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Field-driven Domain Wall Motion 
in Ferromagnetic Nanowires 
with Bulk Dzyaloshinskii-Moriya 
Interaction
Fengjun Zhuo1,2 & Z. Z. Sun1

Field-driven domain wall (DW) motion in ferromagnetic nanowires with easy- and hard-axis anisotropies 
was studied theoretically and numerically in the presence of the bulk Dzyaloshinskii-Moriya interaction 
(DMI) based on the Landau-Lifshitz-Gilbert equation. We propose a new trial function and offer an exact 
solution for DW motion along a uniaxial nanowire driven by an external magnetic field. A new strategy 
was suggested to speed up DW motion in a uniaxial magnetic nanowire with large DMI parameters. In 
the presence of hard-axis anisotropy, we find that the breakdown field and velocity of DW motion was 
strongly affected by the strength and sign of the DMI parameter under external fields. This work may be 
useful for future magnetic information storage devices based on DW motion.

In the past few years, the manipulation of magnetic domain wall (DW) motion has attracted intensive attention 
for its fundamental interest and potential impacts in logic operations and data storage devices1–17. The DW 
motion can be controlled so far by static magnetic fields1–4, spin transfer torque5–10, microwaves or field pulses11,12, 
and spin waves (magnons)13–18. Recently, a lot of experiments have uncovered that the Dzyaloshinskii-Moriya 
interaction (DMI)19,20 plays a crucial role in stabilizing the chiral spin textures such as spin spirals21,22, homochiral 
DWs23–25 and skyrmions26,27. In addition, recent theoretical results predicted that the DMI has enormous poten-
tial to influence DW motion if it can be controllably manipulated17,28,29. The DMI is an antisymmetric exchange 
interaction which results from spin-orbit scattering of electrons in lattices or at the interface of noncentrosym-
metric magnetic materials because their crystals are lacking structural inversion symmetry23,30. The DMI between 
two atomic spins Si and Sj located on neighboring atomic sites i and j can be written as:  = ⋅ ×D S S( )iDM j i j , 
where Dij is the DMI vector30–33. Therefore, the DMI prefers to make atomic spins on neighboring sites to be 
mutually perpendicular and leads to a chiral noncollinear spin structures when it competes with the exchange 
coupling. The direction of Dij depends on the type of system considered. In this work we will focus on the 
so-called bulk DMI which was found in bulk noncentrosymmetric magnetic materials34,35. The vector Dij is par-
allel to the unit vector uij joining the site of i and j, which is different from another so-called interface DMI which 
can be observed directly in ultrathin films by Brillouin light spectroscopy where Dij⊥ uij

29,33,36,37. The bulk DMI 
has micromagnetic energy density in continuous form εDMI =  Dm ⋅  (∇  ×  m), where D is the DMI constant and m 
is the normalized magnetization vector m =  M/Ms. Here M is a local magnetization vector with a saturation mag-
netization Ms.

In this paper, we theoretically and numerically investigated the influence of the bulk DMI on field-driven DW 
motion in ferromagnetic nanowires with two magnetic anisotropy coefficients (biaxial wire), one for the easy-axis 
anisotropy along z-axis and another for hard-axis along y-axis as shown in Fig. 1(a). The cases with and without 
the hard-axis anisotropy are discussed in detail respectively. In the absence of the hard anisotropy, a new trial 
function was adopted and an exact solution was then obtained for the DW motion induced by an external field 
along the wire. The DW average velocity was found to be proportionally to the external fields as the DW width 
depends on the strength of the DMI constant D. Hence, a new strategy to speed up the DW motion in a uniax-
ial magnetic nanowire was suggested by increasing the DMI parameter which might be realized through some 
methods, for example, by interface engineering30,32. For the biaxial anisotropy case, an approximation method 
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of generalized coordinates was applied28,38,39. It was uncovered that the breakdown field and velocity of the DW 
motion was strongly affected by the strength and sign of the DMI parameter under external fields. Furthermore, 
our theoretical results had been verified by solving the Landau-Lifshitz-Gilbert (LLG) equation numerically in a 
one-dimensional (1D) spin chain model. This discovery could be some help for future magnetic DW information 
storage devices.

