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According to authoritative surveys, the overall morbidity and mortality of malignant tumors
show an upward trend, and it is predicted that this trend will not be well contained in the
upcoming new period. Since the influencing factors, pathogenesis, and progression
characteristics of malignant tumors have not been fully elucidated, the existing treatment
strategies, mainly including surgical resection, ablation therapy and chemotherapy,
cannot achieve satisfactory results. Therefore, exploring potential therapeutic targets
and clarifying their functions and mechanisms in continuous research and practice will
provide new ideas and possibilities for the treatment of malignant tumors. Recently, a
double-transmembrane protein named transmembrane protein 88 (TMEM88) was
reported to regulate changes in downstream effectors by mediating different signaling
pathways and was confirmed to be widely involved in cell proliferation, differentiation,
apoptosis and tumor progression. At present, abnormal changes in TMEM88 have been
found in breast cancer, ovarian cancer, lung cancer, thyroid cancer and other malignant
tumors, which has also attracted the attention of tumor research and attempted to clarify
its function and mechanism. However, due to the lack of systematic generalization,
comprehensive and detailed research results have not been comprehensively
summarized. In view of this, this article will describe in detail the changes in TMEM88 in
the occurrence and development of malignant tumors, comprehensively summarize the
corresponding molecular mechanisms, and explore the potential of targeting TMEM88 in
the treatment of malignant tumors to provide valuable candidate targets and promising
intervention strategies for the diagnosis and cure of malignant tumors.
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INTRODUCTION

In recent years, membrane proteins have been studied and have
become a research hotspot because they are widely distributed in
tissues and play important and complex roles in various
physiological processes and multiple diseases. Authoritative
studies have shown that membrane proteins are distributed in
the membranes of various cells and organelles, accounting for
approximately 25% of the human proteome (1, 2), and exert
undeniable effects on signal transduction in the cell-external
environment and cell-cell interactions (3). Several studies have
pointed out that membrane proteins can be classified into
peripheral membrane proteins, lipid-anchored membrane
proteins and integral membrane proteins according to their
own structure and how they bind to biological membranes.
The integral membrane protein contains at least one
transmembrane fragment, which is also a transmembrane
protein. These transmembrane proteins are not only involved
in the body’s metabolism and functional regulation (4–7) but
also perform considerable regulatory roles in the tumorigenesis
and progression of several tumors (8–11). For example, ATG9A,
the only transmembrane protein currently in the core machinery
of autophagy, can affect pathophysiological events such as cell
growth, proliferation, stress and injury by regulating autophagy
(12). In addition, endoplasmic reticulum-associated
transmembrane protein 166 (TMEM166) was found not only
in a variety of normal tissues and organs but also involved in
multiple pathological processes, including cancer, infection,
neurodegeneration, autoimmune disease, and sexually
transmitted diseases, by regulating programmed cell death
(13). Moreover, a transmembrane protein called the tyrosine
kinase receptor may be abnormally activated to affect tumor cell
growth, metastasis, invasion and malignant transformation by
regulating multiple subprotein families and downstream
signaling pathways (14). The aforementioned findings have
made the transmembrane protein family a research focus that
has received extensive attention. As an indispensable
transmembrane protein family member, transmembrane
protein 88 (TMEM88) has also been found to affect the growth
and development of the body in normally expressed tissues, such
as the development of cardiomyocytes and the activation of
hematopoietic stem cells, while abnormal expression can affect
the progression of various diseases, such as the inflammatory
response, extracellular matrix secretion and drug resistance (15–
21) (Figure 1). As an important tumor suppressor gene,
TMEM88 benefits from the regulation of the Wnt signaling
pathway and its downstream target genes and is widely involved
in various biological events of malignant tumor cells, which has
potential research value (22, 23). However, the current research
on TMEM88 is still in its infancy, and there is no complete
summary to help researchers fully understand the important role
of TMEM88 in tumor research and prevention. In these
circumstances, exploring TMEM88 as a new biomarker for
tumor diagnosis and confirming that TMEM88 has become a
promising target will be the research and prevention of tumors.
In view of this, this review comprehensively describes the
structure and function of TMEM88 and discusses its progress
Frontiers in Oncology | www.frontiersin.org 2
in the study of malignant tumors to provide important references
and directions for subsequent research.
GENERAL STRUCTURE AND BIOLOGICAL
FUNCTION OF TMEM88

