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A B S T R A C T

A solitary wave is the dispersion-less solution of nonlinear evolutionary equations that travels at a constant speed
without dissipating its energy. The purpose of this article is to provide insight into the discovery and history of
solitons. The different types of the solitons are discussed in brief that is helpful for the researchers. For the dis-
cussion of the nature of solitons, the solution behavior of the Korteweg de Vries equation (KdV), the sine-Gordon
(SG), the Camassa-Holm (CH) equation, and the nonlinear Schrodinger (NLS) equation are considered. This article
deals with the various applications of solitons in different fields such as biophysics, nonlinear optics, Bose-Einstein
condensation, plasma physics, Josephson junction, etc. focusing on the properties of solitons based on their
classification.
1. Introduction The credit to the discovery of the concept of soliton goes to John
Solitons are a special type of long-wave that are non-dispersive and
travel in the form of packets with constant velocity. They are also called
shallow-water waves with a permanent shape. A soliton has the special
property that its shape remains unchanged when it collides with another
soliton. This behaviour of solitons has attracted mathematicians, physi-
cists, and engineers because of their robustness and applicability in
physics applications. The soliton exists as a solution to nonlinear partial
differential equations.

This paper is an effort to give quick exposure to the researchers in this
area by providing information about the many types of soliton and their
applications. The present work is elaborating the differential equations
having the soliton solutions by giving an outline to the users regarding
the soliton types that are contributing and hence enriching the discipline
to explore new findings.

1.1. History

A soliton, or solitary wave, is a type of self-reinforcing wave packet
that continues to propagate at a constant speed and retains its original
shape. Over the past three decades, the solitary wave phenomenon has
been at the forefront of many advances in physics and mathematics.
Numerous nonlinear evolutionary equations have been shown to have
soliton solutions by numerical calculations and theoretical research. The
theory of the soliton has close ties to contemporary physics and is used to
provide explanations for a wide variety of physical problems at the cut-
ting edge of this dynamic field.
madifar).
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Scott Russell [1], a Scottish naval architect, who in 1834 observed a
"Great Translation Wave" in the shallow waters of the Great Britain
Canal. He attempted to demonstrate a constant wave by constructing a
channel so that the wave could travel a great distance with the chan-
nel. He placed the boat in the canal with a rope to which he tied the
horses on either side. He found that the wave came to rest due to the
obstruction of the wave propagation by the boat, but continued to
move at a constant speed without losing its shape. He followed the
wave for about 8 miles and found that the wave moves at a constant
speed up to 2 miles without losing its shape. He continued his
research and briefly described the properties of translational waves as
follows:

(a) The waves can travel large distances with constant speed.
(b) The waves never merge, unlike normal waves.
(c) The speed of a wave depends on its size and its width depends on

the depth of water.
(d) The higher waves travel faster than the smaller waves.
(e) The velocity of waves can be formulated by an equation which is

as follows:

V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GðH þ AÞ

p

where G is the acceleration due to gravity, A is the amplitude of solitary
waves; H is the height of shallow water channel and V is the velocity of
travelling waves.
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The results of Russell were not appreciated by the mathematical so-
ciety and also denied by a researcher named Array. In 1845, Array
published his book “Tides and Waves”, in which he presented a theory of
long waves and focused on the speed of waves which depends on their
height and amplitude. This theory indicated that solitary waves by
Russell could not exist [2].

In the 1870s, two great physicists, Joseph Boussinesq and Lord Ray-
leigh, independently further illuminated Russell's observations in the
form of a mathematical model [3]. Boussinesq and Rayleigh observed the
velocity of a solitary wave and related its height to distance, discussing
the properties of high and small waves.

In 1895 [4], the Dutch mathematician Diederik Korteweg, together
with Gustav de Vries, formulated a nonlinear partial differential equa-
tion, which became famous as the KdV equation, recognizing soliton
solutions to describe the shallow water waves. This equation mathe-
matically proves solitary water waves and plays an important role in the
development of soliton theory.

In 1955, Fermi, Pasta, and Ulam [5] studied a computer simulation of
a one-dimensional nonlinear lattice to discuss its equilibrium state. They
believed that the nonlinear interactions with respect to the normal modes
of the linear system resulted in the energy of the system being uniformly
distributed among all modes. But when they examined the KdV equation
numerically, the results reversed this notion. The energy was again
distributed unevenly among all modes, but the system returned to its
initial position after some time. The problem later became known as the
FPU problem.

