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Abstract

Background: Feed efficiency and growth rate have been targets for selection to improve chicken production. The
incorporation of genomic tools may help to accelerate selection. We genotyped 529 individuals using a high-density
SNP chip (600 K, Affymetrix®) to estimate genomic heritability of performance traits and to identify genomic regions
and their positional candidate genes associated with performance traits in a Brazilian F2 Chicken Resource population.
Regions exhibiting selection signatures and a SNP dataset from resequencing were integrated with the genomic
regions identified using the chip to refine the list of positional candidate genes and identify potential causative
mutations.

Results: Feed intake (FI), feed conversion ratio (FC), feed efficiency (FE) and weight gain (WG) exhibited low genomic
heritability values (i.e. from 0.0002 to 0.13), while body weight at hatch (BW1), 35 days-of-age (BW35), and 41 days-of-age
(BW41) exhibited high genomic heritability values (i.e. from 0.60 to 0.73) in this F2 population. Twenty unique 1-Mb
genomic windows were associated with BW1, BW35 or BW41, located on GGA1–4, 6–7, 10, 14, 24, 27 and 28. Thirty-eight
positional candidate genes were identified within these windows, and three of them overlapped with selection signature
regions. Thirteen predicted deleterious and three high impact sequence SNPs in these QTL regions were annotated in 11
positional candidate genes related to osteogenesis, skeletal muscle development, growth, energy metabolism and lipid
metabolism, which may be associated with body weight in chickens.

Conclusions: The use of a high-density SNP array to identify QTL which were integrated with whole genome sequence
signatures of selection allowed the identification of candidate genes and candidate causal variants. One novel QTL was
detected providing additional information to understand the genetic architecture of body weight traits. We identified QTL
for body weight traits, which were also associated with fatness in the same population. Our findings form a basis for
further functional studies to elucidate the role of specific genes in regulating body weight and fat deposition in chickens,
generating useful information for poultry breeding programs.
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Background
Poultry breeding programs were developed to increase
growth rate, body condition (performance traits) and im-
prove carcass traits in broiler chickens [1, 2]. Nevertheless,
selection to increase productivity, reduce production costs
and minimize environmental impact remains a challenge

for chicken breeders. Feed efficiency and body weight are
the two main performance traits with economic import-
ance [3] that may drive increased chicken productivity.
The incorporation of genomic tools in breeding programs
can increase genetic progress by improving selection ac-
curacy [4, 5]. Additionally, the chicken is considered an
important model for animal genomic studies [6]. Thus,
the search for genomic regions and positional candidate
genes can help to elucidate the molecular mechanisms
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involved in the regulation of performance traits not only
in chickens, but also in other species.
The Chicken QTL database (release 35) [7] hosts 75

quantitative trait loci (QTL) for feeding traits (including
feed conversion ratio, feed efficiency, feed intake, and re-
sidual feed intake). In contrast, 1637 QTL have been re-
ported for growth traits (including average daily gain
and body weight at different days of age). However,
many of these QTL have only been coarsely mapped
(i.e., they have very broad confidence intervals for loca-
tion). QTL mapping studies were previously conducted
on this Brazilian experimental population (Embrapa F2
Chicken Resource Population) for feeding, growth and
carcass traits [8, 9]. However, those studies utilized up
to 127 microsatellite markers, which resulted in the
identification of QTL that span large regions of the gen-
ome. The average length of interval of the QTL reported
by Nones et al. [9] and Ambo et al. [8] were 5.46Mb
and 11.9Mb, respectively.
Recent studies have identified QTL, candidate genes

and mutations associated with performance traits in
chickens [3, 10, 11]. Yi et al. [11] investigated SNPs associ-
ated with performance traits in a Chinese local chicken
population and identified two SNPs in the CCKAR gene
associated with daily feed intake and daily gain. Mebratie
et al. [3] identified 11 QTL and 21 SNPs associated with
body weight traits, and 5 QTL and 5 SNPs associated with
feed efficiency traits in a commercial broiler chicken
population. Despite these recent efforts, the re-visitation
of genome-wide association study (GWAS) for perform-
ance traits, using a higher density of markers, may enable
the identification of genomic regions with smaller inter-
vals [12], thereby facilitating the fine-mapping of novel
and known QTL. This can aid in the identification of pos-
itional candidate genes and, eventually, the identification
of potentially causative mutations [12, 13].
Recently, GWAS for performance traits in Embrapa F2

Chicken Resource Population was performed using 134,
528 SNPs generated from a genotyping by sequencing
(GBS) approach that used the restriction endonuclease
PstI [10]. Although that study identified 21 SNPs that
were significantly associated with the performance traits,
the use of a high-density SNP array to genotype the
same population may provide more uniform coverage of
regions across the whole chicken genome.
The aims of this study were to estimate the genomic her-

itability for performance traits, and to identify genomic re-
gions and positional candidate genes associated with these
traits in a Brazilian F2 Chicken Resource population that
was derived from a reciprocal cross between a broiler and a
layer line. In addition, selection signature regions and a
SNP dataset derived from re-sequencing of grandparental
individuals were integrated to refine the list of candidate
genes and the search for potential causative mutations.

