
POINT OF VIEW

Unbridle biomedical research
from the laboratory cage
AbstractMany biomedical research studies use captive animals to model human health and disease.

However, a surprising number of studies show that the biological systems of animals living in

standard laboratory housing are abnormal. To make animal studies more relevant to human health,

research animals should live in the wild or be able to roam free in captive environments that offer a

natural range of both positive and negative experiences. Recent technological advances now allow us

to study freely roaming animals and we should make use of them.
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For over 50 years, biologists have asked how the

addition of a few objects to a laboratory cage

can change the biology of a laboratory rodent.

We have learned that even modest amendments

to cages lead to vast changes in the neurobiol-

ogy, behavior, immune responses, disease resis-

tance and cancer remission of captive mice and

rats. This so-called environmental ‘enrichment’

makes research animals more resilient and helps

them to recover from many kinds of experimen-

tal treatments. These studies often conclude

that enrichment serves as a form of therapy, but

they overlook an important point. The cage floor

areas provided to rodents and primates used in

research are much smaller than their natural

ranges. The captive environments of research

animals also deny them ongoing opportunities

to explore and learn from the variety of rewards

and challenges that they would normally experi-

ence in the wild.

By studying organisms confined to restricted

environments that are unresponsive to their

actions, biomedical research violates one of its

core propositions – that animals used as experi-

mental controls embody healthy biological sys-

tems. We now have the technologies to study

free-roaming organisms in the wild or in captivity

under naturalistic conditions. Advances in

remote recording and transmission of data

(telemetry) allow us to transfer data wirelessly so

we can modulate the physiology of free-roaming

animals and record their responses. By using

these technologies, we can provide research ani-

mals with a greater sense of wellbeing and make

animal studies more relevant to human health

and disease.

Captivity alters animal
development
In the early 1960s, Mark Rosenzweig and his col-

leagues asked how environmental changes

affected the brains of his laboratory rats. Each

day, they placed new wooden blocks inside the

rats’ cages and let the rats explore mazes that

were reconfigured every day. The team discov-

ered that the sensory cortex, a region of the brain

that processes all of the senses (sight, sound,

touch, smell and taste), was larger in these exper-

imental rats than in the rats living in standard lab-

oratory cages (Rosenzweig et al., 1962).

Since then, researchers have learned that

even modest changes to the conditions in a

standard laboratory cage – such as the one-time

addition of objects, enhanced maternal care, or

more frequent handling – lead to changes in the

animals’ brains. This enrichment alters the densi-

ties and appearance of neurons

(Kempermann et al., 1997; Greenough et al.,

1973), other brain cells (Szeligo and Leblond,

1977; Viola et al., 2009) and blood vessels

(Black et al., 1987). Strikingly, enrichment pro-

motes changes in some regions of the brain, but

not others (Szeligo and Leblond, 1977;
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Faherty et al., 2003). This structural reorganiza-

tion is mediated by local differences in gene

expression (Pham et al., 1999) that can persist

throughout life (Thiriet et al., 2008;

Meaney, 2010; Mychasiuk et al., 2012).

Laboratory animals are less sensitive to experi-

mental procedures when they have something to

do. For example, enrichment can help animals to

recover from brain trauma and seizures

(Passineau et al., 2001; Koh et al., 2007),

reverse brain damage caused by exposure to

chemicals (Goldberg et al., 2011; Guilarte et al.,

2003; Shih et al., 2012), and make rodents less

susceptible to the effects of recreational drugs

(Stairs and Bardo, 2009; Solinas et al., 2010).

These studies have prompted most researchers

to conclude that enrichment serves as a form of

therapy (Lahvis, 2016a).

Critically, the term enrichment implies that

the conditions imposed by standard laboratory

housing are somehow normal. Laboratory cages

offer poor environments relative to the natural

conditions where our research animals evolved.

For example, the floor area provided to a mouse

inside a standard cage is 280,000 fold smaller

than its natural home range. This difference

becomes even more extreme for larger animals

used in research such as rhesus macaques (7

million fold) and Anubis baboons (25 million

fold; Figure 1).

