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Cardiovascular diseases (CVDs) remain the main cause of morbidity and mortality
worldwide. The pathological mechanism and underlying biological processes of these
diseases with metabolites remain unclear. In this study, we conducted a two-sample
Mendelian randomization (MR) analysis to evaluate the causal effect of metabolites on
these diseases by making full use of the latest GWAS summary statistics for 486
metabolites and six major CVDs. Extensive sensitivity analyses were implemented to
validate our MR results. We also conducted linkage disequilibrium score regression (LDSC)
and colocalization analysis to investigate whether MR findings were driven by genetic
similarity or hybridization between LD and disease-associated gene loci. We identified a
total of 310 suggestive associations across all metabolites and CVDs, and finally obtained
four significant associations, including bradykinin, des-arg(9) (odds ratio [OR] � 1.160,
95% confidence intervals [CIs]: 1.080–1.246, false discovery rate [FDR] � 0.022) on
ischemic stroke, N-acetylglycine (OR � 0.946, 95%CIs: 0.920–0.973, FDR � 0.023), X-
09026 (OR � 0.845, 95%CIs: 0.779–0.916, FDR � 0.021) and X-14473 (OR � 0.938, 95%
CIs � 0.907–0.971, FDR � 0.040) on hypertension. Sensitivity analyses showed that these
causal associations were robust, the LDSC and colocalization analyses demonstrated that
the identified associations were unlikely confused by LD. Moreover, we identified 15
important metabolic pathways might be involved in the pathogenesis of CVDs. Overall, our
work identifies several metabolites that have a causal relationship with CVDs, and improves
our understanding of the pathogenesis and treatment strategies for these diseases.
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INTRODUCTION

Cardiovascular diseases (CVDs), such as atrial fibrillation (AF),
hypertension, myocardial infarction (MI), coronary artery disease
(CAD), any ischemic stroke (AIS) and heart failure (HF), remain one
of the most frequent causes of morbidity and mortality worldwide,
and continuously impose a significant burden on human health and
life (Dimmeler, 2011; Aggarwal et al., 2017). From 1990 to 2019, the
overall prevalence of CVD doubled, with the number of cases
increasing from 271 million to 523 million, the number of deaths
increasing from 12.1 million to 18.6 million, and the overall trend for
disability-adjusted life years and life loss years increasing from 17.7
million to 34.4 million (Roth et al., 2020). It is reported that
approximately 17.9 million people died of CVDs in 2016, and
CVDs account for 37% of deaths under the age of 70 caused by
non-communicable diseases (Virani et al., 2021). Moreover, it is
anticipated that all aspects of CVDs cost 318 billion in 2015, and
would continue to rise in the coming years due to population aging
(McClellan et al., 2019).

In the past few decades of prevention and treatment of CVDs, we
have learned that early prevention is more cost-effective than late
treatment and care (De Backer, 2017), which however requires a well
understanding of risk factors contributing to CVDs. Previous studies
have been identified a lot of relevant factors including high blood
cholesterol (Grundy et al., 2019), high blood pressure (Chobanian
et al., 2003), smoking behaviors (Thun et al., 2013), overweight and
obesity (Khan et al., 2018), as well as physical inactivity (Artinian
et al., 2010). Besides, it has been well recognized that genetic factors
also play a fundamental role in the etiology of CVDs (Arsenault and
Despres, 2017; van der Harst et al., 2017). Recent genome-wide
association studies (GWASs) have greatly advanced our
understanding of causative genetic foundation underlying CVDs
(Kessler et al., 2016; Benn and Nordestgaard, 2018). Many studies
have been carried out in order to further elaborate the genetic
susceptibility mechanism (Arking and Chakravarti, 2009; Smith
et al., 2015). Currently, associations with CVDs have been
investigated in multi-omics, such as DNA methylation (Hadji
et al., 2016), gene expression (Kataoka and Wang, 2014; Palou-
Marquez et al., 2021), andmetabolism (Li et al., 2020a). Among these
much attention has been paid to investigate functional roles of
metabolites in CVDs (Wang and Zhao, 2018) because metabolites
are intermediate human phenotypes with basic biological functions
and reflect physiological and pathological disease phenotype of
middle or end product (Johnson et al., 2016; Wishart, 2019). A
large number of metabolites have been detected to be biomarkers of
diseases in biological fluids, cells and tissues (Johnson et al., 2016),
including the prognosis of patients with H1N1 influenza pneumonia
(Banoei et al., 2017), the evaluation of maternal fasting levels of
gestation (Lowe et al., 2017), and the risk assessment of diabetes
(Wang et al., 2011). Particularly, the study of blood metabolomics
identified many biomarkers for predicting the occurrence of CVDs
and established reliable prediction models (Zhang et al., 2018;
Marklund et al., 2019). In addition, many prior studies also
discovered some metabolites that were associated with CVDs
(Ruiz-Canela et al., 2017). However, the pathological mechanism
and underlying biological processes of CVDs remain elusive, and the
exact relationship between CVDs andmetabolites is unknown due to