The TMEM88 gene is a plus strand gene consisting of 1214 bases
located at the p13.1 position on chromosome 17, and the
corresponding TMEM88 protein is a 159 amino acid residue
with a molecular weight of 17251 Da. An initial study found that
the TMEM88 molecule is expressed on the Xenopus embryonic
cell membrane (24). Meanwhile, the study also found that when
the expression of TMEM88 was significantly upregulated in
human embryonic kidney cells, the downstream Wnt/b-catenin
signal transduction process was inhibited, while silencing
TMEM88 could activate the Wnt/b-catenin signal transduction
process. Another study found that TMEM88 can inhibit Wnt/b-
catenin signal activation in human embryonic stem cells to a
certain extent, thereby regulating the differentiation and
development of embryonic stem cells into cardiomyocytes (21).
With the progress of research, it was found that the TMEM88
protein is widely present in a variety of tumors, but its functions
are different due to the different tissue and subcellular locations
(Table 1). One study found that cytoplasmic localization of
TMEM88 was positively correlated with TNM stage and lymph
node metastasis in triple-negative breast cancer, whereas nuclear
localization was negatively correlated with lymph node
metastasis in nontriple-negative breast cancer (30); in ovarian
cancer, TMEM88 was found to downregulate the levels of c-Myc
and Cyclin D1, thereby inhibiting the proliferation of ovarian
cancer cells (19). In non-small-cell lung cancer (NSCLC), the
high expression of TMEM88 is positively correlated with a better
prognosis of patients, but the detailed mechanism needs to be
further clarified (28).
ROLE AND MECHANISM OF TMEM88 IN
MALIGNANT TUMORS

In recent years, an increasing number of research results have
shown that abnormal expression of TMEM88 exists in several
malignant tumors (ovarian cancer, breast cancer, lung cancer,
etc.) and has actively participated in the abnormality of tumor
cell proliferation, invasion, metastasis and apoptosis. Meanwhile,
with the development of structural biology, biochemistry and
other disciplines, breakthroughs and progress have been made in
the isolation and characterization of transmembrane proteins,
which indicates that it may become a promising molecular
marker and valuable intervention target for tumor diagnosis,
therapy and prognosis (Figure 2).

TMEM88 in Ovarian Cancer
Ovarian cancer has become a malignant tumor in the female
germline that seriously threatens women’s health, with its third
incidence rate (after cervical cancer and endometrial cancer) and
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the highest mortality rate. On the one hand, due to the lack of
typical clinical manifestations in the early stage, a large
proportion of patients are already in the middle and late stages
when they are diagnosed, and even the tumor cells have
metastasized far away. On the other hand, platinum-based
chemotherapy is the main means to maintain the survival of
such patients, but many patients suffer from drug resistance,
tumor recurrence and metastasis after chemotherapy (32). Based
on this, exploring the pathogenesis and drug resistance
mechanism of ovarian cancer and finding effective targets are
of great significance for improving treatment and improving the
5-year survival rate of ovarian cancer patients. Maria de Leon
et al. used an Illumina 450k DNA methylation array to detect
methylated genes and levels in ovarian cancer xenografts and
found that compared with platinum-sensitive transplanted
tumors, the promoter region of the TMEM88 gene in
platinum-resistant transplanted tumors in nude mice was
significantly hypomethylated, while TMEM88 mRNA showed a
substantial increase (19). Meanwhile, the application of the DNA
methyltransferase inhibitor SGI-110 can significantly increase
the TMEM88 mRNA level and corresponding protein expression
in platinum-sensitive ovarian cancer cells. Both in vitro, in vivo
and clinical studies have shown that the level of TMEM88 is
significantly increased in platinum-resistant ovarian cancer
xenograft nude mice, platinum-resistant ovarian cancer cells
Frontiers in Oncology | www.frontiersin.org 3
and recurrent ovarian cancer tissue, while knockdown or
decrease the expression of TMEM88 can resensitize tumor cells
to platinum drugs. Mechanistic studies found that silencing
TMEM88 alleviated the inhibition of canonical Wnt/b-catenin
signaling by reducing the interaction of the C-terminal VWV
(Val-Trp-Val) sequence with the PDZ domain of Dishevelled-1
(Dvl-1) (19, 23). The activation of Wnt/b-catenin signaling
increased the expression of the downstream target genes c-Myc
and b-catenin to increase ovarian cancer cell proliferation and
the proportion of S-phase cells throughout the cell cycle and
reincreased platinum sensitivity. Meanwhile, the aforementioned
studies also found that TMEM88 overexpression induced cell
dormancy to help it evade the lethal effects of chemotherapy and
trigger recurrent tumors. These studies suggest that TMEM88
may have an important regulatory role in the process of ovarian
cancer resistance and may also be used to identify epigenetic
modifiers associated with platinum resistance, which may
provide new clues and insights for predicting ovarian cancer
recurrence and overall cancer patient survival.