An essential role of the brain is to adjust

behavior to an unpredictable environment, an

everyday experience common to wild animals

and humans. By contrast, even enriched cage

environments offer none of the temporal varia-

tions occurring in nature, such as changes in

temperature and humidity, the availability of

food and shelter, and risks to survival. These

comforts and adversities evoke a wealth of feel-

ings, including pain, fear, hunger, anticipation

and pleasure. The caged environment, whether

standard or enriched, isolates the research ani-

mal from these everyday experiences.

We know that depriving research animals of

physical experiences and visual stimuli decreases

their respective activities in the motor and visual

cortex (Ostrovsky et al., 2006; Strata et al.,

2004). Likewise, it is untenable to assume that a

brain deprived of a complex environment of

rewards and challenges represents that of a

healthy animal or human.

Responding to a responsive
environment
By contrast to what happens in a laboratory

cage, wild animals behave in ways that aim to

Figure 1. Laboratory cages are much smaller than an animal’s natural home range. The middle panel shows the ratio of the recommended cage floor

area (cm2; Albus, 2012) to the estimated natural home range in hectares (10,000 m2; Nunn and Barton, 2000; Chambers et al., 2000; Bramley, 2014)

for eleven species used in research. The left panel shows a juvenile rhesus macaque in a Nepali jungle. The right panel shows a juvenile rhesus

macaque in an enriched cage.

DOI: 10.7554/eLife.27438.002
IMAGE CREDIT: photo of the caged juvenile macaque courtesy of the University of Wisconsin Primate Center.
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optimize energy uptake or minimize the time

they spend foraging (Krebs and Davies, 2009).

An animal must consume more energy than it

expends (Fonseca et al., 2014; Belovsky, 1984)

and the balance of this relationship is sensitive

to other factors, such as risks of predation

(Hoogland, 1981), requirements for nutrients

(Belovsky, 1978) or the temporary need for

medicinal plants (McPherson, 2013). Optimal

foraging models account for an animal’s

moment-to-moment decisions of what paths to

take, what foods to eat and how much time to

spend foraging versus watching for predators.

Humans and other animals make decisions

based on our ‘affective’ experiences: we seek

rewards and avoid situations that we feel are

unpleasant or potentially harmful

(Schneirla, 1959). Within a complex and unpre-

dictable natural environment, an organism learns

what cues and contexts are associated day-to-

day with rewarding or unpleasant situations.

These affective experiences inform and respond

to ongoing decisions.

Consider, for example, the temporary and

patchy distributions of food, such as fruits ripen-

ing and decaying, that are thought to have

favored the evolution of primate intelligence

(Navarrete et al., 2016). A fruit-eating primate

must make a cognitive decision, choosing a

course of action from various alternatives in the

context of its affective experience, such as the

desire to taste a particular kind of fruit. In

nature, a primate might abstain from eating local

food items to follow spatial cues to more nutri-

tious or more flavorful foods at distant locations.

As these distant foods decay or become

depleted, the primate must then learn that the

spatial cues are no longer predictive. Even under

simpler foraging conditions, individual animals

of many species must learn and relearn which

spatial cues predict the locations of food items

that are only available in particular places for

short periods of time.

Wild animals also consider various factors in

decisions not directly related to foraging. These

include habitat selection (Raynor et al., 2017),

mate selection (Candolin, 2003), cooperation

with other individuals (Lahvis, 2016b), and pred-

ators (Lagos et al., 2009). Such challenges are

common for wild animals (Krebs and Davies,

2009) and resemble the everyday conflicts of

human experience. By contrast, laboratory ani-

mals are denied opportunities to make decisions

within a natural context that offers a breadth of

spatial and temporal variety.

Some argue that laboratory mammals, partic-

ularly research primates living in open colonies,

have opportunities to navigate complex social

interactions inside their corrals and thus experi-

ence challenges that are akin to those of their

wild counterparts. However, conservation biolo-

gists find that captive-raised animals reintro-

duced into the wild – such as California condors,

spotted owls and Pacific salmon – fail to express

the cognition, motivation and behaviors neces-

sary to survive and reproduce (Reading et al.,

2013).

