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A B S T R A C T

MSS/pMMR patients are unresponsive to PD-1/PD-L1 blockade in colorectal cancer (CRC), but 
the mechanisms are unclear. A better understanding of immunotherapy resistance in CRC may 
lead to more precise treatment and expand the benefit of immunotherapy to patients. In this 
study, we constructed mouse model of subcutaneous CRC tumor received anti-PD-L1 treatment 
with or without fusobacterium nucleatum (F. nucleatum) infection. Then we used single-cell RNA 
sequencing (scRNA-seq) to explore the comprehensive landscape of the tumor microenvironment 
(TME). Our data delineated the composition, subclonal diversity and putative function of distinct 
cells, tracked the developmental trajectory of tumor cells and highlighted cell-cell interactions. 
We found different compositions and functions of both tumor cells and immune cells. Single anti- 
PD-L1 monoclonal antibody (mAb) treated tumor exhibited two specific clusters which might be 
resistant to PD-L1 blockade. The accumulation of immune cells, including T cell, NK cell and pro- 
inflammatory macrophage subset in tumors infected with F. nucleatum may be one of the reasons 
for the increased sensitivity to PD-L1 blockade. Thus, targeting F. nucleatum to change the 
composition of tumor cell subclusters and enliven the immune response might help to overcome 
immune checkpoint blockade (ICB) resistance.

1. Introduction

Though standard conventional treatments have made substantial progress, colorecatal cancer (CRC) ranked third of newly diag-
nosed cases and second of cancer-related deaths [1]. Owing to the burden of CRC incidence and mortality, efforts to perform in-depth 
insight into its pathogenesis, development and treatments are critical. CRC originates from complex and heterogeneous etiological 
factors and pathogenetic mechanisms. Chromosomal instability, microsatellite instability (MSI) and the CpG island methylation 

* Corresponding author. No. 301, Yanchang Middle Road, Jing’an District, Shanghai China.
** Corresponding author. No. 301, Yanchang Middle Road, Jing’an District, Shanghai, China.

E-mail addresses: gaoyaohui187@tongji.edu.cn (Y. Gao), weiqing1971@126.com (Q. Wei). 
1 These authors contributed equally to this work.

Contents lists available at ScienceDirect

Heliyon

journal homepage: www.cell.com/heliyon

https://doi.org/10.1016/j.heliyon.2024.e37511
Received 11 October 2023; Received in revised form 28 August 2024; Accepted 4 September 2024  

Heliyon 10 (2024) e37511 

Available online 6 September 2024 
2405-8440/© 2024 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license 
( http://creativecommons.org/licenses/by-nc-nd/4.0/ ). 

mailto:gaoyaohui187@tongji.edu.cn
mailto:weiqing1971@126.com
www.sciencedirect.com/science/journal/24058440
https://www.cell.com/heliyon
https://doi.org/10.1016/j.heliyon.2024.e37511
https://doi.org/10.1016/j.heliyon.2024.e37511
http://creativecommons.org/licenses/by-nc-nd/4.0/


pathway (CIMP) are three major molecular pathways causing CRC. Among the process of carcinogenesis, gut microbes play a role in 
the conversion of healthy intestinal to dysplastic [2]. Fusobacterium nucleatum (F. nucleatum), an anaerobic bacterium enriched in 
intestinal tissues, is associated with initiating and promoting colorectal carcinogenesis [3–5]. A better understanding of the rela-
tionship between F. nucleatum and tumor microenvironment (TME) may provide new targets for CRC prevention and therapy.

In recent years, due to the increasing knowledge in tumor development, novel anti-tumor treatments are constantly emerging 
[6–9]. Among these therapies, immune checkpoint blockade (ICB), especially anti-PD-1 and anti-PD-L1 mAb, has revolutionized 
cancer therapy as an effective and durably responsive approach in various cancers, including melanoma, non-small cell lung cancer 
(NSCLC), liver cancer, and CRC [10–12]. The patients characterized by high tumor mutation burden, positive PD-L1 expression, MSI 
phenotype and enriched lymphocyte infiltration are more sensitive to ICB [13–16]. However, a proportion of these with initial 
response eventually relapse during the treatment [17]. In this scenario, it is essential to understand the mechanisms of immunotherapy 
resistance. It has been suggested that lack of PD-L1 expression, loss of neoantigen, T Cell exclusion, immune dysfunction, metabolism 
and epigenetics are associated with poor response to anti-PD therapy in tumors. One approach to overcoming PD-L1 mAb resistance is 
combination with other drug targets, for example chemotherapy, radiotherapy, anti-VEGF targeted therapies and other immuno-
therapy, such as anti-CTLA-4 therapy [18]. Of note, a relationship was found between microbiota diversity and improved immuno-
therapy efficiency, even including some pathogenic bacteria, such as F. nucleatum and enterotoxigenic Bacteroides fragilis [19,20]. Our 
previous study has shown that F. nucleatum enhances the sensitivity of CRC to anti-PD-L1 therapy, but the mechanism remains elusive 
and need further investigations [20].