TMEM88 in Breast Cancer
Authoritative research estimates that breast cancer has become
the most prevalent cancer type among female cancer patients in
the United States, and death also ranks second among female
cancer-related death types, with a true proportion of 15% in 2022
TABLE 1 | The landscape of the roles of TMEM88 in various human tissues.

Tissue
localization

Disease types Associated tissues or
cells

Alterations Target Function References

Human
embryo

cell
development

Human embryonic stem
cells

Upregulation DVL Regulate cardiomyocyte specification Lee, Heejin
et al. (22)
Lee, Ho-Jin
et al. (24)
Palpant,
Nathan J et al.
(21)

Ovarian ovarian cancer CP70 and PEO4 Upregulation JUN, PTIX2, b-catenin, c-
Myc and cyclin-D1

Regulate platinum resistance de Leon, Maria
et al. (19)A2780 and PEO1 Downregulation

Thyroid thyroid cancer BCPAP, TPC1, K1 and
NPA87

Downregulation TCF/LEF, c-Myc and cyclin
D1

Suppress tumor process Geng,
Qianqian et al.
(25)

Lung Lung cancer A549, H1299, H460, H292,
SPC-A-1 and LTEP-A-2

Downregulation DVL, FZD and ROR1 Suppress tumor process Zhang,
Xiupeng et al.
(26)
Stewart, David
J. (27)
Ma, Rongna
etal. (28)

Skin keloids Keloid fibroblasts Downregulation b-catenin, c-Myc and cyclin
D1

Inhibit extracellular matrix expression Zhao, Huafei
et al. (16)

Bladder bladder cancer 5637, UM-UC-3, T24 and
SW780

Downregulation GSK-3b, b-catenin and TCF/
LEF

Suppress tumor process Zhao, Xu et al.
(29)

Breast triple-negative
breast cancer

MCF-7, HER18, MDA-MB-
231 and MDA-MB-468

Upregulation DVL, Snail, Occludin and Zo-
1

Promote tumor process Yu, Xinmiao
et al. (30)