Some argue we need to adhere almost exclu-

sively to studies of caged animals to control irrel-

evant environmental variables that, if left

unchecked, complicate the delicate cause-effect

relationships governing development. Yet, we

often lack or fail to control many of the most

important environmental variables inside labora-

tory cages, such as food and bedding. Standard

housing fosters increased sensitivity to stimuli

that researchers have not noticed or find difficult

to control. For example, variations in animal

feed (Garey et al., 2001; Brown and Setchell,

2001), bedding (Burn et al., 2006;

Robinson et al., 2004), the sex of the experi-

menter (Bohlen et al., 2014; Sorge et al.,

2014), or ultrasonic noises (Turner et al., 2005;

Milligan et al., 1993) can render behavioral

tests difficult to replicate. Indeed, mouse behav-

iors are difficult to reproduce across laboratories

in standard cages (Crabbe et al., 1999;

Richter et al., 2010) and are more reproducible

when housing conditions are varied (Wür-

bel, 2002; Richter et al., 2009, 2010).

Not just neurobiology
Relative to laboratory animals housed in

enriched cages, animals housed in standard

cages express greater levels of cortisone, a hor-

mone that affects immune cells and impairs

immune responses throughout the body. These

changes reduce the ability of a captive animal to

mount an effective response to infections

(Arranz et al., 2010; Gurfein et al., 2014). Con-

ventional caging also promotes obesity, type II

diabetes and high blood pressure (Martin et al.,

2010), while decreasing muscle strength and

endurance (Sirevaag and Greenough, 1987;

Spangenberg et al., 2005; During et al., 2015).

Furthermore, standard laboratory housing

enhances tumor growth in animal models of sev-

eral cancers (Cao et al., 2010; Li et al., 2015;

Nachat-Kappes et al., 2012). The ‘control’ ani-

mals used in such experiments do not represent
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what biomedical research requires for its prem-

ise; they are not healthy individuals.

Few studies have compared the biology of

wild versus cage-reared animals. Among caged

prairie voles, variations of a gene encoding the

receptor for a hormone called vasopressin are

highly correlated with sexual fidelity

(Okhovat et al., 2015). However, these correla-

tions are not nearly as obvious among voles liv-

ing in the wild. A different study shows that the

structure of the visual cortex in caged Norway

rats differs remarkably from that of their free-

roaming counterparts (Campi et al., 2011). Wild

animals also express lower levels of cholesterol

than captive animals (Schmidt et al., 2006;

Eades et al., 1963). Recently, a subset of

immune cells called T cells that are expressed by

humans but not found in laboratory mice, was

identified in feral mice. The report stated that

feral mice have “immune systems closer to those

of adult humans” (Beura et al., 2016).

Research into animal wellbeing
Wellbeing assumes a freedom to engage

actively and proactively with responsive sur-

roundings, exploring, problem-solving, and

learning to deal skillfully and flexibly with new

and existing challenges (Špinka and Wemels-

felder, 2011). Animal welfare scientists assert

that non-human animals are intrinsically moti-

vated to be ‘doers’ or ‘authors’ of their own

activities. They argue that animals can be moti-

vated to sample their environments, exposing

themselves to nominal risks and engaging with

obstacles to be overcome (Špinka and Wemels-

felder, 2011).

In support of these ideas, numerous studies

suggest that laboratory animals prefer complex

environments to predictable housing conditions.

For example, animals prefer to spend more time

in enriched environments than in standard envi-

ronments (Bayne et al., 1992; Bevins et al.,

2002; Schroeder et al., 2014). Rats press a

lever more frequently for food rewards allocated

at unpredictable levels than for regular aliquots

(Anselme et al., 2013).

