes with
same attribute value, or type, relative to the proportion expected
if the edges in the network were randomly rewired. The differ-
ence between these proportions is commonly known as modu-
larity Q , a measure frequently used in the task of community
detection (18). The assortativity coefficient is normalized such
that rglobal =1 if all edges only connect nodes of the same type
(i.e., maximum modularity Qmax) and rglobal =0 if the number of
edges is equal to the expected number for a randomly rewired
network in which the total number of edges incident on each type
of node is held constant. The global assortativity rglobal is given
by (13)

rglobal =
Q

Qmax
=

∑
g egg −

∑
g a

2
g

1−
∑

g a
2
g

, [1]

in which egh is half the proportion of edges in the network that
connect nodes with type yi = g to nodes with type yj = h (or the
proportion of edges if g = h) and ag =

∑
h egh =

∑
i∈g ki/2m is

the sum of degrees (ki) of nodes with type g , normalized by twice
the number of edges, m . We calculate egh as

egh =
1

2m

∑
i:yi=g

∑
j :yj=h

Aij , [2]

where Aij is an element of the adjacency matrix. The normaliza-
tion constantQmax =1−

∑
g a

2
g ensures that the assortativity coef-

ficient lies in the range−1≤ r ≤ 1 (see Supporting Information).

Local Patterns of Mixing. The summary statistic rglobal describes
the average mixing pattern over the whole network. However,
as with all summary statistics, there may be cases where it pro-
vides a poor representation of the network, e.g., if the network
contains localized heterogeneous patterns. Fig. 2 illustrates an
analogy to Anscombe’s quartet of bivariate datasets with iden-
tical correlation coefficients (19). Each of the five networks in

A B C D E

Fig. 2. Five networks (Top) of n = 40 nodes and m = 160 edges with the same global assortativity rglobal = 0, but with different local mixing patterns
generated by varying how edges are assigned across subgroups of node types (Middle). The different local mixing patterns can be seen by the distributions
of rmulti (Bottom). In A, the mixing pattern is homogeneous across all nodes, and this is reflected in the distribution of rmulti by a unimodal distribution that
is peaked around 0. In B–E, there are different heterogeneous mixing patterns, with E being the most extreme case in which half the nodes are highly
assortative and half the nodes are highly disassortative. These differences can be observed in the different distributions of rmulti.
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the top row have the same number of nodes (n =40) and edges
(m =160) and have been constructed to have the same rglobal
with respect to a binary attribute, indicated by a cross (c) or a dia-
mond (d). All five networks have mcc +mdd =80 edges between
nodes of the same type and mcd =80 edges between nodes of
different types, such that each has rglobal =0. Local patterns of
mixing are formed by splitting each of the types {c, d} further
into two equally sized subgroups {c1, c2, d1, d2}. The middle row
depicts the placement of edges within and between the four sub-
groups. Distributing edges uniformly between subgroups creates
a network with homogeneous mixing (Fig. 2A).

We propose a local measure of assortativity r(`) that captures
the mixing pattern within the local neighborhood of a given node
of interest `. Trivially, one could calculate the local assortativity
by adjusting Eq. 1 to only consider the immediate neighbors of `.
However, this approach can encounter problems. For nodes with
low degree, we would be calculating assortativity based only on a
small sample, providing a potentially poor estimate of the node’s
mixing preference. Also, when all of `’s neighbors are of the same
type, then we would assign r(`)=∞ because 1−

∑
g a

2
g =0.

We face similar issues in time series analysis when we wish
to interpret how a noisy signal varies over time. Direct analy-
sis of the series may be more descriptive of the noise process
than of the underlying signal we are interested in. Averaging over
the whole series provides an accurate estimate of the mean, but
treats all variation as noise and ignores any important trends. A
common solution to this problem is to use a local filter such as
the exponential weighted moving average, in which values far-
ther in time from the point of interest are weighted less. We
adopt a similar strategy in calculating the local assortativity. To
make the connection with time series analysis concrete, we define
a random time series where each value is the attribute yi of a
node i visited in a random walk on the graph. A simple ran-
dom walker at node i jumps to node j by selecting an outgoing
edge with equal probability, Aij/ki , and, in an undirected net-
work, the stationary probability πi = ki/2m of being at node i is
proportional to its degree. Then, every edge of the network is tra-
versed in each direction with equal probability πiAij/ki =1/2m .
In this context, a key observation is that we can equivalently
rewrite Eq. 2 as

egh =
∑

i:yi=g

∑
j :yj=h

πi
Aij

ki
, [3]

which is the total probability that a simple random walker will
jump from a node with type g to one with type h . We can then

interpret the global assortativity of the network as the autocorre-
lation (with time lag of 1) of this random time series (see SI Text,
section D for details).