Liver liver fibrosis LX-2 and human liver fibrotic
tissues

Downregulation b-catenin, Wnt3a, Wnt2b,
Wnt10b, p-JNK and p-P38

Regulate proinflammatory cytokine
secretion and inhibit HSC excitation

Xu, Tao et al.
(17)
Xu, Tao et al.
(31)
June 2022 | Volume 12
c-Myc, c-Myc proto-oncogene; DVL, PDZ domain of Dishevelled-1; FZD, Wnt receptor Frizzled; GSK-3b, glycogen synthase kinase-3b; HSC, hepatic stellate cell; JNK, c-Jun N-terminal
kinase; JUN, jun proto-oncogene; >PITX2, paired-like homeodomain 2; ROR1, receptor tyrosine kinase-like orphan receptor 1; TCF/LEF, T-cell factor/lymphoid enhancer-binding factor;
TMEM88, transmembrane protein 88.
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(33). According to the latest data released by the National Cancer
Center, the incidence of breast cancer in China is 7.11%, and the
mortality rate is 2.81%, ranking fifth and seventh, respectively
(34). Based on the above statistical results, breast cancer is a
Frontiers in Oncology | www.frontiersin.org 4
serious public health issue in current society and needs to be
given great attention. Although great progress has been made in
clinical treatment strategies, including surgery, chemotherapy,
radiotherapy and hormone therapy, the long-term clinical
FIGURE 1 | The structure and general biological functions of TMEM88 in humans. As a secondary transmembrane protein, TMEM88 is widely distributed in many
types of cells and tissues and plays an important regulatory role in various diseases and pathological processes, such as cancers, fibrosis, and inflammatory
responses. Under stimulation, including DNA methylation, noncoding RNA and the inflammatory environment, the mRNA and protein levels of TMEM88 changed
significantly. Subsequently, the significantly changed TMEM88 regulates the classical and noncanonical Wnt/b-catenin signaling pathways through different
mechanisms in the cytoplasm and nucleus, such as the interaction with DVL proteins, thereby affecting the transcription and expression of downstream target genes.
Ultimately, these effector target molecules affect the growth and development of tissues and organs and the progression of diseases, such as tumors by regulating
various cellular life activities, such as cell proliferation, migration, invasion, and drug resistance. CCND, Cyclin D1; c-Myc, c-Myc proto-oncogene; Dnmt3a, DNA
(cytosine-5)-methyltransferase 3a; DVL, PDZ domain of Dishevelled-1; ECM, extracellular matrix; EMT, epithelial-mesenchymal transition; GATA,
GATA transcription factor; GSK-3b, glycogen synthase kinase-3b; HSC, hepatic stellate cell; JNK, c-Jun N-terminal kinase; JUN, jun proto-oncogene; NSCLC, non-
small-cell lung cancer; PITX2, paired-like homeodomain 2; TCF/LEF, T-cell factor/lymphoid enhancer-binding factor; TMEM88, transmembrane protein 88; TNM,
tumor node metastasis.
FIGURE 2 | Regulatory effects of TMEM88 in malignant tumors. Different tumor microenvironments, such as inflammation and oxidative stress, can cause significant
changes in the levels of TMEM88 in tissues and cells, which will affect tumor cell properties, including abnormal cell proliferation, invasion, migration, and epithelial-
mesenchymal transition (EMT), through canonical and noncanonical Wnt/b-catenin signaling and other signal transduction pathways. These tumor cell properties lead
to the occurrence, growth, invasion, and metastasis of various tumors, including ovarian cancer, thyroid cancer, triple-negative breast cancer, bladder cancer, and
lung cancer, and ultimately affect tumor progression and poor prognosis.
June 2022 | Volume 12 | Article 906372
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prognosis and the survival rate of patients are still not
satisfactory (35, 36). Therefore, it has become an urgent
problem to be solved in breast cancer research to explore new
therapeutic targets and develop effective intervention strategies.
During the process of exploring new targets for breast cancer, Yu
et al. conducted a study that first performed a correlation analysis
between 139 breast cancer tissues and normal breast tissues. The
results showed that the overall expression level of TMEM88 in
breast cancer tissues (71.22%, 99/139) was significantly higher
than that in normal tissue (11.4%, 4/35; P < 0.001), and the
specific expression differences were not the same. Specifically,
expression and localization analysis revealed that TMEM88 was
moderately elevated in breast cancer in situ and highly elevated
in invasive breast ductal carcinoma compared with negative or
low expression in normal breast tissue, which suggests that the
expression of TMEM88 has potential as a marker for breast
cancer classification. In addition, the study also found that the
cytoplasmic localization of TMEM88 was positively correlated
with advanced TNM stage (P = 0.038) and lymph node
metastasis (P = 0.01), while nuclear localization was inversely
related to lymph node metastasis (P = 0.046). These results
indicate that TMEM88 plays different functions depending on
different subcellular localizations in the development of breast
cancer (cytoplasmic TMEM88 promotes tumors, while nuclear
TMEM88 suppresses tumors), suggesting that TMEM88 has
important research value and needs to be considered (30).
When using breast cancer cells (MDA-MB-231 and MCF-7) as
the object to explore the mechanism, Yu et al. also found that
TMEM88 and Dvl colocalized in the cytoplasm and TMEM88
can interact with Dvl to promote the expression of Snail protein
and inhibit the expression of Zo-1 and Occludin, thereby
reducing the invasion and metastasis of breast cancer cells. The
above results show that the expression level of TMEM88 has
certain differences in different types of breast cancer, and the
cytoplasmic level and nuclear expression of TMEM88 have
obvious tissue distribution specificity, which may facilitate
TMEM88 becoming a promising therapeutic target for the
treatment of breast cancer; however, the specific mechanism
and intervention potential need further research to clarify.