Classical conditioning approaches, used to

determine whether an animal finds a stimulus

rewarding or unpleasant (Bardo and Bevins,

2000; Pellman and Kim, 2016), show that labo-

ratory rats prefer an environment where they

have experienced repeated access to new

objects over an environment previously paired

with familiar objects (Bevins et al., 2002). These

preferences are driven by the animal’s affective

experiences and, in this case, interest or enjoy-

ment felt inside the environment paired with the

new object. These affective experiences are con-

trolled by well-defined reward circuits in the

brain (Bevins et al., 2002; Panksepp, 1998).

Subjective experiences are known only to the

individuals that have them (Dawkins, 2015).

Language can only give us inferences to the sub-

jective experiences of humans. For instance, if

we both use the word ‘red’ to describe what we

see in a ripe apple, our shared use of the same

word suggests a common experience even if we

both see a different color when we look at the

same ripe apple (Russell, 1912). For humans

and other animals, we can sometimes infer sub-

jective experiences from variations in gait, ges-

ture, facial expression and vocal intonation

(Darwin, 1872; Panksepp, 1998). We can also

make inferences from measures of physiological

responses in the brain (e.g. Kelley, 2005), or of

systemic responses, such as changes in the level

of a stress hormone called cortisol in the body

(Detillion et al., 2004). When we use a variety

of approaches, we can infer that cages have

adverse influences on the subjective experiences

of captive animals (Boissy et al., 2007;

Yeates and Main, 2008).

We can also have confidence that subjective

experiences of humans and other animals lie on

a continuum (De Waal, 2016; Panksepp, 1998).

For humans, captivity inside a cage is punish-

ment. Just as imprisonment deserves ethical

consideration, we have an ethical responsibility

to improve the conditions of captivity that we

impose on research animals (Gruen, 2014). If

these animals were afforded natural levels of

environmental complexity, an expectation is that

they would rarely attend to the outside bound-

aries of their cages.

Within a monotonous and predictable captive

environment, where confinement is unresponsive

to action, laboratory animals are deprived of

their natural agency. Instead, the animals are left

with boredom and, with time, learned helpless-

ness and depression (Špinka and Wemelsfelder,

2011).

What can we do?
We should replace our study of caged animals

with studies of animals living in the wild or under

captive but naturalistic conditions. Recent

advances in technology allow us to bring tradi-

tional biomedical research to the study of freely

roaming animals. For many years, wild organisms

have been employed as sentinels of the
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biological effects of unanticipated ‘real-world’

exposures to complex pollutant mixtures

(Fox, 2001; Basu et al., 2007;

Ramalhinho et al., 2012). With new technolo-

gies, we can also learn how genes and gene-by-

environment interactions contribute to individual

differences in disease susceptibility and

resistance.

It is now possible to track free-roaming ani-

mals across large areas. We can record their

behaviors with low-cost camera traps

(O’Connell et al., 2010), lightweight radio fre-

quency identification transponders (König et al.,

2015) and integrated applications of accelerom-

eters, magnetometers, and pressure sensors

(Sommer et al., 2016). Data can be transmitted

by WiFi (Su et al., 2015), GPS (Jawalkar et al.,

2017), and ultra-low power sensors

(Dressler et al., 2016). We can record the elec-

trical activity of the brain in freely moving ani-

mals, such as the mid-flight sleep patterns of

frigate birds (Rattenborg et al., 2016) or the

activities of neurons in wild unrestrained rats

(Szuts et al., 2011).

Miniaturized optics are available to conduct

real-time, optical imaging (Yu et al., 2015) and

optogenetics can remotely alter neuron activity

(Tye and Deisseroth, 2012). We can use opto-

fluidic neural probes to remotely modulate gene

expression and deliver viruses, peptides, and

drugs to non-human animals (Jeong et al.,

2015). It is also possible to remotely monitor

heart rate and the concentration of various mol-

ecules in tissue (Bazzu et al., 2009;

Rutherford et al., 2007). Furthermore,

advanced statistical approaches can be used to

identify genetic and environmental factors that

contribute to individual differences in biology

and behavior (de Boer et al., 2017;

Nussey et al., 2007).

Other advances include developing smaller

sensors that are less invasive when implanted

into animals and applying non-invasive imaging

tools to research on small animals (Jang, 2013).

