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Abstract: Montmorillonite (MMT) displays excellent cohesion with an unsaturated polyester
(UP) matrix to generate a material which exhibits an extensive range of commercial applications.
The organic modification of MMT using polyhedral oligomeric silsesquioxanes (POSS) and the
effect of POSS-MMT on the thermal, mechanical, and electrical properties of UP are reported
here. Transmission electron microscopy (TEM) images were used to characterize the modification of
MMT using POSS. Modified MMT (POSS-MMT) was incorporated, at different wt.% (0.5, 1, 3, 5),
into UP via in-situ polymerization. The presence of POSS-MMT enhanced the characteristic properties
of UP as a consequence of good dispersion in the polymer matrix. Scanning electron microscopy
(SEM) images support effective POSS-MMT dispersion leading to tensile strength enhancement of a
UP/POSS-MMT nanocomposite (3 wt.% POSS-MMT) by 54.7% as compared to that for unmodified
UP. TGA displays a 35 ◦C improvement of thermal stability (10% mass loss) at 5% POSS-MMT
incorporation, while the electrical conductivity is improved by 108 S/m (3 wt.% POSS-MMT) in
comparison to that for unmodified UP. The conventional obstacle of UP associated with shrinkage
weight loss during curing seems to be moderated with POSS-MMT incorporation (3%) resulting in a
27.8% reduction in shrinkage weight loss. These fabricated nanocomposites expand the versatility of
UP as a high-performance material owing to enhancements of properties.

Keywords: montmorillonite; aminopropyl isobutyl POSS; unsaturated polyester; mechanical properties;
electrical conductivity; shrinkage weight loss

1. Introduction

The attractive influence of clay polymer nanocomposites has been quite imminent in recent
years. Lots of research has been undertaken in inclining the blooming area of clay polymer
technologies towards commercial applications [1–3]. Unsaturated polyester (UP) resins form the
crux of thermosets capable to fabricate lightweight composites possessing admirable process ability,
durability, and flexibility [4,5]. UP has a vital role in invigorating the tendency of clay polymer
nanocomposites to be utilized as high-performance materials in an extensive range of products such as
automobiles, construction and building materials, and electrical appliances [6,7]. The ample credit
goes to the excellent reinforcement of nanoclay within UP, and several previous studies conclude
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this inference [8–12]. Montmorillonite (MMT) is one such form of nanoclay phyllosilicate mineral
possessing one O–Al(Mg)–O octahedral sheet sandwiched between two O–Si–O tetrahedral sheets [13].
MMT-based polymer nanocomposites have been under constant scrutiny in recent years owing to
its high aspect ratio, cation exchange capacity, superior surface area, and small particle size [14].
However, MMT reinforcement within a polymer matrix suffers certain impediments in the form
of agglomeration which influences the dispersion and exfoliation of MMT in the polymer matrix.
A prerequisite arises to organically modify the MMT (OMMT) prior to its interaction within the
polymer matrix [15]. This arranges the affinity of MMT to exfoliate in the polymer with thorough
dispersion. This information is crucial for hydrophobic polymers such as UP for a superior interaction
with MMT. Several studies have been undertaken to analyze the property enhancement of UP with
OMMT reinforcement [16–19]. The emphasis must be stressed on the appropriate choice of organic
modifiers to exfoliate the MMT and evenly distribute in the UP matrix. The well-exfoliated OMMT
provides impetus in the comprehensive property enhancement of UP.

Polyhedral oligomeric silsesquioxanes (POSS) have garnered a lot of attention recently due to their
competence to boost the properties of polymer with exquisite reinforcement [20,21]. POSS structure
comprises of a silica core as a backbone, with a Si atom attached on its vertex linking the O atom.
The incorporated organic functional group attached to POSS moiety execute a vital role in modifying
MMT and exfoliating the structure [22,23]. Recent reports have inferred the role of POSS as a nanofiller
reinforcement in enhancing the thermal, mechanical, and electrical properties of the polymer [24–29].
POSS possess the affinity to organically attach with other nanofillers to achieve superior interaction
with the UP matrix [30,31]. The contemplation towards hybrid amalgamation of POSS and MMT could
relate to a meticulous interfacial interaction with the polymer matrix. Bi et al. explored this concept by
incorporating POSS-MMT into poly(l-lactide) and obtained excellent improvement in thermal stability
and gas permeation values [32]. Liu et al. surveyed the impact of POSS-modified MMT in the epoxy
resin and enhanced its thermal stability [33]. Teo et al. examined the thermomechanical properties of
anhydride-cured epoxy resin with reinforcement of POSS-imidazolium modified clay [34]. Zhao et al.
explored the mechanical properties of POSS-MMT-incorporated polyamide 12 nanocomposites and
achieved 60% amelioration of tensile modulus with 3% POSS-MMT [35]. However, no research has
been specified to date on the effect of POSS-MMT on the UP matrix, which specifies the novelty of
this research.