To understand this recursion phenomenon, Zabusky and Martin
Kruskal [6] studied the FPU problem again in 1965. They solved the KdV
equation numerically in terms of a nonlinear grid. Further, they noted the
surprising property that the interaction of two solitary waves of the KdV
equation exhibits elastic behaviour. When two solitary waves collide,
they reappear without changing their original shape, size, and velocity.
These properties of elastic collision between two particles make them
behave like stable particles. They called these solitary waves 'solitons'
because of their particle-like behaviour like protons, electrons, photons,
etc. This is how the soliton was invented.

When the soliton was discovered, there was no mathematical tool to
solve the initial value problem of nonlinear integrable partial differential
equations (PDEs). Later, Gardner, Kruskal, Miura, and Greene (GKMG)
invented a technique for solving nonlinear PDEs known as inverse scat-
tering (IST). A year later, another mathematical approach for dealing
with nonlinear problems was developed by Lax [7]. In this concept, an
integrable PDE was framed into a standard form called a Lax pair. Then,
Zakharov and Shabat [8] generalized this as a linear matrix eigenvalue
problem and solved the nonlinear Schrodinger equation (NLSE) using IST
and obtained a soliton solution.

Another scheme, known as the AKNS scheme, was developed by
Ablowitz, Kaup, Newell, and Segur [9], who identified solitons with
nonlinear evolutionary equations. This scheme was first used to numer-
ically solve the sine-Gordon equation, which was later used to solve
several other nonlinear PDEs. There are several other methods such as
the bilinear Hirota method and the Backlund transform that are
commonly used to solve integrable nonlinear PDEs.

The paper is organized with the first section of introduction and
history of soliton. In the second section, the types of solitons are dis-
cussed. In the third section, some applications of solitons in the field of
science and engineering are briefly introduced. In the fourth section,
some nonlinear evolutionary equations that help in the description of
solitons are discussed. In the fifth section, concluding remarks on solitons
are made.

2. Types of solitons

Solitons can be categorized in a number of different ways. Topolog-
ical and nontopological solitons are two different types of solitons. By
taking into account their profiles as permanent and time dependent, all
2

solitons can be split into two groups regardless of their topological
character. For instance, all breathers have internal dynamics even though
they are static, but kink solitons have a permanent profile (in ideal sys-
tems). As a result, their shape changes over time. According to the
characteristics of the nonlinear equations, this section deals with some
common characteristics of the solitons.
2.1. Kink Soliton

Kink soliton is a one-dimensional solitary wave, which signifies a
change in the solution value due to the transition from one state to
another [10, 11]. They are also known as topological solitons because
their velocity does not depend on the wave amplitude.

Topological solitons [12] are defined as a localized lumps of energy in
a nonlinear system. They are stable particle-like objects with finite mass,
have a smooth structure and appear like monopoles in the nonlinear
classical field theory.

The collision properties of solitons are observed in both kinks and
anti-kinks solutions. There are many evolutionary equations that yield a
kink soliton, such as the KdV equation, the sine-Gordon equation, the
Burger's equation, Ostrovsky equation [13], etc. Kink waves rise or fall
from one asymptotic state to another and approach a constant level at
infinity. The kink-type soliton has been presented by the sine-Gordon
equation in section 4.
2.2. Breather

A breather is a nonlinear wave in which energy accumulates in an
oscillatory and bounded manner. They oscillate in both time and space,
but sometimes exhibit oscillations in space and can localize in time. Once
a breather reaches its maximum amplitude, it decays symmetrically and
eventually disappears. The sine-Gordon equation (SG) [14] and the
nonlinear Schrodinger (NLS) equation [15] are examples of
one-dimensional PDEs that contain breather-type soliton solutions. In
Section 4, the soliton solution of the sine-Gordon equation admitting a
breather type was presented.
2.3. Gap solitons

These are the solitons that occur in finite gaps in the domain of
continuous systems. These types of solitons have been discussed by the
NLS equations with periodic solutions observed experimentally in
nonlinear optics and Bose-Einstein condensation [16]. Optical gap soli-
tons [17], which exists in nonlinear optical media, are electromagnetic
field structures.