Results
Descriptive statistics
The number of animals, means and standard errors,
variance components, and estimated genomic heritabil-
ities are given in Table 1 for: feed intake between 35 and
41 days of age (FI), feed conversion ratio between 35 and
41 days of age (FC), feed efficiency between 35 and 41
days of age (FE), weight gain between 35 and 41 days of
age (WG), body weight at hatch (BW1), body weight at
35 days of age (BW35) and body weight at 41 days of age
(BW41). Genomic heritability values ranged from 0.0002
for FI to 0.73 for BW41.

Genotyping and genome-wide association studies
As described by Moreira et al. [14], from the 529 geno-
typed chickens, 12 were removed from the analysis after
applying animal DishQC criteria and a sample call rate
filter ≥90%. The 28 grandparental chickens and 12 F1
birds did not have phenotypic data and were not consid-
ered for GWAS. A total of 489 F2 chickens from seven
different families were used in the association analysis.
From the 580,961 SNPs on the SNP chip array, 399,

693 segregating SNPs were kept for further analyses. All
these SNPs had a call rate ≥ 98%. Among these, 4304
were removed due to minor allele frequency (MAF) cri-
teria (MAF ≤ 0.02), and 23,603 SNPs that were located
on the sex chromosomes and linkage groups were also
removed, such that 371,558 markers remained for
GWAS. An average density of 541 SNPs/Mb per
chromosome was observed, with the lowest density on
GGA2 (297 SNPs/Mb) and the highest density on
GGA21 (816 SNPs/Mb). Missing genotypes were re-
placed with the average covariate value of that locus as
reported by Cesar et al. [15].
The characterization of the 943 1-Mb non-overlapped

windows and their respective percentage of the genetic
variance explained are available in Additional file 1. The
genomic windows associated with performance traits are
described in Table 2. Twenty unique 1-Mb windows on
GGA1–4, 6, 7, 10, 14, 24, 27 and 28 were associated with
the body weight traits. The posterior probability of asso-
ciation (PPA) for these regions ranged from 0.40 to 0.96
and the genetic variance explained by each SNP window
ranged from 0.53 to 4.74%. We did not identify any gen-
omic windows associated with FI, FC, FE, or WG.
The associated SNP windows cumulatively explained

2.12, 20.59, and 17.31% of the genetic variance for BW1,
BW35 and BW41, respectively. Manhattan plots with
the percentage of genetic variance explained by all 943
non-overlapped SNP windows for each trait analyzed
herein are shown in Fig. 1.
From the 20 unique genomic windows (Table 2) associ-

ated with body weight traits, two genomic windows were
associated exclusively with BW1, eight with BW35, one
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with BW41 and nine were associated only with BW35 and
BW41 (Table 2). Within these latter nine genomic win-
dows associated with BW35 and BW41, SNPs with the
highest model frequency were investigated to identify
whether the same or different SNPs accounted for the
genetic variance explained by the window for BW35 and
BW41. The characterization of the SNPs with the highest
model frequency are shown in Table 3.

Overlapping with known QTL
From the 20 unique genomic windows (Table 2) asso-
ciated with body weight traits, 19 overlapped with pre-
viously published QTL for body weight traits curated
in the Chicken QTL database (release 35). Among
those, nine overlapped with QTL associated with
exactly the same traits that had been mapped in this
same population in previous studies using microsatel-
lite markers [8, 9]. The overlaps are available in the
Additional file 2. The genomic window located on
GGA24 is a novel QTL, since it did not overlap with
any previously published QTL region.
From the 20 unique genomic windows associated with

body weight traits (Table 2), five overlapped with QTL
previously mapped for fatness traits using the same SNP
dataset and the same population (Embrapa F2 Chicken
Resource Population) [14] (Table 4).

Positional candidate genes
Our enrichment analysis did not identified MeSH terms
associated with any of the categories investigated (i.e,
Chemical and Drugs, Diseases, Anatomy, Phenomena
and Processes) and also, no enriched clusters of genes
were detected. Thus, positional candidate genes within
each genomic window were evaluated. From the 386
genes annotated within the associated genomic windows
(Additional file 3), 38 were selected as possible candi-
dates for body weight regulation in chickens, based on
their respective biological GO terms and literature infor-
mation (Table 5).

In addition, positional candidate genes that were lo-
cated within regions under selection previously identified
in the grandparental chicken lines used to generate the
F2 population [17] were further investigated. The list of
genomic windows that harbored positional candidate
genes and their overlap with signature selection regions
are shown in Table 5.

Search for SNPs in positional candidate genes
Sixteen functional SNPs (13 predicted as deleterious and
three as high impact SNPs) were annotated in 11 pos-
itional candidate genes (Table 6), integrating the sequence
SNPs detected by the re-sequencing of grandparental an-
cestral chickens used to produce the F2 population.