Global assortativity counts all edges in the network equally,
just as the stationary random walker visits all edges with equal
probability. To create our local measure of assortativity, we
instead reweight the edges in the network based on how local
they are to the node of interest, `. We do so by replacing the
stationary distribution π in Eq. 3 with an alternative distribution
over the nodes w(i ; `),

egh(`)=
∑

i:yi=g

∑
j :yj=h

w(i ; `)
Aij

ki
, [4]

and compare the proportion of links between nodes of the
same type in the local neighborhood to the global value ν(`)=∑

g(egg(`)− egg). Then we can calculate the local assortativity
as the deviation from the global assortativity,

r(`)=
1

Qmax

(
ν(`)+

∑
g

egg −
∑
g

a2
g

)
[5]

=
1

Qmax

∑
g

(egg(`)− a2
g ). [6]

All that remains is to define a distribution w(i ; `). We choose the
well-known personalized PageRank vector, the stationary distri-
bution wα(i ; `) of a simple random walk, modified so that, at
each time step, we return to the node of interest ` with probabil-
ity (1−α) (Fig. 3A). In the special case of a network consisting
of nodes linked in a line, wα(i ; `) corresponds to an exponential
distribution (Fig. 3B) and is analogous to the previously men-
tioned exponential filter commonly used in time series analysis.
The personalized PageRank vector is an intuitive choice, given
its role in local community detection (20) and connections to the
stochastic block model (21). It is, however, not the only way to
define a local neighborhood [e.g., a number of graph kernels may
be suitable (22)].

We can now calculate a local assortativity rα(`) for each node
and use α to interpolate from the trivial local neighborhood
assortativity (α=0, the random walker never leaves the ini-
tial node) to the global assortativity (α=1, the random walker
never restarts) r1(`)= rglobal (Fig. 3C). We can also view this
local assortativity as a (normalized) autocovariance of the ran-
dom time series of node attributes, defined as before but now

A B C

Fig. 3. Example of the local assortativity measure for categorical attributes. (A) Assortativity is calculated (as in Eq. 1) according to the actual proportion
of links in the network connecting nodes of the same type relative to the expected proportion of links between nodes of the same type. (B) The nodes in
the network are weighted according to a random walk with restart probability of 1−α. (C) An example of the local assortativity applied to a simple line
network with two types of nodes: yellow or green. The blue bars show the stationary distribution (w(i; `)) of the random walk with restarts at ` for different
values of α. Underneath each distribution, the nodes in the line network are colored according to their local assortativity value.
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generated by a stationary random walker with restarts and only
when traversing edges of the original network.

Choice of α. We can use α to interpolate from the global mea-
sure at α=1 to the local measure based only on the neighbors
of ` when α=0. As previously mentioned, either extreme can be
problematic: r1 is uniform across network, while r0 may be based
on a small sample (particularly in the case of low degree nodes)
and therefore subject to overfitting. Moreover, both extremes are
blind to the possible existence of coherent regions of assortativity
inside the network, as r1 considers the network as a whole, while
r0 considers the local assortativities of the nodes as independent
entities.

To circumvent these issues, we consider calculating the assor-
tativity across multiple scales by calculating a “multiscale”
distribution wmulti by integrating over all possible values of
α (23),

wmulti(i ; `)=

∫ 1

0

wα(i ; `) dα, [7]

which is effectively the same as treating α as an unknown with
a uniform prior distribution (see Supporting Information for
details). Using this distribution, we can calculate a multiscale
measure rmulti that captures the assortativity of a given node
across all scales.

As a simple demonstration, we return to Fig. 2 in which the
distribution of rmulti for each synthetic network is shown in the
bottom row. We see, under homogeneous mixing (Fig. 2A), a uni-
modal distribution peaked around 0, confirming that the global
measure rglobal is representative of the mixing patterns in the net-
work. However, when mixing is heterogeneous (Fig. 2 B–E), we
observe multimodal distributions of rmulti that allow us to disam-
biguate between different local mixing patterns.