The difference between a regular soliton and a gap soliton is due to
the dispersion of the group velocity of the photonic band structure. The
gap solitons that occur in NLS are presented in Section 4.
2.4. Envelope solitons

Envelope solitons are solitary wave solutions that occur in a disper-
sive nonlinear medium [18, 19, 20]. Envelope solitons can be divided
into light and dark solitons. Bright solitons occur with a localized in-
tensity peaking over a constant wave background, while dark solitons are
described as a concavity in the continuous background. From the NLS
equation bright soliton solutions are derived in the anomalous dispersion
regime and dark soliton solutions are derived in the normal dispersion
regime [21]. The dark solitons are more stable and less affected by
background noise and interference compared to the light solitons. Apart
from NLS equation the Chaffee–Infante equation [22] and
Kaup–Kupershmidt equation [23] also plays an important role in bright
and dark soliton. The envelope soliton resulting from the NLS equation
has been presented in Section 4.
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2.5. Solitary waves with discontinuous derivatives

There are solitary waves with discontinuous derivatives, which can be
classified as peakons, cuspons, and compactons [24].

Peakons are solitary waves whose peaks have a discontinuous first
derivative [25, 26]. This type of solitary wave solution is smooth, except
for a peak at one corner of its vertex. In particular, peakons maintain their
velocity and shape after colliding with other peakons. The equation of
Camassa-Holm (CH) and the integral equation of Degasperis Procesi (DP)
have peakon-type solutions. The peakon solution for the equation CH is
presented in Section 4.

Cuspons are soliton solutions where the solutions have cusps at crests
[27]. In some special cases, the solutions of the CH and DP equation are
of cuspons type. The coupons solution for the DP equation has been
presented in Section 4.

Compactons are solitary waves that have a finite wavelength, are free
of exponential tails, and have robust soliton-like solutions. They are
special solitary waves that have the property of maintaining their shape
and travelling at the same speed after colliding with other compactons.
The nonlinear dispersive K (n,n) equation, which is a family of nonlinear
KdV-like equations, yields a soliton solution of the compacton type pre-
sented in Section 4.

3. Applications of solitons

Solitons have a broader application perspective in various fields such
as biophysics, field theory, plasma physics, fluid dynamics, photonic
crystal fibers, optical fibers, condensed matter physics, Josephson junc-
tion and Bose-Einstein condensates, surface waves, etc. Some of the
above applications are briefly discussed below:

3.1. Biophysics

Study of solitons is used in biophysics in the DNA lattice. When a
protein comes near to soliton, some conformational changes occur, which
cause intracellular communication. This communication of solitons on
the DNA lattice is described by Feynman diagrams, which describe the
survival of cellular life [28]. The solitary wave is also used to study
various biophysical phenomena.

The Davydov soliton [29] is one such soliton that exists as a solution
to an equation describing the energy distribution in hydrogen-bonded
spines. The nonlinear dynamics of DNA molecules also reveal the pres-
ence of solitary waves [30], which arose in the process of splitting
double-stranded DNA into single strands [31].

3.2. Field theory

Solitons appear in both classical and quantum field theory [10]. To-
pological solitons exist in field theory [12] in the form of kinks, mono-
poles, vortices, and skyrmions. In two-dimensional quantum field theory,
the sine-Gordon equation has solutions for topological solitons that can
be mapped onto the elementary excitations of an exactly solvable
quantum field theory [32].

3.3. Plasma physics

The study of solitary waves is also related to the study of plasma
physics, which contains charged particles in large numbers [33]. For
example, the KdV equation reflects the change of charge from neutrality.
Another equation describing solitons and solitary-wave solutions for the
study of plasma physics is the KP equation, variants of KdV and the KP
equation. In addition, the soliton in plasma is studied in various contexts,
e.g., to discuss the interaction of solitons in collisionless plasma [6], in
Langmuir wave collapse for plasma [34], in the study of soliton stability
in plasma and hydrodynamics [35], and in ionic-acoustic solitons in
plasma [36, 37] etc. Benjamin–Bona–Mahony (BBM) [38] is considered
3

as an improvement of the KdV equation and used to describe the prop-
erties of the long surface gravity wave, acoustic-gravity waves in
compressible fluids, hydromagnetic waves in a cold plasma, and acoustic
waves in an harmonic crystals.
3.4. Fluid dynamics