Discussion
Genomic heritability
The genomic heritability estimates ranged from 0.0002
to 0.13 (Table 1) for FI, WG, FC, and FE. These are
complex traits, which are also subject to several envir-
onmental factors and, as a result, commonly exhibit
low heritability estimates [18]. Moreover, these traits
were measured only between 35 and 41 days in an F2
population that exhibits high phenotypic and geno-
typic variability, and were adjusted using BW35 as a
covariate. The short interval between the two mea-
surements could explain the low genomic heritability
estimates observed [8]. Nevertheless, FI, FC, FE, and
WG are extremely important traits that influence the
costs of production and, therefore, should be consid-
ered in breeding programs.
Different heritability estimates were found in the lit-

erature based on the use of pedigree records to define
the genetic variance-covariance among animals, as re-
ported by Gaya et al. [19], who obtained 0.20 for FI and
0.16 for FC (from 5 to 7 weeks of age) using one single
sire broiler population. FI, FC (both measured between
35 and 42 days of age) and WG were reported by Aggrey
et al. [20] to exhibit values of 0.46, 0.41 and 0.48, re-
spectively, using one random bred population. For body

Table 1 Descriptive statistics, variance components and genomic heritability

Trait N mean ± SD Genetic Variance (SE) Residual Variance (SE) Total Variance (SE) Genomic Heritability (SE)

FI 479 597.89 ± 132.88 1.4024 (1.8247) 8030.8300 (526.2320) 8032.2400 (526.2090) 0.0002 (0.0002)

FC 472 2.84 ± 0.74 0.0333 (0.0067) 0.4429 (0.0311) 0.4760 (0.0311) 0.07 (0.0143)

FE 471 0.37 ± 0.07 0.0006 (0.00009) 0.004 (0.0003) 0.0045 (0.0003) 0.13 (0.0220)

WG 459 220.00 ± 67.25 2.6996 (0.8366) 217.5120 (14.7378) 220.2120 (14.7127) 0.01 (0.0039)

BW1 478 44.57 ± 4.49 5.1527 (0.3810) 3.3557 (0.3113) 8.5084 (0.4336) 0.60 (0.0313)

BW35 480 790.92 ± 140.53 8511.6100 (544.2520) 3356.1100 (414.5550) 11,867.7000 (521.7490) 0.72 (0.0328)

BW41 480 1009.43 ± 190.74 15,430.8000 (975.2460) 5835.5000 (739.7160) 21,266.3000 (917.5350) 0.73 (0.0330)

FI Feed intake between 35 and 41 days of age, FC Feed conversion ratio between 35 and 41 days of age, FE Feed efficiency between 35 and 41 days of age, WG
Weight gain between 35 and 41 days of age, BW1 Body weight at hatch, BW35 Body weight at 35 days of age, BW41 Body weight at 41 days of age. SD is the
standard deviation and SE is the standard error
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weight traits, Venturini et al. [21] obtained 0.41 for her-
itability of body weight at 42 days-of-age (BW42) and
Grupioni et at [22]. obtained 0.50 for BW42, both using
broiler populations.
Using the genomic relationship matrix, Mebratie et al.

[23] found heritability estimates of 0.090 for FI, 0.051 for
FC and 0.027 for WG (measured in an interval of 7 days
of age), in a male broiler population. Abdollahi-Arpanahi
et al. [24] obtained heritability of 0.30 for BW35, using a
commercial broiler population. It is important to highlight
that these studies have used broiler populations that have
been under artificial selection. Artificial selection may
affect genetic variance and, consequently, genomic herit-
ability [25].

In contrast, this study was performed using an F2
chicken population derived from a cross between diver-
gent lines. Thus, differences in genomic heritability esti-
mates should be expected due to the genetic variability
between the lines which introduces segregation variance
into the F2. Another study using the same F2 population
and a lower density of markers (~ 135 K, Cornell GBS ap-
proach), Pértille et al. [10] reported genomic heritability
for FC (0.01 ± 0.006), FE (0.11 ± 0.005), FI (0.17 ± 0.094),
BW1 (0.45 ± 0.073), BW35 (0.85 ± 0.073) and BW41
(0.75 ± 0.087). Differences in the genomic heritability esti-
mates, even in the same population, are expected due to
sampling errors, but can be magnified due to the presence
of large effect QTL in the dataset utilized.

Table 2 Characterization of 1-Mb genomic windows that explained more than 0.53% of the genomic variance for body weight
traits

Trait GGA_Mb Genomic window
(first and last SNP)