In this study, we performed single-cell RNA sequencing (scRNA-seq) to compare the gene expression pattern and associated 
pathways of each individual cell between anti-PD-L1 treated CRC samples with or without F. nucleatum infection. We then tracked the 
developmental trajectory of tumor cells to uncover their differentiation direction influenced by distinct stimuli in the TME. Finally, we 
analyzed the intercellular signaling networks between diverse cells. Based on the results, we can better understand the distinct features 
of CRC that are sensitive or insensitive to PD-L1 blockade and unmasked how F. nucleatum regulated the TME.

2. Material and methods

2.1. Sample collection and preparation of single-cell suspensions

Xenograft experiments were performed according to our previous study [20]. Briefly, 4–6 weeks BALB/c mice were fed with 
drinking water with Streptomycin (2 mg/ml) and penicillin (2000 U/ml) for 1 week before CT26.WT cell (5 × 105, purchased from 
ATCC, CRL-2638) were subcutaneously injected into the right armpit of the mice. Once the subcutaneous tumor reached 100 m3, mice 
received an intraperitoneal injection of an anti-PD-L1 mAb (αPD-L1, BP0101, BioXcell) or an isotype control mAb, combined with an 
intratumoral injection of F. nucleatum, or phosphate-buffered saline (PBS) every 3 days. Tumor samples were grouped as the control 
tumor (isotype control mAb with PBS), the αPD-L1 tumor (αPD-L1 with PBS), the Fn tumor (isotype control mAb with F. nucleatum) and 
the Fn+αPD-L1 tumor (αPD-L1 with F. nucleatum), respectively. Once the mice were sacrificed, the subcutaneous tumors were collected 
immediately and minced into small pieces after washed three times with Hanks’ balanced salt solution (Sigma-Aldrich). Then we 
digested them by incomplete Roswell Park Memorial Institute 1640 with endotoxin free collagenase I (2 mg/mL; Sigma-Aldrich) for 1 h 
at 37 ◦C, followed by filtering impurities with a 45 μm sterile strainer. The single-cell suspensions were resuspended at a concentration 
of 1000 cells/milliliter (mL). 5 mL of erythrocyte lysis solution was added to the cell suspension for 5 min. Animal experiments were 
conducted in accordance with the National Institutes of Health Guidelines for the Care and Use of Laboratory Animals. The study 
procedures were approved by the Institutional Animal Care and Use Committee of Shanghai Tenth People’s Hospital, School of 
Medicine, Tongji University (ID Number: SHSY-2018–3566).

2.2. ScRNA library construction, sequencing, quality control (QC) and gene quantification

The library construction and sequencing were completed by OE Biotech Co., Ltd. (Shanghai, China) following the User Guide of 
Chromium Next GEM Single Cell 3′ GEM, Library & Gel Bead Reagent Kits v3.1 (Cat. No. PN-1000121). The 10x genomics official 
software CellRanger (version 3.1.0) was used to quantify the high-throughput single cell transcriptome by identifying the barcode 
sequence markers and the Unique Molecular Identifier (UMI) of different mRNA molecules in each cell. Then QC statistics was con-
ducted on the raw sequencing data which were aligned to the mouse reference genome.

2.3. Gene quantitative QC and data preprocessing

The Seurat software package (version 3.1.1) was used to further control and process the data. Based on the distribution of the 
number of expressed gene (nGene), the number of UMI (nUMI), and the percentage of mitochondrial gene expression (percent. mito) in 
most cells, the generalized linear model was fitted to filter the outlier cells and low-quality cells that with gene and UMI beyond the 
range of the mean ± 2 times standard deviation and percent. mito more than 20%.

2.4. Dimension reduction and cluster analysis

Principal component analysis was performed on the basis of gene expression, the result of which were visualized in two- 
dimensional space through t-distributed Stochastic Neighbor Embedding (t-SNE). Mutual nearest neighbor reduction was used to 
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correct the batch effect of single cell expression profile data. The similarity between two cell clusters was determined by calculating the 
Pearson correlation coefficient of the mean gene expression.

2.5. Differentially expressed genes (DEGs) and functional analysis

The FindAllMarkers function in the Seurat package was used to identify DEGs with fold change more than 1.5 and p value less than 
0.05 by MAST difference test algorithm. The functional annotation and enrichment analysis of Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) were performed using R software based on the hypergeometric distribution. P value was 
adjusted with the Benjamini–Hochberg method and adjust p < 0.05 was considered significant.