confounding factors and reverse causality. Therefore, a
comprehensive and thorough analysis is urgently needed to reveal
the causal role of metabolites in the mechanism of CVDs.

Mendelian randomization offers a powerful and feasible statistical
tool to achieve this goal in epidemiology. In brief, it applies
instrumental variable to explore whether the exposure (e.g.,
metabolite) is causally related to the outcome of interest (e.g.,
CAD) (Thomas and Conti, 2004; Tobin et al., 2004; Evans and
Smith, 2015). Over the past decade, thanks to the public availability of
GWAS summary statistics for many exposures and outcomes
(Visscher et al., 2017; McMahon et al., 2019), single nucleotide
polymorphisms (SNPs) are widely selected as instrumental
variables to infer causality in MR studies (Thomas and Conti,
2004; Tobin et al., 2004; Evans and Smith, 2015; Davies et al.,
2018; Zeng and Zhou, 2019b; Zeng et al., 2019; Yu et al., 2020a;
Yu et al., 2020b). Relying on the principle that the two alleles of a SNP
are randomly segregated during gamete formation and conception
under the law of Mendel and such segregation is independent of
known/unknown confounding factors, MR is often much less
susceptible to reverse causation and confounders compared to
other study designs (Davey Smith and Ebrahim, 2003). Therefore,
to some extent, MR is a cost-effective tool for analyzing causal
reasoning because of the reduction of the need to document and
control for all possible confounders in studies (Sleiman and Grant,
2010). To implement a valid MR analysis, each of used SNP
instrumental variables of the exposure should satisfy three
prerequisites (van Kippersluis and Rietveld, 2018; Zeng et al.,
2019): 1) the relevance condition: the SNP is associated with the
exposure; 2) the independence condition: the SNP is not associated
with any confounding factors related to the exposure and the
outcome; 3) the exclusion restriction condition: the SNP only
affects the outcome through the exposure.

Due to the great advantage, we here conducted a two-sample MR
analysis by making full use of the latest summary statistics of 486
metabolites and six CVDs to evaluate the causal effect of metabolites
on these diseases. Extensive sensitivity studies, including linkage
disequilibrium score regression (LDSC) (Bulik-Sullivan et al.,
2015) and colocalization analysis (Giambartolomei et al., 2014),
were carried out to assess whether our MR findings were driven
by genetic similarity or hybridization between LD and disease-
associated genetic loci. Overall, we revealed the presence of causal
relationship between four metabolites and two types of CVDs
(i.e., AIS and DBP). We further demonstrated that the identified
associations weremuch strong compared to the horizontal pleiotropy
and were robust against various MR methods used; therefore, they
could not be driven by shared genetic components, nor could be
confused by LD with common causal SNPs. Finally, we identified
several important metabolic pathways that may play a functional role
in the development of CVDs.