Solitary waves are also among the characteristics of fluid dynamics.
The “translational wave” described by Russell was a water wave [39] and
Korteweg and de Vries described a shallow water wave by the KdV
equation, which also occurs in a long-wavelength limit. Solitary waves
also exist in deep water, as shown by the work of Vladimir Zakharov
[40], who set up the NLSE (nonlinear Schrodinger equation) to study
these waves. Solitary wave solutions have been constructed in many
models of fluid dynamics. For example, tidal wells have been explained
using dispersive shock waves, the theory of non-propagating surface--
wave solitons [41], the small-amplitude gravity capillary wave as an
envelope soliton [42], and the soliton mean-field theory in macroscopic
flow hydrodynamics [43], etc.
3.5. Optical fiber

In optical fibers, light propagates as solitons. Information is sent
through the optical fiber in the form of packets as solitons. Since solitons
travel at a speed equal to that of light, they provide high-speed connec-
tivity and a high-bandwidth network [44]. This property feature of op-
tical solitons makes them useful for high-speed communication over an
optical fiber [45]. There are applications in a variety of fields related to
fiber optics, such as soliton photonic switches, which are used for optical
switching by using the process of position shifting of the spatial soliton
after collision [46]. In addition, trapping solitons in optical fibers can be
used to develop optical logic gates [47]. In the study of optical solitons,
the nonlinear Schrodinger equation is crucial [48]. The Fokas-Lenells
(FL) equation [49, 50] has been derived as an alternate model equation
of the Schrodinger equation for the higher-order terms, and it represents
the propagation of short pulses in optical fibers. Complex perturbed
Gerdjikov–Ivanov equation [51] describes the physical characterization
of the optical soliton waves to mitigate internet bottlenecks with many
different applications in the telecommunication industry. Additionally,
telegraph equation [52, 53] has an important application electromag-
netic waves in communication.
3.6. Josephson junctions

The Josephson junction [54] is a nonlinear oscillator consisting of
two weakly coupled superconductors separated by a thin nonconducting
layer for the passage of electrons. Solitary waves exist as the propagation
of electromagnetic waves between two superconductors. These junctions
are used in the fabrication of mechanical circuits, e.g., SQUIDs (Super-
conducting Quantum Interference Devices).
3.7. Bose-Einstein condensates (BEC)

In 1924, Bose and Einstein demonstrated the process of Bose-Einstein
condensates. At a very low temperature, a finite fraction of particles in a
dilute base gas can assume the same quantum state known as BEC. The
macroscopic dynamics of BEC near temperature zero is modelled by the
Gross-Pitaevskii equation [55, 56]. BECs were experimentally detected in
1995 by trapping atoms of dilute alkali vapours in a magnetic trap, which
was then cooled to an extremely low temperature on the order of
micro-Kelvins [57, 58]. Rogue waves in nonlinear Schrodinger models
with variable coefficients are also an important application for
Bose-Einstein condensates [59, 60].
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4. Nonlinear evolutionary equations and their examples

Nonlinear evolutionary equations (NLEEs) describe nonlinear science
in a dynamical way, i.e., in the two dimensions of space and time through
the nonlinear systems. These equations are used to describe nonlinear
phenomena in various fields of science such as physics, chemistry,
biology and ecology, pattern formation, solitons and nonlinear disper-
sion, etc. They are considered a unique tool for describing and charac-
terizing phenomena in science and engineering. NLEE are nonlinear
partial differential equations whose solution exists in the form of solitons
and has several important properties. For the discussion of the types of
soliton solutions and their properties, three NLEEs are considered,
including the well-known KdV equation, the nonlinear Schrodinger
equation, the sine-Gordon equation, and the Camassa-Holm equation. A
brief discussion is done on the type of solution and the physical behav-
iour using MATLAB 2014, which are briefly described below:

4.1. Korteweg de Vries (KdV) equation

The KdV is a very simple model of the wave equation, which is hy-
perbolic in nature. It is a nonlinear equation that links dispersion and
nonlinearity. It is the most important class of NLEEs with various appli-
cations in engineering and natural sciences. It was originally discovered
by Lord Rayleigh in 1812; subsequently, it wasmathematically introduced
by Joseph Boussinesq in 1877 and rediscovered by Diedrik Korteweg and
Gustav de Vries in 1905, who introduced this equation in modelling
shallow water waves. The KdV equation plays an important role in the
study of compressible fluids in fluid mechanics, in the description of the
properties of electron plasmas, in the study of oceanic water waves, and in
the study of mass transport problems associated with chemical com-
pounds [61]. A simple generalization of the KdV equation is given as:

ut þαuux þ uxxx ¼ 0;�∞ < x < ∞;0 � t < ∞

where u is the wave amplitude, x and t are the space and time variables
respectively and the subscripts represent differentiation with respect to
the relevant variable. A travelling wave solution of permanent form occurs
due to a balance between the dispersive term and the nonlinear term.

The nonlinear dispersive K (n,n) equation, which is a family of
nonlinear KdV like equations give compactons type soliton solution is
given as:
Figure 1. Breathers type so
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ut þ aðunÞx þðunÞxxx ¼ 0; �∞< x<∞;0 � t<∞
where a ¼ 1 results in compact solitary travelling soliton. The compac-
tons soliton solution obtained for the K (n,n) equation is presented in
Figure 6 for the exact solution given as [61]:

uðx; tÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosðx � tÞ; 0 < x < 1:5;0 � t � 1:5

p
:

4.2. Sine-Gordon equation

The sine-Gordon equation (SG) is a nonlinear partial differential
equation of hyperbolic nature that has soliton solutions. The structure of
the soliton solutions is the same as that of the KdV equations. It was
originally introduced by Edmond Bour in 1862 and rediscovered by
Frenkel and Kontorova in 1939 while studying crystal dislocations [62].
The sine-Gordon equation is given as:

utt � uxx þ sinðuÞ ¼ 0;�∞ < x < ∞; 0 � t < ∞

where u is a field variable, t represents the time and x denotes the space
coordinate in the direction of propagation. The SG equation admits the
soliton solution as presented as in Figures 1 and 7.

The breather soliton solution obtained for the SG equation is pre-
sented in Figure 1 for the exact solution given as [62]:

uðx; tÞ¼4 arctan

0
B@vsinh

�
x

1�v2
�

cosh
�

vt
1�v2

�
1
CA; � 20< x< 20;0� t � 30:

The kink solitons that occurred for the SG equation is presented in
Figure 7 for the exact solution given as [62]:

uðx; tÞ¼4 tan�1�eðx�vtÞ=d�; �15< x< 15;0� t<10 for v¼ 0:5:

where v represents the velocity of soliton with d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

p
is the Lorenz

contraction factor.
This equation has a wide range of application in physics, not only in

relativistic field theories but also in study of solid-state physics, nonlinear
optics, shape waves, mechanical transmission lines and Josephson
junction, Bloch wall motion of magnetic crystals and nonlinear dynamics
of DNA etc.
liton for SG equation.



Figure 2. Gap solitons from NLS Equation.

Figure 3. Envelope soliton of NLS equation.
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4.3. Nonlinear Schrodinger equation (NLS)

One of the most important dynamical models in nonlinear physics is
nonlinear Schrodinger equation which presents the function of wave in
nonlinear and dispersive motion and is given by:

iut ¼ uxx þ gjuj2u;�∞ < x < ∞; 0 � t < ∞

where u is the complex field function and g is a constant. The first
function of wave i.e., dispersion effect makes the waveform spread and
the second function causes the steepening of waveform due to its
nonlinear effect. The NLS equation admits the soliton solution as pre-
sented as in Figures 2 and 3.

The gap solitons that occurred for NLS equation is presented in
Figure 2 for the exact solution given as [63]:

uðx; tÞ¼ sinðxÞe�i1:5t ; �4< x< 4;0� t � 2:

The envelope soliton that occurred for NLS equation is presented in
Figure 3 for the exact solution given as [63]:

uðx; tÞ¼
ffiffiffi
2

p
cosð2x� 3tÞsechðx�4tÞ; � 10< x<10;0� t � 1:

NLS equation has localized solutions which have applications in many
5

fields such as plasmas, electromagnetism and many other instability
phenomena. It is also helpful in problem of optical pulse propagation in
asymmetric, twin core optical fibers etc. Optical solitons, which are one
of the most important solutions of nonlinear Schrodinger equation, are
used in optical fiber communication [44, 48, 64, 65, 66, 67, 68, 69].
4.4. Camassa-Holm equation

This equation is first introduced by Camassa and Holm [70] by the use
of Hamiltonian method.