2.6. Cell type identification

For cell type identification, we used the R package SingleR with the reference transcriptomic datasets Immunological Genome 
Project (ImmGen) to infer the cell of origin of each of the single cells independently [21]. Then canonical markers were used to further 
validate the annotation results as follows: fibroblasts-Sparc, Dcn, Cald1 [22–24]; epithelial cells-Epcam; smooth muscle cell- Smtn; 
endothelial cell-Pecam1 [25]; T cells-Cd3e, CD4 T cells -Cd4, CD8 T cells-Cd8a, NK cells-Ncr1 [26]; macrophages-Cd14 and Cd68 [27]; 
neutrophils-Ly6g [28].

2.7. CNV analysis

The CNV level of tumor cells was determined using inferCNV (https://github.com/broadinstitute/inferCNV) by comparing the 
gene expression density on the genome of tumor cells with infiltrated immune cells as reference control. The relative expression 
density of genes on each chromosome was visualized through heatmaps which displayed the overexpression and absent expression 
regions. Residual expression filtering was used to reduce the noise signal in the data so as to discover the true CNV signal.

2.8. Interaction network construction

To investigate intercellular communication networks between different cell types in the four tumor samples, the normalized 
scRNA-seq data was imported into the R package Cellchat. We performed ‘Secreted Signaling’, ‘ECM-Receptor’, and ‘Cell-Cell Contact’ 
with a standard parameter set according to the official workflow.

Fig. 1. Cells of the tumor tissues are clustered into 13 subpopulations and are identified to be tumor cells, T cells and macrophages, respectively. (A) 
Experiment workflow of this study. (B) Cell clustering displayed by t-distributed Stochastic Neighbor Embedding (t-SNE). (C) The compositions of 
cell clusters in different tumor samples. (D) Heatmap shows the similarity among diverse cell clusters. (E) Canonical markers of common cell types in 
the tumor microenvironment (TME). (F) Chromosome copy number variation (CNV) values of each cluster. (G) Cell type identification.
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2.9. Trajectory analysis

We employed Monocle 2 software package to calculate the expression pattern of key genes. Based on the results, machine learning 
was used to simulate the dynamic changes during the cellular development process. Then dimension reduction was carried out ac-
cording to expression profile of largely varied genes between cells. Finally, a minimum spanning tree was built to find the longest 
trajectory representing the differentiation track of cells with similar transcription characteristics. Cells in the control sample were 
chosen as the beginning of pseudotime trajectory.

2.10. Calculation of macrophage inflammatory and polarization scores

Genes characterizing macrophages, including pro-inflammatory and anti-inflammatory genes, as well as M1 and M2 phenotype 
related genes were selected from previous literature (Table S1) [29]. Seurat’s AddModuleScore was used to compute the normalized 
weighted mean expression of these genes, and Pearson correlation coefficient was utilized to denote their correlation.

3. Results

3.1. Acquisition of scRNA-seq profiles and identification of single-cell expression atlas of mouse subcutaneous tumors

Experimental workflow was shown in Fig. 1A. The important parameters were exhibited in Table S2. The fitting curve based on the 
distributions of nGene, nUMI and percent. mito was shown in Fig. S1. The nGene, nUMI and percent. mito per cell before and after QC 
were displayed in Table S3 and Figs. S2A–B. After QC, 13 clusters were identified, among which cluster 1 was most abundant in αPD-L1 
tumor yet cluster 8 and cluster 10 were increased in Fn and Fn +αPD-L1 tumors (Fig. 1B–C). By calculating the Pearson correlation 
coefficient of the mean gene expression in each cluster, we found that cluster 1, 2, 3, 4, 5, 6, 7 and 12 had higher correlations with each 
other than the other cell clusters (Fig. 1D).

To identify cell types, we first mapped the gene expression profile of these cell subsets to the reference dataset of mouse Immgen 
and then analyzed the well-known markers for common cell types in the TME [21]. It turned out that cluster 8 and cluster 10 had 
similar expression patterns to monocytes and T cells/NKT cells, respectively (Fig. S3A). Additionally, they had abundant expressions of 