MATERIALS AND METHODS

Summary Statistics for Metabolites and
Cardiovascular Diseases
We yielded summary statistics of 486 human blood metabolites
from the metabolomics server (Shin et al., 2014), which was one
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of the most comprehensive studies of metabolites thus far. The
association analysis was carried out for ∼2.1 million SNPs up on
7,824 individuals of European descent. After quality control, a
total of 486 metabolites (i.e., 309 known and 177 unknown
metabolites) were analyzed (Shin et al., 2014). We also
obtained summary statistics of six CVDs also generated from
individuals of European ancestry (Table 1), including AF
(Nielsen et al., 2018), hypertension (measured via diastolic
blood pressure [DBP], systolic blood pressure [SBP] and pulse
pressure [PP] on patients with hypertension) (Evangelou et al.,
2018), MI (Nikpay et al., 2015), CAD (Nikpay et al., 2015), AIS
(Malik et al., 2018) and HF (Shah et al., 2019). Note that, we did
not discover the evidence of overlapping subjects for GWASs of
the six diseases. For all summary datasets, we performed the
following quality control procedure: 1) deleted SNPs of non-
biallelic; 2) excluded SNPs with no rs labels and duplicate SNPs;
3) excluded SNPs in the major histocompatibility complex region
(chr6: 25.5–33.5 Mb); 4) retained SNPs not included in the 1000
Genome Project (The 1000 Genomes Project Consortium, 2015);
5) kept SNPs with minor allele frequency (MAF) > 0.01.

The Manhattan and QQ plots of p values for these diseases are
shown in Supplementary Figures S1, S2, where an evident
inflation in test statistics is observed. However, the estimated
genomic control factor and the intercept of LDSC suggest the
observed inflation is primarily due to polygenic signals rather
than confounding influence such as population stratification and
unknown cryptic relatedness (Supplementary Table S1).
Therefore, we did not conduct genomic control on test
statistics of any diseases and still employed the original
summary datasets in our analysis.

Selecting Instrumental Variables for
Metabolites
For each metabolite we carefully selected a set of independent
associated SNPs serving as candidate instrumental variables. To
this aim, we applied the clumping procedure in PLINK (version
v1.90b3.38) (Purcell et al., 2007). Following prior studies (Choi
et al., 2019; Sanna et al., 2019; Yang et al., 2020), we set the
primary and secondary significance levels of the index SNP at 1 ×
10–5, r2 to 0.1 and a physical distance of 500Kb, with the 1000

Genome Project as a reference panel. Due to the small sample size
of metabolites, we here used a relatively relaxed statistical
threshold of 1 × 10–5 rather than the more stringent genome-
wide significance level of 5 × 10–8 (Sanna et al., 2019). Lower
threshold would lead to few instrumental variables reserved for
most of the analyzed metabolites; in contrast, higher threshold
(e.g., 1 × 10–5) is generally employed to generate more
instrumental variables; therefore, larger variation of the
exposure is explained, which has the potential to improve
power in MR studies. Furthermore, to avoid the influence of
horizontal pleiotropy, we relied on a conservative strategy by
excluding some candidate instrumental variables that were
located less than 1 Mb away from related loci of
cardiovascular diseases and whose p values were less than 0.05
after the Bonferroni correction (Zeng and Zhou, 2019a; Zhao and
Schooling, 2019). Intuitively, if a metabolite-associated SNP
instrumental variable is also related to CVDs, then this
instrument would be potentially invalid. Therefore, excluding
such instrument would minimize the influence of horizontal
pleiotropy.