#SNPs Percentage of genetic
variance explained

PPA1

BW1 1_181 rs14928423 - rs314828711 388 1.45 0.65

6_2 rs317072624 - rs14561583 461 0.67 0.50

BW35 1_54 rs15271198 - rs315312994 257 0.85 0.48

1_55 rs315667199 - rs314256540 223 0.66 0.44

1_56 rs317748170 - rs15279198 411 0.94 0.63

1_129 rs312987852 - rs312615910 385 0.81 0.58

1_168 rs318211853 - rs15497155 318 3.08 0.82

2_78 rs318038016 - rs314335165 282 0.92 0.53

3_28 rs313517177 - rs313321588 342 0.53 0.50

3_30 rs317825887 - rs13722119 365 1.42 0.62

4_69 rs14487157 - rs314272956 367 0.75 0.50

4_74 rs316224092 - rs317555947 281 0.75 0.40

4_76 rs15618974 - rs314892344 308 3.26 0.64

7_34 rs316467562 - rs312928601 411 0.57 0.63

7_36 rs316261866 - rs315360554 257 0.60 0.49

14_9 rs315659517 - rs317168690 703 0.69 0.69

24_1 rs316118891 - rs14293772 814 0.73 0.82

27_3 rs14302748 - rs312772391 820 1.93 0.94

28_0 rs313774457 - rs312701176 829 2.10 0.92

BW41 1_54 rs15271198 - rs315312994 257 0.69 0.50

1_56 rs317748170 - rs15279198 411 0.89 0.58

1_168 rs318211853 - rs15497155 318 2.33 0.75

2_78 rs318038016 - rs314335165 282 0.70 0.51

3_30 rs317825887 - rs13722119 365 1.26 0.66

4_74 rs316224092 - rs317555947 281 1.20 0.49

4_76 rs15618974 - rs314892344 308 4.74 0.74

10_16 rs14011271 - rs313957691 623 0.72 0.74

27_3 rs14302748 - rs312772391 820 1.75 0.92

28_0 rs313774457 - rs312701176 829 3.03 0.96
1Posterior probability of association (PPA) as reported by Onteru et al. [16]
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Genomic windows identified
The genetic variance explained by each SNP window asso-
ciated with body weight traits ranged from 0.53 to 4.74%,
with windows located on GGA1–4, 6, 7, 10, 14, 24, 27 and
28. Ninety-five percent (19 out of 20) of the genomic win-
dows identified overlapped with at least two known QTL
for body weight traits (Additional file 2). Additionally, nine

genomic windows on GGA3, 4, 7, 10 and 27 overlapped
with known QTL mapped for the same trait in the same
population [8] (Additional file 2). Although 95% of the de-
tected genomic windows were already known to be associ-
ated with body weight traits as reported in the Chicken
QTL database [7], some of them were associated, for the
first time, with body weight at the ages analyzed herein.

Fig. 1 Manhattan plots of the posterior means of the percentage of genetic variance explained by each 1 Mb SNP window across the 28
autosomal chromosomes for all the performance traits analyzed. The title of each graph indicates the corresponding phenotype: feed intake (FI),
feed conversion (FC), feed efficiency (FE), weight gain (WG), body weight at hatch (BW1); body weight at 35 days of age (BW35); body weight at
41 days of age (BW41). The X-axis represents the ordered chromosomes, and Y-axis shows the proportion of genetic variance explained by each
window from Bayes B analysis. Red lines indicate the threshold to deem significant SNP windows (0.53%)
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These results provide valuable information to understand
the genetic control of body weight, a major factor involved
in chicken growth and development.
We also compared genomic window sizes with the

span of known QTL previously mapped for the same
trait in the same population [8] (Additional file 2). These
known QTL were previously mapped using QTL interval
mapping (linkage analysis) with up to 127 microsatellite
markers, covering 21 linkage groups [8]. Most of our
genomic windows had fixed 1Mb width, with the excep-
tion of those windows associated with the same trait that
were located in an immediately flanking position, which
were merged and the wider combined window was con-
sidered as a unique window. Considering this approach,
we were able to refine up to 99% of the size of the
known QTL (QTL: 7180, 100.4Mb of size; Additional
file 2). Thus, the use of a high density of markers to per-
form GWAS provided us with much better resolution
for QTL detection, facilitating the search for positional
candidate genes.
From the 20 unique genomic windows associated with

body weight traits (Table 2), five overlapped with QTL
previously mapped for fatness traits using the same SNP

dataset and the same population (Embrapa F2 Chicken
Resource Population) [14] (Table 4). Thus, we suggest
that these QTL may exhibit pleiotropic effects, affecting
different tissues (such as adipose tissue) and metabolic
processes associated with body weight regulation in
chickens.
Two genomic windows were associated exclusively

with BW1, nine with BW35, one with BW41, while eight
were associated with both BW35 and BW41 (Table 2).
From these nine genomic windows, four exhibited the
same SNP with the highest model frequency for BW35
and BW41. The different percentages explained by the
same QTL at different ages may be related to changes in
metabolic processes regulating body weight during
chicken growth and development. Four genomic win-
dows associated with both BW35 and BW41 exhibited
different SNPs with the highest model frequency (Table
3). Among those QTL, the windows on GGA1 at 168
Mb, GGA7 at 36Mb, and GGA27 at 3Mb overlapped
with QTL previously mapped for fatness traits using the
same SNP dataset and the same population (Table 4).
Thus, these findings corroborate that different genes, tis-
sues (such as adipose tissue) and metabolic processes

Table 3 Characterization of SNPs with the highest model frequency within the nine genomic windows associated with BW35 and
BW41

Genomic
windows
associated

BW35 BW41

SNP ID1 Model Frequency SNP ID1 Model Frequency

1_54 rs315625251 0.0154 rs315625251 0.0142

1_56 rs13871363 0.0174 rs315430937 0.0200

1_168 rs14916269 0.0708 rs316630786 0.1002

2_78 rs314546937 0.0119 rs314546937 0.0071

3_30 rs313673308 0.0355 rs312452371 0.0432

4_74 rs315474450 0.0157 rs315474450 0.0262

4_76 rs315283155 0.0593 rs314495350 0.0811

27_3 rs16719146 0.0329 rs80711851 0.0234

28_0 rs14305335 0.1893 rs14305335 0.3252
1SNP within the window with the highest model frequency

Table 4 Genomic windows that overlapped with QTL previously mapped for fatness traits using the same SNP dataset and the
same population (Embrapa F2 Chicken Resource Population)

GGA_
Mb

Genomic window Genome interval Associated
trait herein

Fatness
associated
trait [14]