Fig. 2. Tumor cells are divided into 12 subclusters based on differentially expressed genes (DEGs). (A) Tumor cell subclusters in tumor samples. (B) 
The constitution of cell clusters in different tumor samples and percentages of different tumor samples in the 12 cell subclusters. (C) The top 10 DEGs 
in each tumor cell subcluster. (D) The expression of several immune checkpoint molecules in each tumor cell subcluster. (E) The Gene Set Variation 
Analysis (GSVA) results of each tumor cell subcluster. (F) and (G) The CNV level in different tumor samples and tumor cell subclusters, respectively.
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monocyte/macrophage markers Cd14/Cd68 and T cell marker Cd3e (Fig. 1E). Therefore, cluster 8 and cluster 10 were initially 
identified as monocyte derived macrophages and T cells (Fig. 1G). Cluster1-7, cluster 9, cluster 11 and cluster 13 displayed fibroblast 
gene patterns and highly expressed fibroblast marker molecules Sparc, Dcn and Cald1, while had low levels of epithelial cell marker 
Epcam, smooth muscle cell marker Smtn and endothelial cell marker Pecam1 (Fig. S3A-B, Fig. 1E) [22–25]. Combined with their 
higher CNV levels compared with cluster 8 and cluster 10, they were finally considered as tumor cells (Fig. 1F–G, Fig. 3C). Cluster 12 
annotated as unknown cells since it expressed both monocyte and fibroblast markers (Fig. 1G).

3.2. Cluster 1 and cluster 5 might be resistant to anti-PD-L1 treatment

To explore the innate and adaptive heterogeneity of tumor cells challenged by different stimulus, we subdivided the malignant cells 
into 12 subclusters (Fig. 2A). Compared with cell cluster constitution in the control, Fn and Fn+αPD-L1 samples, tumor cells in αPD-L1 
tumor were predominantly enriched in cluster 1, cluster 5 and cluster 10 (Fig. 2B). Since cluster 1 and cluster 5 increased greatly under 
anti-PD-L1 treatment, there was a suspect that they possibly represented tumor cell populations that were resistant to immunotherapy. 
Therefore, we subsequently analyzed the differences of genetic characteristics and enriched pathways in the two clusters. According to 
gene expression characteristics, cluster 1 was named as Bnip3highCryabhighHspa1bhigh tumor cells since they had higher expression of 
autophagy related gene Bnip3, heat shock protein genes Cryab and Hspa1b. Cluster 5 were considered to be a proliferative tumor cell 
subpopulation based on the levels of Prc1, Cenpf, Mki67, and Fbxo5 expression, which were associated with cell division and pro-
liferation (Fig. 2C and Dataset 1). We further evaluated the expression of common immune checkpoint molecules. It was shown that 
cluster 1 had remarkably enriched Cd70 while were devoid of Pdl1 expression (Fig. 2D). This partly explained their decreased 
sensitivity to PD-L1 blockade, and provided an alternative for subsequent ICB therapy when drug resistance occurred.

Next, we conducted GSVA to retrieve the feature for each cluster. The activated and inactivated pathways were identical in cluster 1 
and cluster 5 (Fig. 2E). In detail, inflammation associated pathways, such as staphylococcus aureus infection, cytokine receptor 
interaction and graft versus host disease, were up-regulated. Besides, numerous pathways of DNA replication (DNA replication and 
homologous recombination), transcription and translation (basal transcription factors, aminoacyl tRNA biosynthesis and ribosome), 

Fig. 3. Pseudotime trajectories of tumor cells are different among distinct tumor microenvironments (TMEs). (A) Pseudotime trajectory of 12 tumor 
cell subclusters across 4 tumor samples. (B) Pseudotime trajectory according to cell evolution time. The darker the color, the earlier the cells are in 
the pseudotime differentiation process. (C) Pseudotime analysis of tumor cells based on cell state. (D) The proportions of each cell fate in the 4 tumor 
samples. (E) Pseudotime heatmap of gene expression and the corresponding enriched pathways. The DEGs along the differentiation trajectory are 
clustered hierarchically into four modules. The color from blue to red indicates relative expression levels from low to high.
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and DNA mismatch repair (nucleotide excision repair and base excision repair) were down-regulated in cluster 1 and cluster 5. In 
accordance with the dysfunction of DNA mismatch repair, the levels of CNV, or in other words, the somatic copy number aberrations 
(SCNA) when occurred in tumor cells, were highest in cluster 1, cluster 5 and cluster 10, (Fig. 2F–G). We also found that a series of 
pathways participating in glycolysis and gluconeogenesis process were downregulated in cluster 1 and cluster 5, such as carbon 
metabolism, glycolysis/gluconeogenesis, citrate cycle, pyruvate metabolism, oxidative phosphorylation, mTOR signaling pathway and 
PI3K Akt signaling pathway. By contrast, amino acid metabolism, including phenylalanine metabolism and glycine, serine and 
threonine metabolism, was up-regulated (Fig. 2E). These results suggested that PD-L1 blockade spurred inflammation, disordered cell 
cycle, damaged chromosome structure and reprogrammed metabolism style of some tumor cells.