TMEM88 in Lung Cancer
Lung cancer has become the malignant tumor with the greatest
threat to human health and life worldwide due to its higher
incidence and mortality than other malignant tumors,
accounting for 11.6% of cancer patients and 18.4% of total
cancer deaths (37, 38). Among all lung cancer patients, NSCLC
accounts for approximately 80%-85% of the total population.
Although surgical resection is an effective treatment for early-
stage lung cancer, the 5-year survival rate is still unsatisfactory
(approximately 30-60%) (39, 40). What is even more regrettable
is that most patients are already in the middle stage when they
are diagnosed, most are even in the advanced stage, and they
have lost the opportunity for surgical treatment, which accounts
for one of the main reasons for the poor prognosis and high
mortality of lung cancer patients (41). Therefore, exploring new
targets and researching new treatment methods are urgently
needed and will also provide a large number of theoretical and
Frontiers in Oncology | www.frontiersin.org 5
research foundations for the development of clinical treatments
for lung cancer. In a study of 214 cases of NSCLC, Zhang et al.
found that the expression of TMEM88 in the adjacent tissue was
negative or weakly positive compared with the tissue of NSCLC
patients by immunohistochemical analysis. The correlation
analysis results of clinicopathological characteristics showed
that high expression of TMEM88 in the cytoplasm was directly
correlated with the tissue differentiation, lymph node metastasis
and tumor stage of NSCLC patients (P < 0.001, P = 0.032 and P =
0.012), but there was no obvious correlation with sex, age, or
histological type (P = 1, P = 0.884 and P = 1). Kaplan-Meier
survival analysis showed that the overall survival of lung cancer
patients (38.8 ± 4.83 months) with high TMEM88 expression
was significantly lower than that of patients (58.64 ± 4.24
months) with low TMEM88 expression (26). This study
preliminarily demonstrated the potential role and promising
research value of TMEM88 in the development and
exploration of NSCLC, but the specific pathogenesis needs to
be further clarified. Subsequently, Zhang et al. used Western
blotting to analyze the changes in TMEM88 in 40 fresh NSCLC
specimens and found that TMEM88 expression was higher than
that in normal lung tissue, which is also consistent with previous
findings. Immunofluorescence staining of 7 types of lung cancer
cells (A549, LTE, SPC, H292, H1299, BE1 and LH7 cells) found
that the content of TMEM88 was significantly higher than that in
human bronchial epithelial cells (HBE), while TMEM88 was
found in the other two lung cancer cell types (LK2 and H460
cells) and was interestingly lower than that in HBE cells, and
TMEM88 was predominantly located on the cell membrane in all
types of lung cancer cells studied. Taking LK2 cells as the
research object to study the effect of TMEM88, it was found
that overexpression of TMEM88 can inhibit the excessive
proliferation, invasion and migration of LK2 cells, thus
preventing the growth of transplanted tumors in nude mice
(26). Another study analyzed the NSCLC tissues and adjacent
normal tissues of 12 patients and found that the degree of
TMEM88 methylation in NSCLC tissues (82.2% ± 10.3%) was
higher than that in normal tissues (65.9% ± 7.2%, P < 0.01),
which was negatively correlated with overall survival (P = 0.021)
(28). Subsequently, researchers used 5-aza-2’-deoxycytidine
(DAC) to treat A549 and H1299 cells to further evaluate the
functional alterations of TMEM88 methylation in lung cancer.
The experimental results show that the degree of methylation of
TMEM88 decreases while the expression level of TMEM88
increases after treatment with DAC. Scratch experiments,
migration experiments and cell cycle experiments have found
that TMEM88 can potently inhibit abnormal lung cancer cell
proliferation, invasion and migration (26, 28), indicating that
TMEM88 can exert a tumor suppressor effect and can be
considered a candidate therapeutic target for the prognosis and
cure of lung cancer, opening up a new avenue for the prevention
of lung cancer.