Estimating Causal Effects of Metabolites on
Cardiovascular Diseases With Various MR
Methods
Depending on selected instrumental variables of metabolites, we
primarily applied the inverse-variance weighted (IVW) method
to estimate their causal effects on cardiovascular diseases (Burgess
et al., 2017; Bandres-Ciga et al., 2019). We deemed there was a
statistically significant association if the estimated causal effect of
a given metabolite had a false discovery rate (FDR) < 0.05. To
assess the robustness of our results, we also performed several
complimentary and sensitivity analyses: 1) the maximum
likelihood method (Nguyen et al., 2015) as well as the
weighted median-based method when instrumental variables
might be invalid (Bowden et al., 2016); 2) the MR-Egger
regression to evaluate the directional pleiotropy of instruments
(Bowden et al., 2015); 3) the MR-PRESSO test to identify outliers
(Verbanck et al., 2019); 4) the multivariable MR analysis to
evaluate multiple metabolites simultaneously showing the
association with the disease of focus (Burgess et al., 2013;
Burgess and Thompson, 2017) (Supplementary Text); 5) the
IVW analysis with the disease as an exposure and the
metabolite as an outcome to examine the presence of reverse
causality if a causal influence of the metabolite on the disease was
identified. And these instrumental variables for CVDs were
selected by a similar PLINK clumping procedure described
above, but at a genome-wide significance level of 5 × 10–8

(Supplementary Text).

Colocalization Analysis and Linkage
Disequilibrium Score Regression
To investigate whether the identified causal association between
cardiovascular diseases and the metabolite can be attributable to
common genetic foundation, we conducted the colocalization
analysis using the R coloc package. We first extracted summary

TABLE 1 | Summary information of six cardiovascular diseases employed in the
present work.

Traits N (case/control) m Reference

AF 1,030,836 (60,620/970,216) 28860716 Nielsen et al. (2018)
DBP 757,601 7080765 Evangelou et al. (2018)
SBP 757,601 7009209 Evangelou et al. (2018)
PP 757,601 7009922 Evangelou et al. (2018)
MI 166,065 (42,561/123,504) 8469493 Nikpay et al. (2015)
CAD 184,305 (60,801/123,504) 8622850 Nikpay et al. (2015)
AIS 466,452 (60,341/406,111) 7994364 Malik et al. (2018)
HF 977,323 (47,309/930,014) 8274408 Shah et al. (2019)

Note: N is the total sample size; m is the number of SNPs; AF, atrial fibrillation; DBP,
diastolic blood pressure; SBP, systolic blood pressure; PP, pulse pressure; MI,
myocardial infarction; CAD, coronary artery disease; AIS, any ischemic stroke; HF, heart
failure.

Frontiers in Genetics | www.frontiersin.org October 2021 | Volume 12 | Article 7466773

Qiao et al. Relationship Between Metabolites and CVDs

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


FIGURE 1 | Identified causal associations between knownmetabolites and six cardiovascular diseases using the IVWMR analysis. IVW, inverse-variance weighted;
AF, atrial fibrillation; CAD, coronary artery disease; DBP, diastolic blood pressure; PP, pulse pressure; SBP, systolic blood pressure; HF, heart failure; AIS, any ischemic
stroke; MI, myocardial infarction.

Frontiers in Genetics | www.frontiersin.org October 2021 | Volume 12 | Article 7466774

Qiao et al. Relationship Between Metabolites and CVDs

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


statistic information of SNPs within 50 Kb of an instrumental
variable, and performed the colocalization analysis with default
parameters. We then relied on only p values and minor allele
frequencies to calculate five posterior probabilities (i.e., PP0, PP1,
PP2, PP3 and PP4) (Giambartolomei et al., 2014). Among these,
large PP3 indicates that both the disease and the metabolite are
associated, but with different causal variants; while large PP4
(>80%) supports both the disease and the metabolite are
associated and share a single causal variant (Giambartolomei
et al., 2014; Steinberg et al., 2021).

For a significant causal association, we also conducted LDSC
to study the genetic correlation between the disease and the
metabolite with genome-wide SNPs (Bulik-Sullivan et al., 2015).
Genetic correlation provides an overall perspective into shared
genetic foundation underlying the two types of phenotypes (van
Rheenen et al., 2019).

Metabolic Pathway Analysis
Finally, based on all metabolites showing suggestively significant
association with any of the six cardiovascular diseases, we
performed a metabolic pathway analysis using
MetaboAnalyst5.0 (Chong et al., 2018). The metabolic
pathway analysis includes two datasets: the Small Molecular
Pathway database (SMPDB) (Frolkis et al., 2010) and the
KEGG database (Kanehisa et al., 2012).