3.3. Pseudotime trajectory analysis showed distinct differentiation fates of tumor cell subclusters

As described above, our results revealed that these tumor cell clusters were heterogenous in gene expression profile, implying 
temporal order of differentiation states during CRC progression. We then pooled all the malignant cells and constructed a single-cell 
pseudotime trajectory which ordered cells from each cluster and each tumor sample based on their progression states (Fig. 3A). We 
manually set the root-state of the pseudotime trajectory according to the location of most cells in the control sample (Fig. 3A–B). After 
calculating the pseudotime value of each cell, they were divided into 7 states (Fig. 3C). Tumor cells originated from state 1, transi-
tioned to state 2, state 3, state 4 and state 5 sequentially, and finally differentiated into two major branches, namely state 6 and 7 
(Fig. 3C). It was worth noting that compared with the other three groups, tumor cells of state 6 were predominantly aggregated in anti- 
PD-L1 treated tumor, while cells in state 7 were similar in percentage among the rest three samples, suggesting that anti-PD-L1 
treatment might change the direction of cell differentiation, but this could be reversed by F. nucleatum infection (Fig. 3D).

We further illustrated the significantly dynamic gene expression during the evolution into branch state 6 and 7. Gene expression 
patterns could be classified into 4 modules. Genes of module 1 were up-regulated in state 7 but remained unchanged in state 6. They 
were enriched in autophagy and metastasis related pathways. In contrast, genes in module 2, participating in cell cycle and DNA 
replication and repair, were stable in state 6 but down-regulated in state 7. Genes in module 3 had increasing levels in state 6 and were 
involved in protein metabolism, like ubiquitin mediated proteolysis pathway, protein processing in endoplasmic reticulum, and mTOR 
signaling pathway. Module 4 contained a group of genes that were upregulated first and but finally returned to relative low levels in 
both states. The relative pathways contributed to substance metabolism (Fig. 3Eand Dataset 2). These results suggested that immu-
notherapy and microbiota drove cells to different evolution directions during which process various genes were cooperated to perform 
specific cellular functions. Thus, understanding their dynamics is important to identify novel treatment targets and reprogram cells 
towards the less malignant subsets.

Fig. 4. T cell subcluster richness and gene expression files are influenced by different TMEs. (A) Subclusters of T cells. (B) Cell type identification 
result. (C) and (D). Cytotoxic molecules and exhausted markers in the 3 clusters. (E) The composition of cell clusters in different tumor samples and 
the ratio of tumor samples in each of the 3 cell subclusters.
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3.4. Enriched effector molecule and low inhibitory molecule expression on NK cells and T cells

Mounting evidence revealed that gut microbiota enriched in CRC shaped immune landscape by modulating the quality and 
magnitude of immune cells [30,31]. T cell-mediated immune response has a key role in tumor evolution and immunotherapy effect 
[32]. To address the relationship among F. nucleatum, PD-L1 blockade and T cells at scRNA-seq level, we examined the richness and 
genetic features of T cells in different TMEs.

By t-SNE, T cells were divided into three subclusters (Fig. 4A). As higher expression of Ncr1 was found in cluster 1 while Cd3e and 
Cd8a were mainly expressed in cluster 2, we characterized cluster 1 as NK cells and cluster 2 as CD8+ T cells. Correspondingly, cluster 3 
was identified as CD4+ T cells (Fig. 4B). Exhausted molecules PD-1 and Ctla4 displayed low levels on cluster 2 and cluster 3, while Lag3 
and Havcr2 were almost undetectable on all the three clusters (Fig. 4C). In contrast, cytotoxic and effector markers, including Ifng, 
Nkg7, Prf1, Klrd1, Gzmb and CCL5 were almost ubiquitously expressed in the clusters. In addition, Gzma was enriched in cluster 1 
(Fig. 4D). The distributions of cytotoxic molecules in the 3 cell clusters identified them as subsets that mainly exerted anti-tumor effect. 
By comparing the immune cell richness among different tumor samples, we noticed few T cell infiltration in the control sample and 
αPD-L1 sample. In contrast, they were increased in Fn tumor tissue and more remarkably in Fn+αPD-L1 sample (Fig. 4E), suggesting 
that F. nucleatum infection induced effector T cells to the tumor tissue, which could boost immunotherapy efficiency.

3.5. Divergent macrophage subclusters accumulating in Fn and Fn+αPD-L1 tumors

Macrophages are generally categorized into activated pro-inflammatory M1 subtype and alternatively activated M2 subtype with 
anti-inflammatory role [33]. Despite that F. nucleatum resident in the tumor tissue appears to shift macrophage to an M2-like 
phenotype [34], the abundance and function of these cells might be even more heterogenous.