Our study focuses on the construction of a hierarchical network of POSS-MMT by organically
modifying MMT using aminopropyl isobutyl POSS. Different wt.% of POSS-MMT are incorporated
into UP via a solvent-free in-situ polymerization technique. The thermal, mechanical, and electrical
properties of the as-prepared nanocomposites are evaluated to examine the influence of POSS-MMT in
property enhancement. Another authoritative aspect during the fabrication of UP-based nanocomposites
is the manifestation of shrinkage weight loss during the curing process due to free radical
polymerization [36]. The effect of nanoclay in reducing the shrinkage weight loss of UP is predominant
with previous studies supporting this hypothesis [37–39]. POSS, being a crystalline nanofiller, could be a
potential candidate in assisting MMT in the process of limiting shrinkage weight loss [40]. The inclusive
property improvement of the fabricated UP/POSS-MMT nanocomposites confers the role of a hybrid
network of POSS and MMT in accomplishing interfacial reinforcement of UP. It validated the route
towards the construction of UP-based nanocomposites with a facile polymer processing technique,
minimum shrinkage weight loss, and minimal addition of nanofillers, thereby boosting the versatility
of UP in industrial applications.

2. Experimental

2.1. Materials

Aminopropylisobutyl polyhedral oligomeric silsesquioxanes (POSS-NH2) were obtained from
Passkey Technology Co., Ltd. (Changsha, China). Pristine montmorillonite was procured from the
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Sanding Technology Corporation (Zhejiang, China). Hydrochloric acid (HCl) 37% and tetrahydrofuran
(THF) were supplied by Sigma Aldrich (St Louis, Mo, USA). Maleic anhydride (MA) and phthalic
anhydride (PA) were purchased from the Aladdin Industrial Corporation (Shanghai, China). Propylene
glycol (PG) and ethylene glycol (EG) were obtained from General Reagent (Shanghai, China).
Diethylene glycol (DEG) and styrene were procured from the Xilong Corporation (Guangzhou, China).
Cobalt iso-octanoate was purchased from the Shengfei Fine Chemical plant (Shanghai, China) and
methyl ethyl ketone peroxide was procured from the AkzoNobel Corporation (Shanghai, China).
Both are used as accelerator and free radical initiator, respectively. Hydroquinone was supplied by
Aladdin chemicals (Shanghai, Country). All chemicals were utilized without any further purification.

2.2. Synthesis of POSS-Modified MMT (POSS-MMT)

Pristine clay (10 g) and distilled water (500 mL) were employed in a beaker and subjected to 4 h
of stirring. POSS-NH2 (4 g) was dissolved in THF (10 mL) and 10% HCl (10 mL) was added into
it and collectively stirred for 1 h. This POSS solution was mixed with the suspended clay and the
solution was stirred overnight. The mixture was filtered and washed using deionized water to remove
impurities and untreated POSS and was later dried in vacuum at room temperature.