TMEM88 in Thyroid Cancer
Thyroid cancer (TC) has become one of the most common
malignancies of the endocrine system over the past few decades,
with a steady increase in global morbidity and mortality and a
June 2022 | Volume 12 | Article 906372
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strong female predominance, which is well validated by the
finding that the incidence in women in most populations is
approximately three times that in men (42). Since 2003, the
incidence of thyroid cancer in China has suddenly started to rise
rapidly and has maintained an annual percentage change of
approximately 14.51 from 2003 to 2007, while urban women
have witnessed a faster rate of change, and by 2012, thyroid
cancer had become one of the ten most common cancers (43–
45). Meanwhile, one study also predicts that thyroid cancer may
become the fourth most common malignant tumor in the world
by 2030 (46). From a pathological point of view, thyroid cancer is
mainly divided into papillary carcinoma, follicular carcinoma,
anaplastic carcinoma and medullary carcinoma, among which
papillary carcinoma is the most common (47). Most papillary
thyroid carcinomas have a good prognosis, but local recurrence
or distant metastasis after treatment is also common, and some
patients die due to disease progression. Many studies have shown
that various factors, such as radiation exposure, environmental
and industrial pollution, and family inheritance, may promote
the occurrence and development of thyroid cancer, but its
pathogenesis is still unclear (43, 48). Therefore, exploring the
pathogenesis of thyroid cancer and finding potential targets will
provide an important basis for the preclinical study and clinical
treatment of thyroid cancer. In one study, the researchers found
that TMEM88 was significantly reduced in thyroid cancer by
analyzing the gene expression profile interactive analysis
database (25). In addition, Geng et al. also showed that the
expression levels of TMEM88 were significantly decreased in 8
thyroid cancer patient specimens as well as in 4 thyroid cancer
cell lines, BCPAP, TPC1, K1 and NPA87. Various experimental
methods, such as Western blotting, qRT-PCR, cell counting kit-8
assay and colony formation experiments, found that restoration
of TMEM88 by vector transfection can markedly suppress
the proliferation, colony formation and invasion ability of
thyroid cancer cells. In contrast, depletion of TMEM88 can
accelerate the proliferation and invasion ability of thyroid
cancer cells. The results of tumor formation experiments in
nude mice also suggested that TMEM88 overexpression can
significantly inhibit the growth of thyroid cancer, which is
associated with the downregulation of active b-catenin
expression. The above results show that TMEM88 exerts a
nonnegligible role in the occurrence and development of
thyroid cancer, and in-depth research on the mechanism of
TMEM88 will offer new targets and ideas for the research and
prevention of thyroid cancer.

TMEM88 in Bladder Cancer
An authoritative analysis found that bladder cancer, the fifth
most common cancer in Western countries, has an increasing
incidence with age and is found in the highest proportion in
individuals over the age of 65 (49). In China, the incidence of
bladder cancer ranks second among male genitourinary
malignancies and 7th among all malignant tumors (50).
Clinical studies have shown that bladder cancer is a highly
malignant tumor that is prone to recurrence and progresses
rapidly, especially muscle-invasive BC (MIBC), which often
Frontiers in Oncology | www.frontiersin.org 6
recurs after the first resection and has a poor prognosis (51,
52). Therefore, it is particularly urgent to explore the possible
pathogenesis and potential therapeutic targets of bladder cancer.
In one study, research found that TMEM88 is closely relevant to
the pathogenesis and development of bladder cancer, and
inhibition of the TMEM88/Wnt axis can significantly affect
abnormal bladder cancer cell proliferation and the regulation
of the cell cycle (29), which suggests that targeting TMEM88 for
bladder cancer research will be a new strategy and direction.
Moreover, the study conducted bioinformatic analysis of the
GEPIA2 and ENCORI databases and found that the expression
of TMEM88 in bladder cancer tissues was significantly reduced
compared to that in normal tissues. In the detection of 6 bladder
cancer patient tissues, it was found that the expression of
TMEM88 in patient tissues indeed showed a downward trend
compared with adjacent normal tissues. In vitro, depletion of
TMEM88 in bladder cancer cells, such as UM-UC-3 and T24
cells, can enhance their invasive and proliferative capacity, while
restoring TMEM88 levels can reverse these effects. In in vivo
experiments in nude mice, overexpression of TMEM88 exhibited
a certain inhibitory action on bladder cancer cell growth and
tumor formation (53). The above results show that TMEM88 is
most likely to become the specific target and that targeting
TMEM88 may effectively treat bladder cancer.