As above, by performing unsupervised clustering and visualized by t-SNE, we grouped all the collected macrophages from the four 
tumor samples into 5 subclusters, among which cluster 1 was most abundant (Fig. 5A). Cluster 1, cluster 2 and cluster 3 might be the 
major cell clusters contributing to immune and inflammatory responses in the TME based on their high functional gene expressions, 
including Cxcl3, Il1a, Thbs1, Arg1, complement genes (C1qa, C1qb, C1qc), histocompatibility-2 (H2-DMb1, H2-DMb2, H2Aa), Sell, 
Itga1 and Itga4. Of note, Ly6g was exclusively expressed in cluster 4, thereby this cluster was finally annotated as neutrophils and the 
rest four subsets as macrophages (Fig. 5B and Dataset 3).

We further conducted macrophage polarization scores and inflammatory scores to have a comprehensive knowledge of the 
functional characteristics of different cell subclusters based on specific gene sets (Table S1). Phenotypically, cluster 1 had both M1 and 
M2 features, while the rest of other cell clusters were in unpolarized M0 state, implying the multifunctional roles of tissue-resident 
macrophages aggregated by F. nucleatum (Fig. 5C). When assessing the inflammatory scores, it turned out that the top two 

Fig. 5. Macrophage subclusters varied in different TMEs. (A) Subclusters of macrophages. (B) Cell type identification and top 10 DEGs in each cell 
cluster. (C) Macrophage polarization scores of each subclusters. (D) Inflammatory scores of each macrophage subcluster. (E) The composition of the 
5 macrophage subclusters in the four tumor samples.
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macrophage clusters, cluster 1 and cluster 2, had positive scores in pro-inflammatory function (Fig. 5D). Finally, we investigated the 
abundance of macrophage in different TMEs and found that they were more enriched in Fn-positive tumor and Fn+αPD-L1 sample than 
αPD-L1 specimen and the control tumor tissue, indicating that the myeloid compartment is also affected by F. nucleatum infection 
(Fig. 5E).

3.6. F. nucleatum might favor the efficiency of PD-L1 blockade by increasing the cell-cell interactions related to anti-tumor immunity

As mentioned above, F. nucleatum infection influenced the cell composition in the TME, but how it affected cell-cell communication 
remained to be addressed. Therefore, we compared the interaction number among tumors with distinct treatments using CellChat, 
which turned out to be higher in Fn and Fn+αPD-L1 tumors than control and αPD-L1 tumors (Fig. 6A). We then deciphered the specific 
cell interactions under different TMEs. In the control tumor, we did not detect interactions between macrophages and other cells, and 
cells in αPD-L1 treated tumor showed no connections with NK cells. Furthermore, T cells sent no signals to tumors after PD-L1 
blockade. In contrast, divergent cell types interacted with each other in both the Fn and Fn+αPD-L1 tumors (Fig. 6B).

We next calculated the difference of molecular interactions before and after anti-PD-L1 mAb treatment in Fn-positive and Fn- 
negative tumors respectively to infer the signals which might mediate the enhanced immunotherapy efficiency in F. nucleatum 
colonized carcinoma. Though the recognition between T cells and tumor cells were enhanced indicated by increasing CD8 and MHC-I 
interactions, no anti-tumor signals were detected in Fn-negative tumor after anti-PD-L1 mAb administration. Instead, some tumor 
promoting connections, especially Spp1 and Fn1 on tumor cells, with their interacting molecules, such as integrins on T cells, as well as 
Cd44 on macrophages, were enhanced (Fig. 6C) [35–39]. Macrophages and T cells also had crosstalk via Ccl4-Ccr5, Csf1-Csf1r, 
Cd274-Pdcd1 and Spp1-integrin interactions. Besides, macrophages might have a self-chemotaxis role based on the increasing com-
munications via chemokines and their receptor (Fig. 6C).

In F. nucleatum abundant tumor, cell-cell interactions after the addition of anti-PD-L1 mAb differed in striking ways from that of 
F. nucleatum-negative tumor. Among these communications, chemokine-receptor signals pertaining to NK cells were significantly 
increasing, such as Ccl5-Ccr5, Ccl4-Ccr5, Ccl3-Ccr5 and Ccl2-Ccr2 (Fig. 6D). Since immune system plays a key role in anti-PD-L1 mAb 
mediated immunotherapy, we paid special attention to anti-cancer signals of the immune cells. It turned out that Ifng-Ifngr1/Ifngr2 
interaction between T/NK cells and tumor cells was significantly increased. In addition, T cells and macrophages had enhanced 
interplay via Cd6-Alcam interaction, which might contribute to the activation, proliferation, and trafficking of T cells, but macro-
phages also activated Cd86-Ctla4 signal to induce T cell exhaustion [40]. Moreover, tumor cells tried to escape immunosurveillance 