(first - last SNP) (start – end position)1

1_54 rs318211853 - rs15497155 54,001,671 – 54,998,619 BW35, BW41 ABF

1_168 rs15271198 - rs315312994 168,005,668 – 168,997,872 BW35, BW41 CFC

7_36 rs14302748 - rs312772391 36,000,235 – 36,898,384 BW35 CFC, CFCDM

27_3 rs313774457 - rs312701176 3,000,222 – 3,996,811 BW35, BW41 ABF

28_0 rs316261866 - rs315360554 23,942 – 999,295 BW35, BW41 ABFP

ABF Abdominal fat weight in grams, ABFP Abdominal fat percentage, CFC Carcass fat content in grams, CFCDM Carcass fat content on dry matter basis
1Map position based on Gallus_gallus-5.0, NCBI assembly
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can be involved in the regulation of body weight in
chickens. Further studies to quantify positional candi-
date gene expression at different ages could be helpful.
The genomic window on GGA24 did not overlap with

published QTL for body weight traits and was consid-
ered as a novel QTL. This QTL might be population
specific, thus, further studies in other populations might
be helpful to validate the role of this region in body
weight regulation.
As mentioned earlier, we did not identify any genomic

windows associated with FI, FC, FE or WG. This could
be due to the lower genetic variance detected for these
traits compared to those reported for the other traits
(BW1, BW35 and BW41) (Table 1).

Positional candidate genes for body weight in chickens
Within the associated genomic windows, 38 genes were
selected as candidates for body weight regulation in
chickens, based on their respective biological GO terms
and literature information (Table 5). Three of those have
already been associated with carcass and body weight
traits in livestock - LCORL [26, 27], PPARGC1A [28, 29]
and CHRNA9 [30]. Fifteen genes were previously associ-
ated with growth and development processes, such as
cell growth and proliferation (HOXB2, 4, 7, 9 and 13,
HIPK2 [31], KLB [32–34] and PHB [35, 36]); embryo de-
velopment and early growth (TXNRD1 [37], IGF-1R [38],
RBM47 [39] and VEGFA [40, 41]) or muscle hyper-
trophy and development (LONP1 [42], GRIN2A [43] and
BMPR1A [44]). It is important to highlight that HOXB2,
4, 7, 9 and 13 genes belong to the homeobox family,
known to be associated with development [45] and stem
cell growth and differentiation [33]. In addition, the
interaction between VEGF members (such as VEGFA)
and their receptors may promote cell differentiation in
various tissues, such as skeletal muscle in mammals.
One positional candidate gene was associated with

heat stress: HSP90AB1. The HSP90AB1 gene encodes a
heat shock protein (HPS), which was associated with the
response to heat stress in cattle [46, 47] and in general
livestock adaptation [48]. Interestingly, heat stress has a
negative impact on performance parameters in chickens
[49, 50], corroborating that the HSP90AB1 gene can
affect performance traits and, consequently, body weight
in chickens.
Three actin A receptor types were identified as

positional candidate genes: ACVR1, ACVR1C and
ACVR2A. The ACVR1 gene is associated with ossifi-
cation and its expression can inhibit osteogenesis
[51, 52], potentially affecting body weight. The
ACVR1C gene was associated with adiposity and
body weight in mice [53]. The ACVR2A was associ-
ated with breast and carcass weight in chickens [54].
Additionally, the ACVR2A gene overlapped with one

Table 5 Genomic windows associated with body weight traits
and their positional candidate genes, and overlap with selection
signature regions