2.3. Synthesis of UP Resin

The melt polycondensation technique was adopted to synthesize the pure UP resin [41]. A total
of 16 g PG, 20.5 g EG, 32.5 g DEG, 72.5 g PA, and 27.5 g MA were collectively added in a three-neck
flask with stirring equipment and heated progressively until the temperature reaches 120 ◦C. A total of
0.1 wt.% antioxidant (triphenyl phosphite) was interfused as an antioxidant into the mixture and the
temperature was augmented to 160 ◦C with the complete melting of PA and SA. The polycondensation
reaction instigated at 160 ◦C and conducted between 160 ◦C and 210 ◦C with the subsequent calculation
of the acidic value. When the acidic value reached 70 mg KOH/g, the reaction was kept under vacuum
at 210 ◦C until the acid value becomes lower than 26 mg KOH/g. The temperature was then brought
down to 190 ◦C and 0.01 wt.% (to that of total resin) hydroquinone was added into the mixture.
Styrene (35 wt.%) was mixed into the resin as the temperature approached 120 ◦C. The UP pre-polymer
was subjected to free radical polymerization using cobalt iso-octanoate and MEKP to undergo the
curing process. The resin was poured on the Teflon mold and the curing process was carried out for
3 h in room temperature and post-cured for 3 h at 80 ◦C in a vacuum oven.

2.4. Synthesis of UP/MMT-POSS Nanocomposites via In-Situ Polymerization

The various concentrations of POSS-MMT (0.5, 1, 3, and 5 wt.%) were added to the glycols used
in the synthesis of UP resin, according to the scheme shown in Figure 1. The glycol mixture was
subjected to ultrasonication for 1 h. The nano-dispersed POSS-MMT/glycol mixture along with other
chemicals used in the UP-preparation procedure were constituted into a three-necked rounded beaker,
with an overhead magnetic stirrer, and the whole polycondensation process for UP synthesis technique
was adopted.

2.5. Characterization

X-ray diffraction XRD analysis was executed using Rigaku Miniflex600 (Tokyo, Japan) processed
with Cu-Kα radiation (λ = 1.5406 Å) under the smaller angle of 2θ from 5◦ to 14◦. Fourier Transform
Infrared Spectra (FTIR) analysis was performed using a Perkin Elmer Spectrum One Spectrometer
(Shelton, CT, USA) with KBr within the range of 500 to 4000 cm−1 under resolution of 4 cm−1.
The Transmission Electron Microscopy (TEM) was carried out on JEM-2010 (JEOL, Tokyo, Japan) with
an accelerating voltage of 200 kV. The samples were prepared by depositing a drop of solution on a copper
grid with thin film formvar. Scanning Electron Microscopy (SEM) was performed using HITACHI,
SU8010/EDX, Tokyo, Japan, with an energy-dispersive X-Ray spectrometer. Thermogravimetric analyses
(TGA) were analyzed using TA Instruments STA449C (Newcastle, DE, USA) in the range of 25–800 ◦C
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under a nitrogen atmosphere with a heating rate of 10 ◦C/min. The tensile properties were analyzed
using a universal testing machine (AGS-X PLUS, Shimadzu, Tokyo, Japan) according to ASTM D638
and ASTM D790 standards, respectively. The final values were calculated by taking the average values
of a set of five specimens of each nanocomposite. Dynamic mechanical analysis (DMA) was performed
on a TA DMA Q800 apparatus from TA Instruments (Newcastle, DE, USA). A single cantilever mode
was used for testing. DMA tests were conducted from 30 ◦C to 180 ◦C with a heating rate of 3 ◦C/min
at 1 Hz. Electrical conductivity measurement of the samples was executed using a four point or Kelvin
probe method (Nanometrics, Milpitas, CA, USA). The specimens were cut to the size of 10 × 10 mm
and coated on both sides with an electrodeposited silver paste (100 nm thick). The Ohmic contacts
generated due to the silver paste aided in the measurement of the electrical conductivity in the Kelvin
probe. The volumetric shrinkage was estimated using a facile technique of calculating the volumetric
change of resins in the porcelain vials after curing. A known amount of resin was constituted in the
porcelain vial and allowed to cure. The subsequent volume deficit in the resin (after curing) was
compensated by adding some amount of water.

Volume of resin (before cured) = V0;
Volume of compensated water = Vw;
Volume of resin (after cured) (V1) = V0 − Vw;
Volumetric shrinkage (%) =

V1
V0
× 100.Polymers 2020, 12, x FOR PEER REVIEW 4 of 18 
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Figure 1. Schematic method to modify montmorillonite (MMT) using polyhedral oligomeric
silsesquioxanes (POSS) and fabricate unsaturated polyester (UP)/POSS-MMT nanocomposites
(1) functionalization with aminopropyl isobutyl POSS, (2) in-situ addition along with UP preparation
after sonication with glycols. The inset contains images of nanocomposites with color variance from
pure UP to 1% POSS-MMT to 5% POSS-MMT-added UP nanocomposites.