Fig. 6. Cell-cell interactions are more frequent in Fn-colonized TMEs. (A) Interaction number of cells in different tumor samples. (B) Cell interaction 
between different cell types in various TMEs. Arrows indicates the direction of communication. The color suggests cells sending signals. The 
thickness of lines means communication number. (C) The significantly increasing signaling between different cell types in αPD-L1 treated tumor in 
contrast to control tumor. (D) The significantly increasing signaling between different cell types in Fn+αPD-L1 treated tumor versus Fn infec-
ted tumor.
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through a series of ligand-receptor pair, such as Thbs2-Cd47 between tumor and all three immune cells, Fn1-integrin between tumor 
and NK cells, and App-Cd47 and Sele-Cd44 between tumor and macrophages, indicating the coexistence of anti-tumor and tumor 
promoting signals in the TME. Tumor also evolved by increasing autocrine signals, including invasion and migration related signals 
(Col 4a5-Sdc4/Cd44, Col 1a1-Sdc4/Cd44, Col 1a2-Cd44, Spp1/Fn1-Sdc4/Cd44, Thbs2-Sdc4/Cd47) (Fig. 6D). Collectively, our 
scRNA-seq data suggested that F. nucleatum infection enlivened the TMEs and increased the interaction between divergent cell types, 
among which the anti-tumor signals might play a critical role in evading tumors.

4. Discussion

Immunotherapy has arouse great excitement owing to its success in achieving long lasting responses in various tumors, including 
melanoma, lung cancer as well as CRC [10,11,41]. Nevertheless, the dilemma that only a subset of patients is sensitive to this treatment 
remains a major challenge [17,42]. Therefore, elucidating the underlying mechanisms on immunotherapy resistance contributes to 
identifying responders and improving efficiency.

In this study, tumor cell clusters exhibited different patterns of immune checkpoint molecules. This explained the unsatisfactory 
effect of single ICB treatment and hinted alternative or combined targets. Among tumor clusters, Bnip3highCryabhighHspa1bhigh cluster 
1 and proliferative cluster 5, which thrived dramatically in the anti-PD-L1 treated tumor, were both characterized by DNA repair 
defects and higher levels of CNV (or called SCNA as in somatic cells). A study on NSCLC patients receiving anti-PD-1/PD-L1 treatment 
shows that the SCNA is lower in patients with partial response than those with progressive/stable disease, indicating CNV or SCNA as a 
biomarker for prediction of immunotherapy response [43]. Mechanically, it is considered that highly aneuploid tumors lost genes 
promoting immune clearance and gained gene escaping from immune surveillance in response to external stress [44,45]. Genomic 
instability activates cGAS/STING signaling, which has an immediate effect to kill cancer cells by recruiting anti-tumor CD8+ T cells, 
but eventually results in the failure of immunotherapy due to long-term exposure induced increasing exhausted receptors on T cells 
[46,47]. Moreover, down-regulated aerobic glycolysis might also lead to insensitivity to anti-PD-L1 treatment in tumor cells, as 
observed in cluster 1 [48]. Combined with the pseudotime analysis that cells from anti-PD-L1 treated tumor were mainly located at the 
termination of differentiation, we inferred that immunotherapy pushed certain tumor cell subpopulation to evolve to resistant sub-
clones that failed to boost tumor-specific immunity. Surprisingly, in F. nucleatum infected tumors, anti-PD-L1 treatment were unable to 
cause this transition. Thus, we assumed that F. nucleatum enhanced anti-PD-L1 efficiency by switching the fate of tumor cells away 
from immunotherapy resistant phenotype induced by anti-PD-L1 therapy. But further research is needed to excavate the key molecules 
involved in this process.

Typically, immune cells play versatile roles in the TME. It has been noted that CD4+ Th1 cells, activated CD8+ T cells, and γδ-T cells 
often participate in immune responses, whereas Th2, Th17, and Foxp3+ regulatory T cells are often associated with tumor progression 
[49,50]. Some studies show that B cells could both induce and maintain beneficial antitumor activity and exert protumor functions 
[51]. Mature and active DCs infiltrated in the tumors induce immune activation and recruit immune effector cells to combat with 
tumor cells [52]. Myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs) exert potent suppressive 
activities against effector lymphocytes [53]. Substantial evidence shows that the enhancement of T cell infiltration, particularly the 
CD8+ T cells, into tumor tissue predicts a superior prognosis and higher responsiveness rate towards ICB [50,54]. 
F. nucleatum-colonized tumor tissues were more enriched in CD8+ T cells and NK cells with high cytotoxic molecule levels compared 
with F. nucleatum-free tissues. Thus we speculated that F. nucleatum re-educated the immune-cold TME into immune-hot one to 
sensitize anti-PD-L1 mAb. Though not plentiful, exhausted biomarker PD-1 was expressed in CD8+ T cell subset. However, this po-
tential tumor-promoting effect of PD1-Pdl1 interaction might be interrupted by anti-PD-L1 treatment. Besides PD-1, Ctla4 was also 
detected on T cells, which remained us that combined use of Ctla4 blockade and anti-PD-L1 monoclonal antibody could further 
improve the outcome of patients with F. nucleatum colonized CRC.