2. Real Networks
Next we use rmulti to evaluate the mixing patterns in some real
networks: an ecological network and set of online social net-
works. In both cases, nodes have multiple attributes assigned to
them, providing different dimensions of analysis.

Weddell Sea Food Web. We first examine a network of ecologi-
cal consumer interactions between species dwelling in the Wed-
dell Sea (4). Fig. 4 shows the distributions (green) of local
assortativity for five different categorical node attributes. For
comparison, we present a null distribution (black) obtained by
randomly rewiring the edges such that the attribute values,
degree sequence, and global assortativity are all preserved (see
Supporting Information). In each case, we observe skewed and/or
multimodal distributions. The empirical distributions appear
overdispersed compared with the null distributions.

It may be surprising to see that, for some attributes, the null
distribution appears to be multimodal. Closer inspection reveals
that the different modes are correlated with the attribute values
and that multimodality arises from the unbalanced distribution

of nodes and incident edges across different node types. This
effect is particularly pronounced for the attribute “Metabolic
Category,” for which we observe two distinct peaks in the dis-
tribution. The larger peak that occurs around rmulti≈ 0 repre-
sents all species that belong to the metabolic category “plant”
and accounts for the majority (348/492) of the species in the net-
work, upon which approximately two-thirds of the edges are inci-
dent. This bias in the distribution of edges across the different
node types means that randomly assigned edges are more likely
to connect two nodes of the majority class than any other pair of
nodes. In fact, it is impossible to assign edges such that nodes in
each Metabolic Category exhibit (approximately) the same assor-
tativity as the global value. Specifically, to achieve rglobal =−0.13,
it is necessary that more than half of the edges connect species
from different metabolic categories. However, this is impossible
for the plant category without changing the distribution of edges
over categories.

Facebook 100. We next consider a set of online social networks
collected from the Facebook social media platform at a time
when it was only open to 100 US universities (3). The process
of incrementally providing these universities access to the plat-
form meant that, at this point in time, very few links existed
between each of the universities’ networks, which provides the
opportunities to study each of these social systems in a rel-
atively independent manner. One of the original studies on
this dataset examined the assortativity of each demographic
attribute in each of the networks (3). This study found some
common patterns that occurred in many of the networks, such
as a tendency to be assortative by matriculation year and dor-
mitory of residence, with some variation around the magnitude
of assortativity for each of the attributes across the different
universities.

In this case, it makes sense to analyze the universities sepa-
rately, since it is reasonable to assume that university member-
ship played an important and restricting role in the organization
of the network. However, a modern version of this dataset might
contain a higher density of interuniversity links, making it less
reasonable to treat them independently; in general, partitioning
networks based on attributes without careful considerations can
be problematic (24).

Fig. 5 depicts the distributions of rmulti for each of the 100
networks according to dormitory. For many of the networks, we
observe a positively skewed distribution. The surrounding sub-
plots show details for four universities with approximately the
same global assortativity rglobal≈ 0.13, but with qualitatively dif-
ferent distributions of rmulti. Common across these distributions
is that all of the empirical distributions exhibit a positive skew
beyond that of the null distribution. Closer inspection reveals
that, in all four networks, the nodes associated with a higher local
assortativity belong to a community of nodes more loosely con-
nected to the rest of the network. These nodes also correspond to
first-year students, which suggests that residence is more relevant
to friendship among new students than it is for the rest of the stu-
dent body. We see this pattern in many of the other schools too:

Fig. 4. Multiscale assortativity for different attributes in the Weddell Sea Food Web. The observed distribution is depicted by the solid green bars. The
black outline shows the null distribution.
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Fig. 5. Distributions of the local assortativity by residence (dorm) for each of the schools in the Facebook 100 dataset (3). Dotted black lines indicate the
10th and 90th percentiles, while the solid black lines show the interquartile range. The global assortativity is indicated by the blue square markers. (A–D)
The distributions for four schools (Dartmouth, Wellesley, Haverford, and Wesleyan) are shown in detail. Each of them has approximately the same global
assortativity (rglobal≈ 0.13), but the distributions indicate different levels of heterogeneity in the pattern of mixing by residence. While the distributions are
different, there exists a common trend that the first-year students tend to be more loosely connected to the rest of the network and exhibit higher values
of assortativity (nodes to the right of the dashed cyan line).