3. Results and Discussion

3.1. Structural and Morphological Analysis of POSS-Modified MMT

The layered silicate MMT and its functionalization using POSS desires to be affirmed using
the XRD analysis for the structural characterization. The immaculate modification of MMT using
POSS was substantiated in this analysis. Figure 2 showcases the XRD patterns for MMT, POSS-NH2,
and POSS-MMT. POSS-NH2 displays numerous peaks owing to its crystalline structure. The XRD
diffraction peak of MMT attained at 2θ = 8.43◦ demonstrates the layered silicate structure of MMT,
with the interlayer distance corresponding to 1.020 nm. The successful intercalation of POSS within
the MMT could be vindicated in the XRD diffraction peak emerging at 2θ = 6.05◦. The interlayer
distance elevated to 1.4212 nm, computed using the Braggs law. The competence of MMT to interact
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with the surfactant POSS due to its cation exchange capacity prompted the intercalation of POSS
within the layers of MMT [42]. The successful modification of MMT using POSS has a vital role in the
reinforcement of the UP polymer matrix, devoid of agglomeration.
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Further evidence of organic modification of MMT using POSS could be obtained from the FTIR
analysis. Figure 3 displays the FTIR transmittance spectra for MMT, POSS-NH2, and POSS-MMT,
with each spectra citing a Si–O–Si bond around 1035 cm−1 [43]. The FTIR spectrum of pristine MMT
exhibited a strong band at 3629 cm−1 due to the OH stretching vibration of structural OH groups [44].
POSS-NH2 FTIR spectra display a band at 1500 cm−1 attributed to the symmetric deformation of the
NH3

+ group. However, this group was not found in FTIR spectra of POSS-MMT due to overlapping
with the strong bond of MMT, which substantiates the covalent bonding between pristine MMT and
POSS [45]. The isobutyl groups of POSS-NH2 tend to be imbibed in POSS-MMT as interpreted in the
FTIR spectra at 2869 cm−1. The vivid inference of successful intercalation of POSS within the layers of
MMT could be obtained from this [46]. The FTIR spectra of POSS-MMT acquire the characteristics
spectra of MMT and POSS-NH2, implying the attachment of POSS moiety amidst the layered MMT [47].Polymers 2020, 12, x FOR PEER REVIEW 6 of 18 
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The morphological aspects of POSS functionalized MMT is investigated by TEM analysis. Figure 4
furnishes the TEM images of POSS-MMT with different magnifications. The clay, as shown in Figure 4,
displays minute tactoid morphology, which indicates that a majority of clay galleries have been
exfoliated due to the covalent modification of POSS [48]. There are several dark hazy platelet-like
structures on the surface of MMT. The platelets develop due to the presence of POSS which is responsible
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for the replacement of anions in MMT. However, there are a few microscopic inhomogeneities observed
in the clay due to the presence of micron-sized intercalated clay aggregates. This is mainly due the
inhomogeneous packing of POSS cations in POSS-MMT. There exists very strong POSS–POSS attraction
forces allowing the diffusion of POSS molecules into the clay galleries. This has ultimately led to the
exfoliation of MMT with the increase in their interlayer spacing [49]. The results are consistent with
the XRD outputs.Polymers 2020, 12, x FOR PEER REVIEW 7 of 18 
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3.2. Thermal Properties of UP/POSS-MMT Nanocomposites

TGA analysis was executed on UP/POSS-MMT nanocomposites to inspect the thermal stability
of UP under different wt.% POSS-MMT reinforcement, as displayed in Figure 5a, and the results
are expressed in tabular representation in Table 1. Figure 5b exhibits the DTG plots of UP and
UP/POSS-MMT nanocomposites. The thermal degradation temperature of the nanocomposites tends
to enhance compared to pure UP composites, owing to the superior interfacial reinforcement of UP
with POSS-MMT. The initial decomposition observed in UP is due to the vaporization of physically
absorbed water. The elevation in T10 values for UP/POSS-MMT nanocomposites demonstrates the
delay in the onset of thermal degradation at 10% wt. loss. The T10 values of UP/POSS-MMT-3 is
boosted by 35 ◦C, as compared to pure UP. This could be attributed to the presence of POSS-attached
MMT in the polymer matrix which has relatively higher thermal stability [49]. The thermal degradation
between 200 ◦C and 500 ◦C is ascribed to the decomposition of organic functional groups attached to
POSS moiety. However, the presence of POSS has restricted the further degradation of UP at 50% wt.
loss, as implied in Table 1, due to the molecular structure stiffness and high bond energy of Si–O in
POSS [50]. The POSS-appended MMT has impeded the thermal decomposition of UP by posing as a
barrier and confining the breaking of bonds of polymer. The credit infers to the excellent reinforcement
of POSS-MMT within UP and this has led to the improvement in residual weight (%) in nanocomposites
as compared to pure UP.