These advances, along with the proposed

improvements to environmental conditions,

might be sufficient to improve the wellbeing of

research animals and also provide relevant

insight to a range of biological processes.

Some experiments would be difficult to con-

duct under wild conditions, such as manipula-

tions that cause illness. In these cases, enclosed

naturalistic environments would be necessary to

give researchers the ability to rapidly identify

and retrieve sick animals. Captivity would also

be necessary for gene-targeted animal models

that, if released, may pose a threat to the

environment.

In the figure, calculations of the collapse of

space available to a laboratory rat or mouse

were based upon estimates of their natural

home ranges (Figure 1). However, feral mice

and rats often live adjacent to humans where

food resources are concentrated. For mice, a

‘naturalistic’ captive environment might entail

simulated barn-like arenas. Studies of rodents

living in complex environments date back to

experiments by Peter Crowcroft that were con-

ducted in large unheated enclosures containing

hundreds of small objects and wooden housing

structures (Crowcroft, 1966). A more contem-

porary solution to naturalistic captivity would be

expanded versions of the visible burrow system

(Pobbe et al., 2010). In this regard, biomedical

researchers should collaborate with behavioral

ecologists to develop captive environments that

offer captive animals sufficient complexity and

agency resembling that of their free-roaming

counterparts. For species that naturally travel

long distances, captivity may never adequately

provide for their needs.

Another possible solution is to study smaller

organisms that are less capable of realizing the

limits of their captive environments. Though

these organisms live in small-scale environ-

ments, natural conditions may be no less criti-

cal. For instance, zebrafish development is

highly sensitive to the environmental complexity

of their tanks (Spence et al., 2011), and

mutants of the worm C. elegans that live twice

the age of normal worms in the laboratory die

earlier than their controls in natural soil

(Van Voorhies et al., 2005). In these cases, bio-

medical researchers would benefit by collabo-

rating with ecologists.

Alternatives to the use of caged animals also

include ‘human-on-a-chip’ models, combinations

of human cell types or ‘organoids’ that simulate

cellular and molecular interactions and provide

insight into many biological processes not other-

wise obtainable (Kilic et al., 2016; Dauth et al.,

2017). These alternatives are particularly attrac-

tive for many animal welfare advocates and they

hold great promise. However, cell-based models

do not always serve as adequate replacements

for intact animals. For instance, we cannot learn

about the complex relationships between brain

activity and behavior, or between immune cell

activity and disease resistance, if we only study

cell cultures.
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Conclusions
If our goals to improve human health do justify

our means of using research animals, then we

should be very concerned that animals raised in

captivity do not fare well in their natural environ-

ments and are hypersensitive to experimental

manipulations. These inadvertent effects may

impose huge costs for biomedical research as

laboratory animals are often sensitive to drug

treatments that are later found to be ineffective

in human trials (Pound et al., 2004;

Hackam and Redelmeier, 2006; Tsilidis et al.,

2013; Lee and Feng, 2005). To improve our

understanding of human health, we must attend

to the wellbeing of our animal models.

Giving research animals agency within natu-

ralistic environments poses difficult challenges

for scientists, who have traditionally studied ani-

mals living inside cages, pens and corrals. This

paradigm shift also poses difficulties for those

animal welfare advocates who believe that com-

passionate care should minimize all temporary

discomforts. Motivations for rewards can

rebound after their access has been denied

(Panksepp et al., 2008). The health and wellbe-

ing of a research animal require risks and dis-

comforts, just as for humans.

In a sense, research animals confined inside

our conventional research environments resem-

ble prisoners in the Allegory of the Cave,

experiencing shadows of the real-life conditions

in which they evolved (and what we attempt to

model). By studying captive animals exclusively,

we constrain our own abilities to understand the

problems we aim to investigate. We also have a

responsibility to interject the scientific process

into a swelling public debate regarding the com-

passionate treatment of research animals.

Incumbent upon us, we must identify the aspects

of environmental complexity necessary for the

wellbeing of our animal models, and their rele-

vance to human health, lest we also risk attend-

ing to shadows on a cave wall.
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