GGA (Pos Mb) Trait PCG1 Ensembl gene ID2

1 (54) BW35, BW41 CHST11** ENSGALG00000030607

TXNRD1 ENSGALG00000035345

SLC41A2 ENSGALG00000012697

1 (55) BW35 PMCH ENSGALG00000012757

1 (56) BW35, BW41 HIPK2 ENSGALG00000012792

AKR1D1 ENSGALG00000012834

SLC37A3 ENSGALG00000012849

1 (129) BW35 SLC25A6 ENSGALG00000016691

1 (168) BW35, BW41 RB1 ENSGALG00000016997

HTR2A ENSGALG00000016992

3 (30) BW35, BW41 SLC29A1 ENSGALG00000010182

HSP90AB1 ENSGALG00000010175

VEGFA ENSGALG00000010290

4 (69) BW35 RBM47 ENSGALG00000014267

CHRNA9 ENSGALG00000014268

KLB ENSGALG00000041663

4 (74) BW35, BW41 PPARGC1A ENSGALG00000042851

4 (76) BW35, BW41 LCORL ENSGALG00000014421

6 (2) BW1 BMPR1A ENSGALG00000002003

7 (34) BW35 ACVR2A** ENSGALG00000012444

7 (36) BW35 ACVR1C ENSGALG00000041257

ACVR1 ENSGALG00000037301

NR4A2** ENSGALG00000012538

10 (16) BW41 IGF-1R ENSGALG00000040651

14 (9) BW35 EMP2 ENSGALG00000027058

GRIN2A ENSGALG00000007278

24 (1) BW35 KCNJ5 ENSGALG00000001181

KCNJ1 ENSGALG00000001167

27 (3) BW35, BW41 HOXB7 ENSGALG00000032740

HOXB2 ENSGALG00000025774

HOXB13 ENSGALG00000033154

HOXB9 ENSGALG00000001276

HOXB4 ENSGALG00000000284

PHB ENSGALG00000038604

SLC35B1 ENSGALG00000035057

28 (0) BW35, BW41 ANGPTL4 ENSGALG00000000619

SLC1A6 ENSGALG00000000558

LONP1 ENSGALG00000040492

**Positional candidate genes which overlapped with selection signature
regions [17]
1Positional candidate genes
2Ensembl gene ID based on Galgal5 (Ensembl release 92)
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signature selection region previously identified in the
founders of the Embrapa F2 Chicken Resource Popu-
lation [17], which indicates that this gene was under
positive selection affecting breast and carcass weights
and, consequently, body weight in either the broiler
or layer line.
Breeders have long been selecting chickens for rapid

growth, body weight gain, feed efficiency and breast
muscle weight [55–57]. Selection has resulted in
chickens with higher growth rate and breast meat
yield, as well as higher fat deposition [56]. Accord-
ingly, in identifying candidates, we did not limit our
consideration to only those genes with roles in cell
differentiation and proliferation, skeletal muscle
growth and development, but also considered genes
with roles in adipose tissue development, or energy
and lipid metabolism.
Fifteen positional candidate genes were associated with adi-

pose tissue development, energy and lipid metabolism:
SLC41A2, SLC37A3, SLC25A6, SLC29A1, SLC1A6, SLC35B1,
AKR1D1, ANGPTL4 [58], RB1 [59, 60], CHST11 [61],
PMCH [62], NR4A2 [63], HTR2A [64], KCNJ5 and KCNJ1. It
is important to highlight that SLC41A2, SLC37A3, SLC25A6,
SLC29A1, SLC1A6 and SLC35B1 belong to the solute carrier
family already known to be associated with energy metabol-
ism [36, 65–67] and obesity in humans [68, 69]. The

AKR1D1 gene is involved with bile acid and steroid hormone
homeostasis [70] and, interestingly, effects of dietary supple-
mental bile acids have already been associated with the activ-
ity of intestinal and lipoprotein lipases affecting growth
performance in chickens [71]. The KCNJ5 and KCNJ1 genes
belong to the potassium channel family, that may affect food
intake, energy expenditure and glucose homeostasis [48] and,
consequently, body weight.
From all the positional candidate genes identified, six

were located within two QTL previously mapped for fat-
ness traits [14] (Table 4), and were selected as candidates
by Moreira et al. [14] for fat deposition regulation in the
same population studied herein: CHST11, RB1, HTR2A,
NR4A2, ANGPTL4 and SLC1A6, suggesting that these
genes may have pleiotropic effects. Those regions associ-
ated with body weight and fatness traits may help to explain
why selection for weight gain is associated with increased
fat deposition. Moreover, CHST11 and NR4A2 genes over-
lapped with a signature selection region previously identi-
fied in the founders of the Embrapa F2 Chicken Resource
Population [17]. These result indicates that these genes are
under positive selection and could help to explain the dif-
ference in fat deposition observed in the CC and TT lines
used in the study. These findings provide helpful informa-
tion for poultry breeding programs that aim to select birds
with both high body weight and reduced fat deposition.

Table 6 Characterization of predicted deleterious and high impact SNPs annotated in 11 positional candidate genes

Gene GGA SNP ID Position1 Annotation SIFT score AA substitution

AKR1D1 1 rs316370743 56,636,977 Deleterious 0.01 Met/Ile

HSP90AB1 3 rs737959833 30,358,254 Deleterious 0.03 Thr/Ala

rs737623405 30,357,799 High impact
(Stop lost)

– */Arg

KLB 4 rs740538348 69,722,817 Deleterious 0.02 Arg/Trp

RBM47 4 rs313177163 69,358,984 Deleterious 0.00 Arg/Cys

PPARGC1A 4 rs739990319 74,565,856 Deleterious 0.00 Arg/Gly

rs16435584 74,566,888 Deleterious 0.01 Asp/Asn

rs731752899 74,590,596 Deleterious 0.01 Asn/Asp

NR4A2 7 g.36224286C > T
(Novel)

36,224,286 Deleterious 0.00 Val/Met

g.36225242G > T
(Novel)

36,225,242 Deleterious 0.00 Arg/Ser

g.36225278C > T
(Novel)

36,225,278 Deleterious 0.01 Val/Met

ACVR1 7 rs312541186 36,479,417 Deleterious 0.01 Trp/Arg

GRIN2A 14 rs316241099 9,451,676 High impact
(Splice acceptor)

– –

KCNJ5 24 rs312300440 1,075,890 Deleterious 0.02 Leu/Pro

SLC35B1 27 g.3338981C > T
(Novel)

3,338,981 High impact
(Stop gained)

– Gln/*

ANGPTL4 28 g.846035G > A
(Novel)