Model and Analytical Results
We considered a ferromagnetic nanowire which was modeled as a 1D classical biaxial spin chain along z direction 
as shown in Fig. 1(a). The continuous free energy density (per cross-sectional area) for the wire under an external 
field H is17,28

∫ ε µ= 
 ∇ − + + − ⋅  .⊥m H mE A Km K m dz( ) (1)z y DMI0

2 2 2
0

The first term of E in the integral is the exchange energy density with exchange coefficient A0 >  0. The second 
and third terms describe easy- and hard-axis anisotropy energy densities with coefficients K, K⊥ >  0, and the last 
term is the Zeeman energy density. εDMI is the bulk DMI term introduced previously.

The spatiotemporal dynamics of the normalized magnetization m is governed by the LLG equation12,13,

τ α τ∂ ∂ = − × + × ∂ ∂m m h m m/ / , (2)eff

where τ =  (γMs)−1t is the normalized time and γ is the gyromagnetic ratio. α is phenomenological Gilbert damp-
ing constant and heff is the effective field given by the functional derivative of free energy density with respect to 
magnetization, δ δ µ= −h mE( / )/eff 0 , where μ0 is the vacuum permeability. The first term on the right hand side 
of the LLG equation describes a precessional motion of m and the second term describes the relaxation motion.

A usual spherical coordinates of polar angle θ and azimuthal angle ϕ relative to z axis was employed. Thus, m 
is expressed as m =  (sin θ cos ϕ, sin θ sin ϕ, cos θ) and the effective field reads θ= − −θ θ ϕ ϕˆ ˆh h e h e1/ sineff , where
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and chosen the external field along z axis (i.e., = ˆh hez). The symbols ′  and ′ ′  denote the partial and second partial 
derivative in z component. The dynamical equation (2) then takes the form

α θ θ α
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Initially, we considered the uniaxial anisotropy situation (i.e., =⊥K 0) with a rotational symmetry around z 
axis. Without the external field and the DMI, the static DW profile follows the well-known Walker solution 
θ = ∆−2 tan exp(z/ )1

0 , where ∆ = A k/0  is the width of the DW40,41. When the external field and the DMI are 
taken into account, a new trial function is adopted as follow,

Figure 1.  (a) Sketch of the nanowire with a head-to-head domain wall (DW) using yellow arrows. The blue 
and red regions denote domains on both sides of the wire. The color transition area denotes DW. The black 
arrow denotes the external magnetic field. (b) The snapshot of initial spin S components near the DW center for 
α =  0.1, J =  20, Kz =  1 and D =  1.
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θ τ τ ϕ τ ωτ= − ∆ = Γ +−z exp z Z z z( , ) 2 tan [( ( ))/ ], ( , ) , (5)1

where Γ  =  d/2A. ∆ = − ΓA k A/( )2  describes the new DW width with the DMI28. Z(τ) is the DW center posi-
tion defined as the location where the spin has zero z-component. One should note that ϕ is assumed to vary with 
time and space which is different from the usual Walker solution. Moreover, the DW profile Eq. (5) is only allowed 
if the DMI coefficient is smaller than the critical value =d Ak2c  under the condition of spiral magnetization 
state being stable28.