Table 1. TGA measurement of UP/POSS-MMT nanocomposites.

Sample Name T10 *
(◦C)

T50 *
(◦C)

Residual
(%)

UP 258.4 356.2 6.34
UP/POSS-MMT-0.50 266.6 370.1 6.25
UP/POSS-MMT-1 279.7 371.3 6.40
UP/POSS-MMT-3 284.5 376.4 7.35
UP/POSS-MMT-5 295.4 381.3 6.98

* T10 and T50 represent the temperature during which 10% and 50% mass loss occurs.
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3.3. Morphological Properties of UP/POSS-MMT Nanocomposites

The morphological analysis on the fractured surface of UP and UP/POSS-MMT nanocomposites
was conducted and thoroughly examined using SEM to retrieve the vindication of a conventional
outcome of possible reinforcement by POSS-MMT in UP. The SEM output of UP, as shown in Figure 6a,
displayed a smooth surface with the least amount of cracks conceivably due to no addition of fillers.
The SEM inference of nanocomposites (Figure 6b,c) exhibited several cracks in the fractured surface.
The rationale lies in the generation of convoluted paths during crack propagation, as observed in
Figure 6b,c (red arrows), in the fractured analysis [51]. POSS-MMT reinforcement hinders the crack
propagation and forges the stress load transfer onto the polymer. This concept is coherent with the
mechanical property enhancement of nanocomposites with addition of POSS-MMT. Figure 6b displays
heterogeneous dispersion of POSS-MMT in UP, owing to the improper incorporation of POSS-MMT
at 0.50 wt.%. The homogenous dispersion is visible in UP/POSS-MMT-3 (Figure 6c), providing the
conjecture of immaculate incorporation of POSS-MMT [52]. The influence of POSS and MMT in
intensifying the interfacial interaction of MMT with UP could be deduced from SEM outputs.
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3.4. Mechanical Properties of UP/POSS-MMT Nanocomposites

The tensile strength analysis of the nanocomposites with different wt.% of POSS-MMT in UP are
shown in Figure 7 and Table 2. The stress–strain curves in Figure 7 infer the considerable enhancement
of tensile strength values of nanocomposites with the addition of POSS-MMT. The combined effect of
POSS and MMT plays an important role in local stress concentration from the UP polymer to nanofillers.
The meticulous interaction of POSS-MMT with UP matrix boosts the overall ductility of the polymer.
The large surface area of POSS-MMT generates superior interfacial space for polymer/nanofiller
interaction. The presence of POSS has enhanced the nanoscale dispersion of POSS-MMT into the matrix
due to the strong covalent bonding between POSS and the polymer [53]. The octahedral structure of
POSS represents a strong reinforcement factor in the polymer and acts as a crosslinking agent in UP.
Table 2 interprets the tensile strength enhancement of UP with 3 wt.% POSS-MMT addition by 57%,
as compared to pure UP. The reasoning transpires to be the potent stress load transfer mechanism
from the polymer matrix to the nanofillers. However, the tensile strength of UP/POSS-MMT-5 appears
to decline due to the agglomeration of nanofillers above the critical concentration. The intermittent
dispersion at 5 wt.% POSS-MMT hampers the overall stress transfer mechanism, thereby dwindling
the tensile strength. The elongation at break (%) values also imply a cumulative trend with POSS-MMT
addition [54]. These values demonstrate the combined effect of POSS-MMT in enduring the stress
applied on the polymer and ameliorating the mechanical properties.
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Figure 7. Stress–strain outputs for UP, UP/POSS-MMT nanocomposites.