RESULTS

Causal Effects of Metabolites on
Cardiovascular Diseases
The number of instrumental variables for metabolites ranged
from 3 to 631, with a median number of 22. On average, the
selected SNPs explained 10.1% of phenotypic variance across all
the 486metabolites (Supplementary Figure S3). Importantly, the
minimum F statistics were above 10 (ranging from 17.4 to 24.9)
(Supplementary Table S2), indicating that weak instrumental
bias is unlikely to occur (Burgess et al., 2017). Using these
instrumental variables, we assessed the causal association
between 486 metabolites and six cardiovascular diseases, and
identified a total of 310 suggestive associations (p < 0.05;
corresponding to 207 unique metabolites), including 198
associations for 135 known metabolites and 112 associations
for 72 unknown metabolites (Supplementary Table S3).
Among these, there were 20, 25, 30, 26, 26, 25, 24, and 22
associations known metabolites (Figure 1) and 19, 11, 18, 12,
16, 18, 6, and 12 associations unknown metabolites
(Supplementary Figure S4) related to AF, CAD, DBP, PP,
SBP, HF, AIS, and MI, respectively. After the multiple-testing
correction, we obtained four significant associations (FDR <
0.05): bradykinin, des-arg(9) (odds ratio [OR] � 1.160, 95%
confidence intervals [CIs]: 1.080–1.246, FDR � 0.022) on AIS,
N-acetylglycine (OR � 0.946, 95%CIs: 0.920–0.973, FDR � 0.023)
on DBP, X-09026 (OR � 0.845, 95%CIs: 0.779–0.916, FDR �
0.021) on DBP and X-14473 (OR � 0. 938, 95%CIs � 0.907–0.971,
FDR � 0.040) on DBP (Supplementary Table S3). In addition,
there are 14 promising associations (0.05 < FDR < 0.10), such as

tryptophan betaine (OR � 0.882, 95%CIs: 0.827–0.940, FDR �
0.058) on AF and N-acetylornithine (OR � 0.860, 95%CIs:
0.797–0.929, FDR � 0.055) on CAD (Supplementary Table S3).

We observe that bradykinin, des-arg (9) also shows a
suggestive association with DBP (OR � 1.020, 95%CIs:
1.007–1.032, p � 0.002) and PP (OR � 0.938, 95%CIs:
0.907–0.971, p � 0.034), and that N-acetylglycine (OR � 0.960,
95%CI: 0.936–0.985, p � 0.002) and X-14473 (OR � 0.967, 95%CI:
0.943–0.992, p � 0.010) are suggestively associated with DBP
(Supplementary Table S4). Moreover, 52 metabolites are
associated with at least two cardiovascular diseases (p < 0.05).
Interestingly, some of these metabolites had the opposite causal
effect across the diseases, such as a positive influence of linolenate
[alpha or gamma; (18:3n3 or 6)] on HF (OR � 1.566) but a
negative impact on AIS (OR � 0.648) (Supplementary Table S4),
implying distinct functional roles of metabolites in the
development of cardiovascular diseases.