Possible Mechanism of TMEM88 in
Malignant Tumors
The relatively conserved Wnt signaling pathway is one of the
major factors regulating development across the animal kingdom
and is a key driver of stem cells in most types of tissues (54, 55).
While regulating embryonic development and maintaining tissue
homeostasis, it mediates downstream signals to participate in
various biological/pathological processes and the genesis and
development of cancer (53, 56, 57). During the research process
of TMEM88, studies have pointed out that the C-terminal
tripeptide Val-Trp-Val sequence of a subtype of TMEM88
CRA-a can bind to the PDZ domain of the scrambled protein
and prohibit the Wnt/b-catenin signaling pathway, which exerts a
nonnegligible effect in regulating tumor cell proliferation,
metastasis and host antitumor immunity (22, 27, 58). For
example, it can be coexpressed in the cytoplasm with scattered
proteins in NSCLC and breast cancer to elevate the levels of Snail
and thereby promote tumor progression. Analysis of the
transcriptome information of ovarian cancer patients in the
TCGA database shows that TMEM88 is closely correlated with
the mRNA expression levels of c-Myc and b-catenin mRNA (P =
0.01252 and 0.0128) (19). In addition, Geng et al. found that the
overexpression of TMEM88 significantly reduced the
transcriptional activity of TCF/LEF and inhibited the expression
of the downstream target genes c-Myc and cyclin D1 of the Wnt/
b-catenin signaling pathway (25). Furthermore, reactivation of
Wnt/b-catenin signaling by transfection of the pENTRN90-b-
catenin vector partially reversed the inhibitory effect of TMEM88
on the proliferation and invasion of thyroid cancer cells, indicating
that TMEM88 exerts an anti-thyroid cancer effect in the presence
of Wnt/b-catenin protein signaling. A study in bladder cancer
June 2022 | Volume 12 | Article 906372
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found that overexpression of TMEM88 also inhibited the
activation of the Wnt/b-catenin signaling pathway by reducing
the phosphorylation level of GSK-3b (Ser9 site) (29). However, in
a study of triple-negative breast cancer, transfection of MCF-7 and
MDA-MB-231 cells to overexpress or silence TMEM88 did not
affect the activity of the canonical Wnt signaling pathway or the
expression of corresponding target genes such as MMP-7, c-Myc
and cyclin D1 (30). Taken together, the above studies suggest that
TMEM88, as an important linker in the genesis and development
of various cancer diseases, can function by regulating different
downstream oncogenic signals and effector molecules. It transmits
upstream signals and regulates downstream signal transduction,
such as Wnt signaling pathways, to interfere with the occurrence
and progression of tumors and then has an anticancer effect. Based
on this, TMEM88 should be considered a novel and important
research target in cancer research, which needs to be deeply
explored for its potential.
TARGETING TMEM88 POTENTIAL FOR
TREATING MALIGNANT TUMORS

With the deepening of people’s understanding of tumor
research and clinical, molecular targeted therapy has also
received increasing attention and aroused the interest of
researchers. At present, the most common molecular targeted
therapeutic drugs mainly include small molecular epidermal
kinase inhibitors, such as gefitinib (AstraZeneca, UK) (59); anti-
EGFR monoclonal antibodies, such as cetuximab (Merck &
Leone Pharmaceutical Co, Germany) (60); anti-HER-2
monoclonal antibodies, such as trastuzumab (Roche Group,
Switzerland) (61); Bcr-Abl tyrosine kinase inhibitors, such as
imatinib (Novartis, Switzerland) (62); anti-CD20 monoclonal
antibodies, such as rituximab (Roche Group, Switzerland) (63);
and vascular endothelial growth factor receptor inhibitors, such
as bevacizumab (Roche Group, Switzerland) (64). When the
above drugs exert antitumor effects, they can significantly
reduce the toxicity to normal cells, which provides a new
direction for molecular targeted therapy of tumors. However,
due to the heterogeneity of cancers, the current targeted
therapeutic drugs benefit only a portion of cancer patients,
which forces us to explore a broader spectrum of malignant
tumor therapeutic targets and develop promising therapeutic
drugs to address the urgent issue in tumor research and current
clinical practice.