First-year students are more assortative by year (for all schools
except one) and by residence (more than 75% of schools); see
Supporting Information for details.

We can also use local assortativity to compare how the mix-
ing of multiple attributes covaries across a network. This may
be of interest, as a positive correlation could suggest a relation-
ship between attributes, while a negative correlation indicates
that assortativity of one attribute may replace the assortativ-
ity of another. Note that differences in normalization between
attributes mean that the actual values may not be directly com-
parable, which is why we focus on correlation. Fig. 6 compares
rmulti for year of study and place of residence. The central scat-
ter plot shows, for each university, the correlation between local

assortativities of the two attributes (x axis) against the differ-
ence in the two global assortativities for each network (y axis),
which was previously the only way to compare assortativities (3).
The four surrounding subplots show the joint distribution of year
and dorm local assortativity for specific universities. The yellow
points indicate students in their first year. In most universities,
we observed that first-year students were the most assortative by
either year, residence, or both. In both Auburn and Pepperdine,
there is a negative correlation between year and dorm assorta-
tivity, suggesting that many friendships are associated with either
being in the same year or sharing a dorm.

For Simmons and Rice, we observe a positive correlation
between dorm and year local assortativity. However, in Simmons,

Fig. 6. A scatter plot, in which each school is a point, indicating the correlation of local assortativities by dorm and matriculation year (x axis) and proportion
of nodes which are more assortative by dorm than by year (y axis). For reference, the blue vertical line indicates zero assortativity (random mixing), and
the red horizontal line indicates zero difference in rglobal. Joint distributions of the dorm and year assortativities for four of the schools are shown in the
surrounding plots, in which each dot represents a student (yellow = first-year; black = others). Blue lines indicate rglobal.
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we see that the first-year students form a separate cluster, while, in
Rice, they are much more interspersed. This difference may relate
to how students are placed in university dorms. At Simmons,
all first-year students live on campus (www.simmons.edu/
student-life/life-at-simmons/housing/residence-halls) and form
the majority residents in the few dorms they occupy. Rice houses
their new intakes according to a different strategy, by placing
them evenly spread across all of the available dorms. The fact
that students are mixed across years and that the vast major-
ity [almost 78% (campushousing.rice.edu/)] of students reside
in university accommodation offers a possible explanation for
why we observe a smooth variation in values of assortativity
without a distinction between new students and the rest of the
population.

3. Discussion
Characterizing the level of assortativity plays an important role
in understanding the organization of complex systems. However,
the global assortativity may not be representative, given the vari-
ation present in the network. We have shown that the distribu-
tion of mixing in real networks can be skewed, overdispersed,
and possibly multimodal. In fact, for certain network configura-
tions, we have seen that a unimodal distribution may not even be
possible.

As network data grow bigger, there is a greater possibility for
heterogeneous subgroups to coexist within the overall popula-
tion. The presence of these subpopulations adds further to the
ongoing discussions of the interplay between node metadata and
network structure (24) and suggests that, while we may observe

a relationship between particular node properties and existence
of links in part of a network, it does not imply that this rela-
tionship exists across the network as a whole. This heterogene-
ity has implications for how we make generalizations in net-
work data, as what we observe in a subgraph might not nec-
essarily apply to the rest of the network. However, it may also
present new opportunities too. Recent results show that, with an
appropriately constructed learning algorithm, it is still possible
to make accurate predictions about node attributes in networks
with heterogeneous mixing patterns (25) and, in some cases, even
utilize the heterogeneity to further improve performance (26).
Quantifying local assortativity offers a new dimension to study
this predictive performance. Heterogeneous mixing also offers
a potential new perspective for the community detection prob-
lem (27), i.e., to identify sets of nodes with similar assortativity,
which may be useful in the study of “echo chambers” in social
networks (28).

Our approach to quantifying local mixing could easily be
applied to any global network measure, such as clustering coef-
ficient or mean degree. It may also be used to capture the
local correlation between node attributes and their degree, a
relationship that plays a definitive role in network phenomena
such as the majority illusion (29) and the generalized friendship
paradox (30).
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