Results of Sensitivity Analysis
The full results of sensitivity analyses are shown in
Supplementary Table S5. Generally, the weighted median
method and the maximum likelihood method generate similar
causal effect estimates compared to the fixed-effects IVW MR
method. The results of sensitivity analyses for the four significant
metabolites on AIS/DBP are summarized in Figure 2. Again, the
twomethods show robust causal associations, such as bradykinin,
des-arg(9) on AIS (PWeight-median � 0.0003 and PLikelihood �
0.0001), N-acetylglycine on DBP(PWeight-median � 0.0027 and
PLikelihood � 0.0002), X-09026 on DBP (PWeight-median � 0.0017
and PLikelihood � 0.0012) and X-14473 on DBP (PWeight-median �
0.0006 and PLikelihood � 0.0015). The intercept of MR-Egger
regression does not deviate significantly from zero, indicating
the absence of horizontal pleiotropy; however, the causal effects of
N-acetylglycine (PMR-Egger � 0.267), X-09026 (PMR-Egger � 0.770)
and X-14473 (PMR-Egger � 0.394) on DBP were nonsignificant in
terms of the MR-Egger test, in line with the prior finding that the
MR-Egger method is in general less efficient compared to other
used methods. As a further sensitivity analysis, for the four
significant metabolites we tried a more stringent significance
level of 5 × 10–8 to screen instrumental variables.
Unfortunately, only bradykinin, des-arg(9) and N-acetylglycine
had SNP instruments at this level. Nevertheless, the corresponding
associations are still significant, with PWeight-median � 0.0007 and
PLikelihood � 0.0070 for bradykinin, des-arg(9) on AIS and PWeight-

median � 8.23 × 10–10 and PLikelihood � 5.41 × 10–9 for N-acetylglycine
on DBP, respectively. Moreover, using SNP instruments obtained at
the level of 1× 10–6, we also produce a significant association between
X-09026 andDBP (PWeight-median � 0.0013 and PLikelihood � 0.0004). It
is easy to see that all of these results are highly consistent with those
obtained using instruments with a relatively relaxed significance level
of 1 × 10–5 that we applied in our main analysis, indicating the
robustness of these identified association signals. In addition, we
created scatter plots of SNP effect sizes for the four metabolites and
AIS/DBP, and show that no instrumental variables behave as
potential outliers. Funnel plots based on individual causal effect
estimates of metabolites on AIS/DBP display a symmetrical
pattern and provide little evidence of horizontal pleiotropy
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(Supplementary Figures S5–S8).MR-PRESSO also does not support
the presence of horizontal pleiotropy and instrumental outliers
(Poutlier > 0.05).

Multivariable and Bidirectional MR Analysis
We applied the multivariate MR method to analyze whether the
causal effect of one metabolite on DBP would be affected by other
metabolites. It is shown that the causal effects estimated with the

multivariate MR method are consistent with the unadjusted ones
obtained via the fixed-effects IVW MR method for three identified
metabolites (i.e., N-acetylglycine, X-09026 and X-14473)
(Supplementary Table S6), implying the independent role of
these metabolites. We also examined the causal relationship
between the four identified metabolites and observe a significant
causal effect of X-09026 on X-14473 (β � 0.101, 95%CI: 0.041–0.160,
p � 9.03 × 10–4) andN-acetylglycine on X-14473 (β � -0.119, 95%CI:
0.235 ∼ -0.003, p � 0.045) (Supplementary Table S7). Interestingly,
we find that X-09026 and n-acetylglycine exhibit a causal effect on X-
14473; however, these three metabolites seem independently affect
DBP (Figure 3).

We next carried out a reverse causality analysis by using
instrumental variables of AIS/DBP to make causal inference for
metabolites. To this aim, using the similar clumping procedure in
PLINK we selected 346 and 28 independent index SNPs (p < 5 ×
10–8) as instrumental variables of DBP or AIS and carried out the
fixed-effects IVW MR estimation. But we find little evidence
supporting the presence of reverse causal relationship between
these four metabolites and AIS/DBP (Supplementary Table S8).

Genetic Correlation and Colocalization
Analyses
To identify whether the association between metabolites and
cardiovascular diseases was attributable to common genetic
component, we conducted the LDSC and colocalization

FIGURE 2 | Estimated causal effects in sensitivity analyses for the four significant assocaitions identified between human blood metabolites and two types of
cardiovascular diseases (e.g. AIS and DBP). AIS, any ischemic stroke; DBP, diastolic blood pressure.