To date, a variety of transmembrane proteins have become
powerful targets for drug development and have even entered
clinical trials and clinical applications. As a representative, the G
protein coupled receptor (GPCR) family is the largest
transmembrane protein family in humans and is also an
important target of many drugs (65). Currently, 475 drugs
targeting GPCR have been approved by the FDA, accounting
for 34% of all FDA approved drugs. Meanwhile, 321 drugs
targeting GPCRs are in clinical studies (66, 67). The above
drugs are mainly distributed in small molecule drugs,
polypeptide drugs, monoclonal antibodies, and recombinant
Frontiers in Oncology | www.frontiersin.org 7
proteins. Four-transmembrane proteins, CD20 and Claudin
18.2, are important targets for disease treatment and drug
development. CD20 is a transmembrane phosphorin located
on the surface of B lymphocytes, mainly in the preceding B-
cell to mature B-cell stage (68). Currently, the antitumor drug
antibody and inflammatory immune regulatory antibody drugs
that target CD20 have entered the fast lane developed by the
product (69). Claudin18.2 is the most important member of the
Claudin transmembrane protein family. In the normal
physiological state, Claudin18.2 protein is only expressed on
the surface of human gastric epithelial shorthearter cells.
However, in the pathological state, Claudin18.2 protein is
highly expressed in gastric cancer, esophageal cancer,
pancreatic cancer, and other solid tissues (15, 70–72). The
significant differences and high tissue specificity make Claudin
18.2 an ideal target for solid tumor immunotherapy(2016).
Currently, it has been close to 20 drugs targeting Claudin18.2
in the clinical phase, such as zolbetuximab (Phase III:
NCT03653507, Astellas Pharma Inc., Japan), TST001 (Phase I:
NCT04495296, MabSpace Biosciences, China) and AMG910
(Phase I: NCT04260191, Amgen Inc., USA), and these drugs
are primarily concentrated on monoclonal antibody and
bispecific antibody, antibody-drug conjugate (ADC), and
chimeric antigen receptor T-cell immunotherapy (CAR-T)
(72–75). The abovementioned drug development of
transmembrane proteins has laid a solid foundation for the
research and exploration of targeted TMEM88 to treat
malignant tumors. Meanwhile, we should be more aware of the
current gaps in the development of drugs targeting TMEM88 for
the treatment of tumors: 1. Insufficient analysis of the three-
dimensional and crystal structure of the TMEM88 protein makes
the structural information of the protein lacking. 2. Research on
the full length of the TMEM88 protein polypeptide and the
recognition epitope is insufficient, and information on the active
site and affinity is lacking. We believe that the resolution of these
problems will greatly promote the development of drugs
targeting TMEM88.

However, due to the surface area of the transmembrane
protein structure, its expression level is difficult to meet the
requirements. Furthermore, it is difficult for us to achieve high-
purity multitransmembrane proteins with natural conformations
and activity. These difficulties make targeted TMEM88
antitumor drug development difficult. Based on this, various
strategies can be considered to increase the development of
antitumor drugs targeting TMEM88: 1. Novel protein
purification, isolation and characterization systems and
techniques need to be applied; 2. Artificial intelligence and
computer simulation need to be more invested; 3. Drug
diversity needs to be constantly tried, such as antibody drugs,
nanodrugs, small-molecule drugs, traditional Chinese medicines
and proteolysis targeting-chimeras (PROTAC). In any case, as a
two-transmembrane protein, TMEM88 has significant
differences and specificities between multiple malignant tumor
and adjacent tissues and tumor and normal cells, which makes
TMEM88 a potential therapeutic target through different
strategies during tumor treatment.
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PROSPECTIVE AND CONCLUSIONS

In recent years, tumors have been the main cause of human
death, and the occurrence and development of many kinds of
tumors are closely related to the imbalance of signal transduction
in the body (76). Therefore, it is extremely important to clarify
the signal transduction mechanism and find potential new tumor
therapeutic targets. In the current literature, TMEM88 is
considered to play an important role in the development of
breast cancer, lung cancer, thyroid cancer and other tumors by
inhibiting Wnt signal transduction and participates in the
occurrence and development of tumors, but it needs to be
pointed out that TMEM88 research is not deep enough, and
many issues remain to be studied. Specifically, TMEM88 has
different expression levels in different tumors and has tissue
specificity, but what are the specific characteristics; when there
are multiple influencing factors, will the role of TMEM88 in
malignant tumors be different? TMEM88 methylation affects
tumor biology However, what is the specific mechanism? In the
process of cancer development, TMEM88 not only regulates the
Wnt/b-catenin signaling pathway and participates in it but also
affects other signal transduction processes. Therefore, more basic
research needs to be carried out to further confirm the specific
role of TMEM88 in tumor development, improve its credibility
as a potential therapeutic target, and prove its potential to
transform from basic research to clinical application in tumor
treatment. In any case, the results of multiple studies have shown
that TMEM88 may be a tumor diagnosis and prognostic
indicator, which will provide new clues and directions for the
diagnosis and treatment of clinical malignant tumors. We look
forward to using advanced technologies for in-depth research,
such as microarray analysis, tissue sample sequencing, high-
Frontiers in Oncology | www.frontiersin.org 8
throughput DNA methylation analysis and other new
technologies, revealing the function of TMEM88 regulation in
more malignant tumors and elucidating the pathogenesis of
TMEM88 in tumors. This will further promote the progress of
the diagnosis and treatment of malignant tumors.
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