The Camassa-Holm equation of the form:

ut þ2kux � uxxt þ 3uux ¼ 2uxuxx þ uuxxx

where u denotes the fluid velocity and the parameter k is a constant
related to the critical shallow water wave speed. This is an entirely
integrable dispersive water wave equation for all k and for k ¼ 0, it has
travelling solution of the form ce�jx�ɑj which are called peakons because
they have a discontinuous first derivative at the weak peak. The Camassa-
Holm (CH) equation has peakon type solutions.

The Peakon solution for CH equation is shown in Figure 4 with exact
solution [71]:



Figure 4. Peakon Soliton from CH equation.

Figure 5. Cuspons Soliton from DP equation.

Figure 6. Compactons soliton from K (n,n) equation.
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uðx; tÞ¼ 3
2
e�jx�tj; � 6< x<6; 0� t � 1:
ffiffiffir

The DP equation also describes shallow water nonlinear waves and its
asymptotic accuracy resembles as that of CH equation:

The DP equation is given by:
6

mt þmxuþ 3mux ¼ 0;m ¼ u� uxx:
The cuspons solution for DP equation is shown in Figure 5 with exact
solution [72]:

uðx; tÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�2jxj

p
; � 2< x< 2; 0� t � 1:



Figure 7. Kink Soliton for SG equation.
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In addition to the above equations, there are many equations which
have important applications in field of science and technology and yields
soliton type solutions i.e. Kolmogorov–Petrovskii–Piskunov equation
[73], generalized (2 þ 1)-dimensional shallow water waves equation
[74], human immunodeficiency virus (HIV)-1 infection of CD4þ T-cells
fractional biomathematical model for constructing novel solitary
wave solutions [75], Fokas–Lenells equation [49], Klein–Fock–Gordon
equation [76] relates to Schrodinger equation, phi-four equation [77]
which is a particular case of the Klein–Fock–Gordon equation, telegraph
equation [52], Chaffee–Infante equation [22], Benjamin–Bona–Mahony
(BBM) [38], Cahn–Allen equation [78], Klein–Gordon–Zakharov equa-
tion [36, 79], Kaup–Kupershmidt equation [23], Fisher-Kolmogorov-
Petrovskii-Piskunov [80], Kadomtsev�Petviashvili equation [81], Ginz-
burg–Landau equation [82], Hirota–Satsuma–Shallow Water Wave
Equation [83] (2 þ 1)-dimensional Kadomtsev–Petviashvili–Benjamin–
Bona–Mahony equation [84], cubic–quintic nonlinear Helmholtz
model [85], Ostrovsky equation [13], Vakhnenko–Parkes equation
which is reduced from the Ostrovsky equation [86], complex perturbed
Gerdjikov–Ivanov (CPGI) equation [51], etc.

5. Conclusion

In recent decades, nonlinear equations have appeared in various
forms to study the behavior of complex natural phenomena in different
branches of science and technology. A system whose output is not pro-
portional to its input is said to be nonlinear. Most nonlinear phenomena
are modelled in terms of a nonlinear evolutionary equation (NLEE) due to
linear and nonlinear effects. The solution of these NLEEs leads to solitary
waves and periodic solutions, which plays an important role in the
description of nonlinear physical phenomena.

In the present work, solitons have been discussed with a brief
history of their existence, followed by the different types of soliton
solutions. The application of soliton solutions in the various scientific
and engineering fields has been discussed. The types of solitons for the
known NLEES have also been discussed to arouse the interest of the
readers.

From this article, one may have acquired a glimpse into the rela-
tionship between dispersion and nonlinearity in the differential equa-
tions, it is not yet explained how solitons keep their forms and velocities
after colliding. This characteristic, which makes particles seem like they
have their own independent reality, has profound mathematical signifi-
cance and goes far beyond ordinary curiosity. A limitation is that not all
nonlinear partial differential equations have soliton solutions, and this is
acknowledged in the paper.
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