846,035 Deleterious 0.03 Ser/Phe

1Position based on assembly Gallus_gallus-5.0
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Predicted deleterious and high impact SNPs
Thirteen predicted deleterious and three high impact
SNPs were identified in 11 positional candidate genes
from our gene list (Table 6). As previously mentioned,
these genes were related to energy homeostasis, lipid
metabolism and, consequently, body weight regulation.
Moreover, the NR4A2 gene overlapped with a selection
signature region, indicating that this gene is under posi-
tive selection, may affecting lipid metabolism in one of
the founder lines and, consequently, body weight. Thus,
predicted deleterious and high impact SNPs in these
genes could be causative mutations.
In summary, we identified 20 unique 1-Mb genomic

windows associated with body weight traits (19 already
known and one novel QTL) and within them, we de-
tected 38 positional candidate genes. Through our inte-
grative approach, we refined our list of candidate genes
investigating the overlap between sequence SNPs and
signatures of selection detected in the founders of the
population. Curiously, three positional candidate genes
overlapped with regions exhibiting selection signatures.
In addition, thirteen predicted deleterious and three high
impact SNPs were annotated in 11 positional candidate
genes related to osteogenesis, skeletal muscle develop-
ment, growth, energy metabolism and lipid metabolism,
which may be associated with body weight in chickens.
Further functional studies need to be performed to val-
idate the role of these mutations in body weight regula-
tion, thus providing important information for poultry
breeding.

Conclusions
The use of a high-density SNP array to identify QTL in
an F2 population and the integration of regions exhibit-
ing signatures of selection in their pure line ancestors
along with sequence SNPs detected in pure line grand-
parents allowed the identification of candidate genes and
candidate causal variants within those genes. Annotation
of candidate genes indicates the importance of osteogen-
esis, cell growth and differenciation, skeletal muscle de-
velopment, energy metabolism and lipid metabolism in
the control of growth and, consequently, body weight in
chicken. Our findings form a basis for further functional
studies that can elucidate the role of specific genes in
body weight regulation in chickens, generating useful in-
formation for poultry breeding programs.

Methods
All experimental protocols related to animal experimen-
tation in this study were performed in agreement with
resolution number 010/2012 approved by the Embrapa
Swine and Poultry National Research Center Ethics
Committee on Animal Utilization to ensure compliance
with international guidelines for animal welfare.

Animals, population and phenotypes measured
We used the same population described in Moreira et al.
[14]. In addition, the population used in this study is the
same previously utilized to map QTL for performance,
carcass, chemical components and organs traits using
microsatellite markers [8, 9, 72–75]. Sires that exhibited
favorable QTL effects previously mapped for those traits,
had their progenies selected for high-density genotyping
and genome-wide association.
In summary, 529 chickens from an Embrapa F2 Chicken

Resource Population (developed by the Embrapa Swine and
Poultry National Research Center) were genotyped (28
grandparental chickens from layer and broiler lines, 5
chickens from F1 and 496 chickens from the F2-TCTC gen-
erations) [14] with a high-density SNP array (600 K) [76].
Breifly, the layer line (CC) was selected for eight genera-

tions for improved egg production, egg weight, feed conver-
sion, viability, sexual maturity, fertility, hatchability, egg
quality, and low body weight, prior to the F2 population be-
ing created [14]. The broiler line (TT) had been selected for
six generations, mainly for improved body weight, feed con-
version, carcass and breast yield, viability, fertility, hatch-
ability, lower abdominal fat weight, and reduced metabolic
syndromes [14]. More details about the Embrapa F2
Chicken Resource Population are described by Nones et al.
[9] and Rosário et al. [77].
Chickens from the F2 population were reared with free

access to water and a corn and soybean meal-based diet
up to 42 days of age [8]. As described by Ambo et al. [8]
and Pértille et al. [10], between 35 and 41 days-of-age,
chickens were transferred to individual cages for feed in-
take (FI) measurement and to compute feed conversion
(FC), feed efficiency (FE) and weight gain (WG). Body
weight was measured in grams (g) at hatch, 35 and 41
days of age (BW1, BW35, and BW41). The BW41 was
collected at the end of the feed conversion test. WG was
calculated as the difference between BW41 and BW35.
FC was calculated by dividing FI by WG. FE was calcu-
lated by dividing WG by FI. Chickens were euthanized
by cervical dislocation.

DNA extraction, genotyping and quality control
The DNA extraction, genotyping and quality control
have been described in Moreira et al. [14]. Briefly,
genomic DNA was extracted from blood with DNAzol®
following manufacturer recommendations (Life Tech-
nologies Invitrogen). After extraction, DNA integrity
was evaluated in agarose gel (1%), quantified in Nano-
Drop® 2000 spectrophotometer (Thermo Fisher Scien-
tific), then diluted to a final concentration of 20 ng.μL− 1.
Diluted genomic DNA was prepared for genotyping fol-
lowing an Affymetrix protocol, and then genotyped with
a 600 K Affymetrix Axiom Chicken Genotyping Array
(Affymetrix, Inc. Santa Clara, CA, USA). That SNP chip
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contains segregating SNP for different chicken lines as
described by Kranis et al. [76].
Quality control analysis and genotype calling were per-

formed using Affymetrix Power Tools v1.17.0 (APT).
Samples that exhibited DishQC ≥0.82 and call rates
≥90% were kept for further analyses. Filtering was per-
formed with the SNPolisher package using R software
(http://www.r-project.org/), and SNPs with call rate ≥
98% and minor allele frequency (MAF) ≥ 2% were kept
for further analyses. SNPs monomorphic, located on the
sex chromosomes or linkage groups without genomic
annotation were removed.