By substituting the trial function Eq. (5) into Eq. (4) with k⊥ =  0, the solution can be found,

α α= = ∆ +v Z h/(1 ), (6)2

ϕ τ τ α= Γ + + .z z h( , ) /(1 ) (7)2

Here an exact solution of Eq. (4) is given only when K⊥ =  0. One should note that the exact solution with the DMI 
is different from the well-known steady solution, v =  (γαΔ 0)/(1 +  α2)H and ϕ(t) =  ϕ(0) +  (γH)/(1 +  α2)t, for a 
uniaxial anisotropy obtained by Slonczewski41. Firstly, the DW width is larger when the DMI is taken into 
account. As a result, the new DW velocity is larger by a factor of ∆ ∆ = − d d/ 1/ 1 ( / )c0

2  compared to the case 
without the DMI under the same field magnitude. To give a practical example, the parameters of FeGe is used and 
the DW velocity is increased by a factor of 217. Thus, a new method to speed up the DW motion in a uniaxial 
magnetic nanowire can be proposed by increasing the DMI parameter. Secondly, the azimuthal angle ϕ with the 
DMI depends linearly on time and space, but ϕ without DMI is spatially constant (i.e., ∂ ϕ/∂ z =  0) and increases 
linearly only with time. Finally, when we let d =  0 in Eqs (6) and (7) it returns to the form obtained by Slonczewski. 
That is to say, our results with the DMI have included the case without DMI.

Next, we considered the case of a ferromagnetic nanowire with biaxial anisotropy. The DW profiles are 
described by Eq. (4) and the DW width Δ  is not a constant for the present case17, therefore our approach for the 
uniaxial anisotropy situation cannot be straightforwardly extended to the biaxial case. Nevertheless, if applied 
external field and hard-anisotropy coefficient is small we can consider the DW width Δ  as invariant  
(i.e., ∆ = − ΓA k A/( )2 ). Then we applied the method of generalized coordinates developed by Tretiakov et al. 
where two zero modes in the method correspond to the translation of the DW along the wire and its rotation 
around the wire axis of magnetization texture in 1D nanowires28,38,39.

For the 1D uniaxial spin chain with the DMI the free energy density takes the form =E0  
∫ ε∇ − +mA Km dz[ ( ) ]z DMI0

2 2 . There exists a static head-to-head DW profile for the static LLG equation

δ δ µ× =m mz E z( ) ( ( )/ )/ 0, (8)0 0 0

which can be expressed as28
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where z0 represents the DW center position and ϕ0 represents the tilt of the DW. The static profile corresponds to 
two zero modes of the system which are the most relevant modes if the system is perturbed. Then, the perturbed 
system can be represented in the form of the two zero modes with a small correction resulted from the perturba-
tion. In our system, the perturbed terms are the external field and the hard-anisotropy term. Some details of the 
method and calculations were described in the supplementary material. Illustration and discussion of the results 
are as followed.

When the external field met h ≤  hc, we expected that the DW only moves along the wire and does not rotate 
around the axis of the wire, ϕ =


00 , where

α
π
π

=
+ Γ ∆
− Γ∆

Γ∆
Γ∆

h h1
(1 ) sinh( ) (10)c w

2 2

is called as breakdown field. hw =  αk⊥ is the well-known Walker breakdown field40,41. Thus, the DMI decreases the 
breakdown field, hc <  hw, because of <

α
π
π

+ Γ ∆
− Γ∆

Γ∆
Γ∆

11
(1 ) sinh( )

2 2
. The equations for the DW velocity is

α
= =

∆
∆
.v z h (11)0

0
2

Thus, the DW velocity v increases linearly with h and the maximum velocity is

α
=
∆
∆
.v h (12)max c

0
2

On the other hand, when h is larger than hc, the DW width Δ  and its tilt angle ϕ0 is time-dependent 
(i.e., ϕ ≠


00 ), but the DW was found to make an oscillation motion by the following numerical study. The average 

velocity of the DW can be rewritten as
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For the average velocity Eq. (13), firstly it returns to Eq. (6) if we consider the uniaxial anisotropy situation, k⊥ =  0 
or hc =  0. It is easily noticed that Eq. (11) and (13) equivalent at breakdown field, h =  hc. So Eq. (13) is consistent 
with the previous results. When the external field h is above hc, the DW velocity decreases because the DW not 
only translates along the wire but also rotates around the wire axis which consumes a small percentage of energy 
from the external field.