Macrophages are functionally differentiated into anti-tumoral M1 and pro-tumoral M2 subsets [55–57]. Mounting data has 
demonstrated that F. nucleatum induces macrophages to the tumor sites, which were in consistent with our results [4,58]. Among the 
macrophages, cluster 1 exhibited both M1 and M2 phenotypes, indicating a versatile role in the TME. The other clusters in M0 state 
might be targets to improve immunotherapy efficiency by repolarizing macrophages towards the M1 subset secreting 
anti-proinflammatory cytokines.

Cellular abundance alone does not fully shape the TME. Instead, explicit investigation of cell-cell interactions could provide a better 
overview. According to our previous study, patients with Fn-negative CRC remain resistant to PD-L1 blockade, while Fn-positive ones 
have a higher response rate, indicating that F. nucleatum colonized TME benefits immunotherapy [20]. Although subcutaneous tumors 
with enriched F. nucleatum were infiltrated with more lymphocytes as mentioned above, whether and how these cells build connections 
with tumor cells are not well defined. By interaction analysis, we found increasing interaction number, as well as more complex 
network in F. nucleatum treated tumors versus the control sample, suggesting biological background difference exists, so potential 
molecular signals mediating improved immunotherapy might be activated in Fn-positive tumor tissue after PD-L1 blockade. Exactly, 
the interferon dependent anti-cancer effect of T cells and NK cells is enhanced in Fn-positive tumor. In addition, macrophages also 
exhibit pro-inflammatory signals, which is consistent with previous report that PD-L1 inhibitor induces macrophage polarizing into 
more proinflammatory phenotype [59]. More importantly, we speculate that both tumor cells and immune cells potentiates NK cells 
and macrophages infiltrating into the tumor tissue by strengthening chemokine signals, forming positive feedback to persistently 
activate anti-tumor immune response. As is known, one of the intrinsic characteristics of tumor cells is to escape immune surveillance 
[60]. Besides anti-tumor signals, tumor cells also subvert immune cells into immunosuppressive subpopulation via a series of 
ligand-receptor pairs. Targeting these molecules could ultimately lead to improved immunotherapy or enhanced combination with 
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anti-PD-L1 therapy. Different from Fn-positive tumor, despite that the recognitions are strengthened between T cells and antigen 
presentation cells dependent on Cd8 and MHC-I interaction, the costimulatory molecules were inhibitory after anti-PD-L1 treatment in 
Fn-negative CRC. Moreover, macrophages in Fn-negative TME do not activate pro-inflammatory signals. Thus, for Fn-negative tumor, 
PD-L1 blockade induces immunosuppressive TME instead of boosting effective anti-tumor immune response, which may lead to failure 
in immunotherapy.

5. Conclusion

According to the current research, only CRC patients with MSI/dMMR could benefit from anti-PD mAb, while patients with MSS/ 
pMMR barely response to this therapy [61]. Therefore, elucidating the mechanisms on immunotherapy resistance is of great signif-
icance in identifying efficiency biomarker and targets for combined treatments. In this study, we constructed a subcutaneous colorectal 
tumor model in mice and used scRNA-seq to explore the comprehensive landscape of CRC. By analyzing the characteristics and in-
teractions of tumor cells, macrophages and T/NK cells in different TMEs, we delineated the composition, subclonal diversity and 
putative function of distinct cells in the TME, tracked the developmental trajectory of tumor cells and highlighted cell-cell interactions. 
Thus, we presented a comprehensive insight on the intratumoral heterogeneity of CRC and shed light on the possible mechanisms of 
immunotherapy resistance from the perspective of tumor cells and immune cells, respectively. Some of our findings has not been 
reported and need experimental models to validate the speculations. In the further experiment, we plan to build an immunotherapy 
resistant mice model of CRC, isolate the drug resistant CRC cell and explore their biological characteristics in detail. Besides, how 
F. nucleatum combat with immunotherapy resistance is another interesting topic. By this way, we hope to provide more solutions for 
overcoming immunotherapy resistance.
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