FIGURE 3 | Potential association pathways between four metabolites
and AIS/DBP in terms of the MR analysis. AIS, any ischemic stroke; DBP,
diastolic blood pressure.
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analyses. The LDSC analysis shows non-significant genetic
correlations between AIS and bradykinin, des-arg(9) (rg �
0.104, p � 0.662), DBP and N-acetylglycine (rg � −0.043, p �
0.615), and DBP and X-14473 (rg � 0.230, p � 0.468)
(Supplementary Table S9). We here highlight that the genetic
correlation between DBP and X-09026 cannot be calculated
because the heritability of the metabolite X-09026 is negatively
estimated. In addition, we evaluated whether genome-wide SNPs
of four metabolites that were significantly associated with AIS/
DBP were co-localized. The colocalization results suggest that
none of previously detected signals is responsible for a single
shared genetic variant (PP4 < 80%) (Supplementary Table S10),
suggesting the identified associations are unlikely due to
confounding factors by LD or common causal SNPs.

Identified Metabolic Pathways
We identified a total of 15 important metabolic pathways involved in
the pathogenesis of six cardiovascular diseases by all the identified
metabolites (Table 2). The results show that some diseases have
common metabolic pathways, such as “Caffeine metabolism” shared
by CAD (p � 0.002), SBP (p � 0.033) and MI (p � 0.044),
“Aminoacyl-tRNA biosynthesis” shared by AD (p � 0.003) and
HF (p � 0.004), “Carnitine Synthesis” shared by AF (p � 0.019)
and CAD (p � 0.019), “Bile Acid Biosynthesis” shared by CAD (p �
0.044) andHF (p � 0.044), “Primary bile acid biosynthesis” shared by
DBP (p � 0.027) and HF (p � 0.040). In addition, we also find that
both Glycine and L-cysteine in HF underwent three pathways, which
are “Aminoacyl-tRNA biosynthesis” (p � 0.004), “Glutathione
metabolism” (p � 0.016) and “Glycine, serine and threonine
metabolism” (p � 0.021). These findings offer further insight into
the metabolic mechanism for cardiovascular diseases.

DISCUSSION

In this study we have conducted a comprehensive two-sample MR
approach to investigate the causal relationship between cardiovascular

diseases and metabolites using GWAS summary statistics. The
causality of these inferences is robust and extensive sensitivity
analyses excluded the probability of instrumental pleiotropy that
could lead to biased estimates of causal effects. We excluded the
likelihood that the identified associations could be confused by LD
due to common genetic foundation underlying metabolites and
cardiovascular diseases. To our knowledge, this is the first
comprehensive study combining metabolomics and genomics to
reveal the pathophysiological mechanisms of various cardiovascular
diseases.

In total, we detected 311 promising associations between
metabolites and cardiovascular diseases, with four metabolites
that were still statistically significant after the multiple-testing
correction, including bradykinin, des-Arg (9) on AIS,
n-acetylglycine, X-09026 and X-14473 on DBP. Our findings
are largely similar to previous work (Wittemans et al., 2019),
where it was shown that genetic difference in glycine (e.g.,
n-acetylglycine) levels was a causal factor in DBP. It was
recently also demonstrated that the elevated serum
concentration of bradykinin, des-Arg (9) can lead to the
decreased activity of renin-angiotensin, which was related to
hypertension and other metabolic diseases (Beltran-Debon
et al., 2015).

We also ruled out the possibility of reverse causality and
confirmed that identified metabolites described above were a
precondition rather than a consequence of cardiovascular diseases.
We further performed the multivariate MR analysis and showed that
X-09026 and n-acetylglycine had an independent effect on DBP.
However, X-14473 was affected by X-09026 and N-acetylglycine,
respectively. After eliminating the interference of the twometabolites,
we observed that X-14473 had no causal effect on DBP, suggesting
that there exists a complex network between these metabolites that
can directly or indirectly affect cardiovascular diseases.

Themetabolic pathway analysis foundmultiple disease-associated
metabolic pathways; for instance, it was shown that “Bile Acid
Biosynthesis” was related to CAD, which was consistent with the
prior finding. Recent evidence suggested that inhibition of liver bile

TABLE 2 | Significant metabolic pathways involved in the six cardiovascular diseases.