Numerical Results and Discussion
Until now, we had theoretically studied field-driven DW motion in a 1D biaxial ferromagnetic nanowire with the 
DMI and used some approximations to simplify the model. In general, a micromagnetic simulation is required to 
verify the validity of the findings under realistic situation42. Thus, Eq. (2) was solved numerically in a 1D nanowire 
here. In our simulations, the time, length, field amplitude and energy density are in the units of (γMs)−1, a, Ms and 
µa Ms

3
0

2, respectively. The wire length was chosen to be 10000 (from n =  − 5000 to n =  5000) with the unit length 
on a simple cubic lattice and the crystal constant is a. Initially, a static head-to-head DW was placed at the wire 
center (n =  0). Meanwhile, an absorbing boundary condition was adopted to avoid spin wave reflection at both 
ends by taking a large damping constant (α =  1) near the ends.

We now considered a classical Heisenberg biaxial chain along z direction with the DMI in an external field 
H43,44
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where Sn is unit spin direction at the site n. The first term in Eq. (14) is ferromagnetic coupling between nearest 
neighboring lattice sites and J >  0 is ferromagnetic coupling constant. The second and third sum describe easy 
z-axis anisotropy and hard y-axis anisotropy with Kz, Ky >  0. The fourth sum gives the Zeeman energy term and 
the last term describes the micromagnetic energy density produced by the DMI where D is the DMI vector.

It is firstly considered the uniaxial anisotropy case with parameters a =  0.1, J =  20, Kz =  1, D =  1 and Ky =  0. 
The snapshot of the initial spin profile near the DW center was shown in Fig. 1(b). It satisfies a static head-to-head 
DW profile with the DMI, θ = ∆arctane2n

n
 and ϕ = Γ nn s , where the DW width ∆ = −J JK D/ (2 )z

2  and 
Γ s =  D/J.

We now studied the dynamics of the DW under a field H applied along the easy (z) axis which induces DW 
motion. In the following, the solid curves represented the analytical results and the scattered points were the 
numerical solutions. The average velocity of the DW as a function of field with different DMI constants and dif-
ferent easy anisotropy coefficients for Kz =  1 was shown in Fig. 2(a) and for Kz =  2 was shown in Fig. 2(b). As 
discussed in the previous results, the average DW velocity is linearly related to the external field with different 
DMI constants. The DMI increases the DW width as well as increases the velocity, thus the DW motion can be 
accelerated by increasing the strength of D. The solid lines shown in Fig. 2(a,b) were from our theoretical result 
Eq. (6). In Fig. 2(c), the field dependence of the DW average velocity was shown with different easy z-axis aniso-
tropy Kz. The theoretical predictions from Eq. (6) were shown by the solid lines. The average velocity is directly 
proportional to the external field and monotonically decreasing as Kz increases because the DW width gradually 
decreases. The relationship between the DW width and the DMI constants was also analyzed in Fig. 2(d) for sev-
eral Kz. The theoretical result ∆ = −J JK D/ (2 )z

2  was plotted with solid curves.
Next, hard y-axis anisotropy Ky was taken into account. In Fig. 3, the field dependence of the average DW 

velocity with Ky =  1 was plotted with various values of D. The dash curves are fitted curves. The inset of Fig. 3 
shows an enlarged view near the breakdown fields. In Fig. 3, breakdown fields for field-driven DW motion with 
the DMI were marked by vertical solid lines. When the external field is below the breakdown field, the velocity is 
approximately proportional to field strength as the slope gradually decreases approaching to the breakdown field. 
The velocity reaches a maximum vmax at the point that the external field is equal to the breakdown field. Then the 
DW velocity reduces gradually with increasing field. One should note that our findings about field-driven DW 
motion with the bulk DMI is very different from the previous work by Thiaville et al. as regard to the interface 
DMI29. They found that the Walker field is nearly linear increasing with positive D. Here in our study about the 
bulk DMI, the breakdown field is not only extremely relevant to the magnitude and sign of D but also smaller than 
the case without the DMI.