Descriptive statistics, heritability and genome-wide
association studies
The SNPs retained after filtering for quality were investi-
gated in GWAS using genomic prediction methodology
with a Bayesian approach in GenSel software [78]. In
this approach, the genotypes are simultaneously fitted in
the model which has been shown to account for any
structure in the population [78, 79]. Previous studies
have used this approach to perform GWAS and discover
QTL and positional candidate genes in chickens based
on high density markers [14, 80–83].
In a first step, BayesC was used to estimate the genetic

and residual variances (with π =0). Those values were
then used to run a BayesB model, to estimate genomic
heritability and perform GWAS, as had been adopted by
Cesar et al. [15] and Moreira et al. [14, 83]. The math-
ematical model presented below was used in the associ-
ation analyses:

y ¼ Xbþ
Xk

j¼1

a jβ jδ j þ e;

In this model, y represents a vector of phenotypic
values, X an incidence matrix for fixed effects, b the vec-
tor of fixed effects, k the number of SNP, aj the column
vector representing SNP locus j as a covariate coded
with the number of B alleles, βj the random substitution
effect for locus j assumed normally distributed N (0, σ2β)
when δj = 1, with δj being a random indicator variable 0/
1, indicating the absence (with probability π) or presence
(with probability 1-π) of locus j in the model, and e the
vector of the residual effects assumed normally distrib-
uted N (0, σ2e). Sex and hatch were included as fixed ef-
fects in the model and BW35 was fitted as a covariate
for FI, FC, FE and WG.
We adopted π= 0.9988 in the BayesB model to fit ap-

proximately 445 SNP per iteration of the Markov chain
comprising 41,000 MCMC samples with the first 1000 sam-
ples being discarded. A map file was used to allocate the
markers to each of 943 1-Mb non-overlapping windows.
Based on previous studies that adopted genomic prediction

methodology to perform GWAS [14, 15, 80–82], we investi-
gated the proportion of genetic variance explained by each
and every 1-Mb SNP window across the genome. Due to
high linkage disequilibrium between the SNPs fitted simul-
taneously, the QTL effect can be distributed across nearby
markers [78]. These previous studies showed that the 1-Mb
windows can capture the effects [14, 80–82, 84].
We expect that each window would explain 0.1060%

of the genetic variance (100% / 943) in an infinitesimal
model as mentioned by Van Goor et al. [80], and win-
dows that explained five times more than expected were
considered to be associated with the phenotype. Add-
itionally, we presented the posterior probability of asso-
ciation (PPA) [16] for each associated genomic window,
which is the proportion of MCMC samples where the ef-
fects of this window were included in the model and
accounted for some of the genetic variance [78].

Overlap with previously mapped QTL
All genomic windows detected were compared with
published QTL previously mapped to the chicken gen-
ome, using the information available at the Chicken
QTLdb - release 35 [7]. The search tool in the
Chicken QTLdb website was utilized with QTL coor-
dinates based on the Gallus_gallus-5.0 chicken gen-
ome assembly. Additionally, to identify possible
pleotropic QTL, we compared the genomic windows
detected with QTL previously mapped for fatness
traits using the same SNP dataset and the same
population (Embrapa F2 Chicken Resource Population)
[14]. Previously mapped QTL were reported by their
respective QTL ID numbers. Genomic windows that
did not overlap with previously published QTL regions
were considered novel discoveries.

Identification of positional candidate genes and search
for potentially causative SNPs
The genes located within every genomic window that had
been shown to be associated with a trait, and their corre-
sponding Gene Ontology terms, were retrieved from the
Ensembl Genes 92 database available at Ensembl BioMart
[85]. A literature search was conducted to increase or de-
crease support for the selection of a candidate gene. Using
the whole gene list, enrichment analyses were performed
by two different approaches: MeSH enrichment to identify
enriched MeSH terms using the R/Bioconductor package
meshr [18, 86] and, Functional Annotation Tool (FAT) in
Database for Annotation, Visualization and Integrated
Discovery software (DAVID bioinformatics resources
v.6.8, [17, 87]) to identify enriched clusters of genes. To
identify MeSh terms and genes enriched clusters, we con-
sidered the raw p-value < 0.05 and p-value adjusted for
multiple testing using the Benjamini & Hochberg [19]
procedure (padjusted) < 0.1.
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Genes identified in this study were evaluated to deter-
mine if they resided within selection signature regions
that were previously identified in 28 grandparental
chickens (14 TT and 14 CC) that were ancestors of our
experimental population [17]. The description of the
methods applied to identify the signature selection re-
gions, and the SNP dataset used are available in
Boschiero et al. [17].
Additionally, we integrated a sequence SNP dataset

from re-sequencing these grandparental animals to iden-
tify candidate mutations located in our positional candi-
date genes. In this study, we only investigated SNPs
located in coding regions. To predict whether SNPs that
cause changes in amino acids may affect the function of
the gene product, we utilized the SIFT (sorting intoler-
ant from tolerant) score to assess the level of conserva-
tion in homologous protein sequences using the SIFT
algorithm [87] implemented within the VEP tool [86].
High impact SNPs that may cause protein truncation,
loss of function or trigger nonsense-mediated decay
were also evaluated in the positional candidate genes.
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