Traits Metabolites pathway Involved metabolites p Value Database

AF Aminoacyl-tRNA biosynthesis Glycine, L-Alanine, L-Lysine 0.0029 KEGG
AF Carnitine Synthesis Glycine, L-Lysine 0.0192 SMPDB
CAD Caffeine metabolism 1-Methylxanthine, Caffeine 0.0024 KEGG
CAD Carnitine Synthesis Glycine, L-Carnitine 0.0192 SMPDB
CAD Bile Acid Biosynthesis Glycine, Taurodeoxycholic acid, Deoxycholic acid 0.0436 SMPDB
DBP Primary bile acid biosynthesis Glycine, Glycocholate 0.0272 KEGG
PP Phenylalanine metabolism Hippurate 0.0382 KEGG
SBP Caffeine Metabolism Caffeine, 1,3,7-Trimethyluric acid 0.0334 SMPDB
HF Aminoacyl-tRNA biosynthesis L-Cysteine, Glycine, L-Isoleucine 0.0039 KEGG
HF Glutathione metabolism Glycine, L-Cysteine 0.0157 KEGG
HF Glycine, serine and threonine metabolism Glycine, L-Cysteine 0.0214 KEGG
HF Primary bile acid biosynthesis Glycine, Cholic acid 0.0400 KEGG
HF Thiamine metabolism L-Cysteine 0.0487 KEGG
HF Bile Acid Biosynthesis Glycine, Cholic acid, Deoxycholic acid glycine conjugate 0.0436 SMPDB
MI Caffeine metabolism Caffeine 0.0444 KEGG

Note: AF, atrial fibrillation; DBP, diastolic blood pressure; SBP, systolic blood pressure; PP, pulse pressure; MI, myocardial infarction; CAD, coronary artery disease; AIS, any ischemic
stroke; HF, heart failure; KEGG, Kyoto encyclopedia of genes and genomes; SMPDB, small molecule pathway database.
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acid synthesis can lead to elevated serum cholesterol levels in a high-
fat diet, which in turn affected the development of CAD (Liu et al.,
2020). Meanwhile, in observational studies, the serum total bile acids
of CADpatients were lower than those of non-CAD patients, and the
lower concentration of total bile acids was independently and
significantly correlated with the presence and severity of CAD (Li
et al., 2020b). Evidence also suggested that serum concentrations of
caffeine were relatively higher in CAD patients (Spyridopoulos et al.,
2008), dynamic systolic blood pressure was inversely associated with
the amount of caffeine and other caffeine metabolites excreted
(Guessous et al., 2015), and the intake of coffee was associated
with an increased risk of nonfatal myocardial infarction in
individuals who metabolized caffeine more slowly (Cornelis et al.,
2006).

As our study revealed the causal relationship between blood
metabolites and multiple cardiovascular diseases; thus, it has
profound implications for disease etiology, pathogenesis, drug
development, prevention, and treatment. More specifically, the
identified metabolites can be applied as therapeutic targets. It is
worth noting that cardiovascular diseases shared the same
metabolic mechanism, suggesting that they may have the same
etiology and that some metabolite-targeted drugs originally
designed for a specific disease might be also effective for other
diseases.

However, there are some limitations in our study. First, the
sample size of the metabolite GWAS datasets employed in our
MR study was relatively small, which may reduce the validity of
the finding and undermine the power of the analysis. Second, we
used the multivariate MR method to exclude the effect of
pleiotropy, but this method is not applicable to unknown
pleiotropy (Burgess et al., 2015). Third, the small effect size of
metabolites on the two CVDs might limit their potential utility as
therapeutic targets in practice. Fourth, this study primarily
focused on individuals of European ancestry; therefore, it is
not clear whether our results can be generalized to other
populations.

CONCLUSION

This study has identified several metabolites that had a causal
relationship with cardiovascular diseases, and improves our
understanding of the pathogenesis and treatment strategies for
these diseases.
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