Lastly, we make a comparison between the theoretical and numerical results for biaxial anisotropy situation 
as shown in Fig. 4. The field dependence of the average DW velocity was plotted in Fig. 4(a). The solid curves 
denote the theoretical results from Eqs (11) and (13) and the scattered points are the numerical solutions. The 
vertical dash lines are positions of breakdown fields. The comparison about the breakdown field and the maxi-
mum average velocity was shown in Fig. 4(b,c). The solid curves in Fig. 4(b,c) are analytical results of Eqs (10) and 
(12). Based on a series of comparison and analysis, some interesting results were observed. Firstly, the breakdown 
field decreases with the increasing of the DMI strength D but no simple linear relationship exists between them. 
Moreover, the breakdown field with a negative D is smaller than a positive D in Fig. 4(b). Then, as D increases, 
vmax decrease rapidly and the maximum average velocity with a negative D is also smaller than one with a pos-
itive D. They are very different from the situation under the interface DMI29,45,46. The reason of some deviation 
between theory and simulation might be that the DW width with biaxial coefficient should be larger than that 
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with easy-axis anisotropy coefficient. If the DW width was considered as a variable in field-driven DW motion 
under biaxial anisotropy situation with DMI, a modified q–Φ model by adding new conjugated collective varia-
bles (DW width and amplitude of the DMI deformation) has been reported earlier47.

Conclusions
We had theoretically and numerically investigated the influence of the bulk DMI on field-driven DW motion in 
ferromagnetic nanowires. The uniaxial anisotropy and biaxial anisotropy cases were studied. Under the case with 
uniaxial anisotropy, an exact solution was found where the DW velocity is proportional to the external field and 
the DW width depends on the strength of the DMI constant. Thus, a new strategy to speed up the DW motion in 
a uniaxial magnetic nanowire by increasing the DMI parameter was proposed. For the biaxial anisotropy case, 
we employed an approximation method and found that the field-driven motion of a DW is strongly affected by 
the strength and sign of the DMI constant with decreasing the breakdown field and velocity. A micromagnetic 

Figure 2.  Field dependence of DW average velocity for different DMI constants with α =  0.1, J =  20, Kz =  1 in 
(a) and Kz =  2 in (b) in the absence of the hard-axis anisotropy coefficient. The solid lines are from solution of 
Eq. (6). (c) Field dependence of DW average velocity for different easy anisotropies. Also, the solid lines are 
from solution of Eq. (6). (d) The DMI constants dependence of DW width for different easy anisotropies. The 
solid curves denote the theoretical result ∆ = −J JK D/ (2 )z

2 .

Figure 3.  Field dependence of DW average velocity for different DMI constants with a = 0.1, J = 20 and Kz = 1 
in the presence of the hard-axis anisotropy Ky = 1. The vertical solid lines denote breakdown fields. The dash 
curves are fitted curves. Inset: Enlarged figure near the breakdown fields.
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simulation was also taken to verify the validity of the theoretical findings under realistic situation. Our results 
may be useful for ultrahigh-density magnetic storage devices based on DW motion in practical materials with 
the DMI.

Method
The analysis conducted in this work was based on a combination of theoretical analytical derivations and micro-
magnetic simulations. Our micromagnetic simulation code is written based on finite difference method. We use 
Runge-Kutta method to solve the LLG equations. In our simulations, the time, length, field amplitude and energy 
density are in the units of (γMs)−1, a, Ms and µa Ms

3
0

2, respectively. The wire length was chosen to be 10000 (from 
n = −5000 to n =  5000) with the unit length on a simple cubic lattice and the crystal constant is a. Initially, a static 
head-to-head DW was placed at the wire center (n =  0). An absorbing boundary condition was adopted to avoid 
spin wave reflection at both ends by taking a large damping constant (α =  1) near the ends.
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