Table 2. Mechanical and thermo-mechanical analysis of UP/POSS-MMT nanocomposites.

Sample Name Tensile Strength
(MPa)

Elongation at Break
(%)

Storage Modulus at 30 ◦C
(MPa)

Tg *
(◦C)

UP 35.2 ± 0.3 0.92 ± 0.015 1956 72.1
UP/POSS-MMT-0.05 41.9 ± 1.4 1.81 ± 0.001 1980 74.8
UP/POSS-MMT-1 48.6 ± 2.5 1.99 ± 0.023 2152 78.7
UP/POSS-MMT-3 56.8 ± 1.9 1.97 ± 0.030 2393 83.8
UP/POSS-MMT-5 50.2 ± 2.4 2.21 ± 0.100 2538 88.0

* Tg denotes the glass transition temperature.

The thermomechanical properties of UP/POSS-MMT was analyzed using DMA, and their
viscoelastic behavior was explored. The storage modulus values and tan delta plots of the
nanocomposites are obtained from DMA analysis, as displayed in Figure 8 and Table 2. The combined
effect of POSS and MMT manifested to be an excellent reinforcement agent within UP to enhance
the storage modulus at 30 ◦C. The presence of POSS-attached MMT has improved the adhesion
of nanofillers and the polymer matrix at the interface. Figure 8a displays the diminishing storage
modulus of UP and their nanocomposites, with the increase in temperature. This cropped up due to
the softening of polymer chains with temperature elevation. However, the crystalline POSS attached
to MMT has deferred the softening phenomenon. Hence, we observe the augmentation of storage
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modulus values for different temperature intervals for the nanocomposites. The UP nanocomposite
at 5% POSS-MMT addition exhibited 27.3% enhancement of the storage modulus, and this could
be attributed to the superior interaction of the UP with POSS-MMT along with maximum stress
load transfer from nanofillers onto the polymer matrix [55]. The glass temperature value (Tg) of
nanocomposites, derived from tan delta plots (Figure 8b), displays an increasing trend with the
addition of POSS-MMT. The tan delta plots of nanocomposites also tend to maneuver in the right side,
owing to the increase in crosslinking density of UP with POSS-MMT addition. The crystalline POSS has
assisted MMT in accumulating molecular chain mobility within the polymer matrix [56]. This stemmed
the perking up of Tg of nanocomposites, vindicating a strong interaction of the polymer–nanofiller
interface. The unmitigated intercalation of MMT using POSS provided a strong influence on viscoelastic
properties of nanocomposites.Polymers 2020, 12, x FOR PEER REVIEW 11 of 18 
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high temperature (120 ◦C up to 180 ◦C) for the nanocomposites.

3.5. Electrical Properties of UP/POSS-MMT Nanocomposites

The interminable efforts to explore the overall aspects of nanocomposites to drive the polymer
towards commercial application has prompted the electrical property study of UP/POSS-MMT
nanocomposites. Figure 9 and Table 3 display increasing inclination of electrical conductivity values
with different wt.% of POSS-MMT addition.

This rationalized the profound interaction of POSS-MMT with UP. The highly crystalline POSS
plays an important role in exquisite interfacial interaction with polymer [57]. The superior aspect ratio
of POSS-MMT constructs a manifold path for the electrons to flow, provoking a transcendent conducting
network. This led to a boosting of electrical conductivity of UP/POSS-MMT nanocomposites with the
technique of hopping, tunneling, and conduction in UP. The highly insulating UP gets a conductivity
exhilaration with filling of insulating gaps by POSS-MMT [58]. The inset in Figure 9 vindicates this
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logic and has compelled for electrical conductivity enhancement by 108 S/m for 3 wt.% POSS-MMT,
with reference to pure UP. The SEM images (Figure 6c) surmise the conductivity enhancement
concept with homogenous dispersion of POSS-MMT in the matrix. However, UP/POSS-MMT-5
demonstrates a steady decline in conductivity due to the agglomeration of POSS-MMT above the critical
concentration [59]. The irregular dispersion of nanofillers has emanated the reducing of conductivity,
nevertheless impacting the comprehensive conductivity of polymer. The uneven distribution of
POSS-MMT at a higher concentration (5 wt.%) has mustered relentless contacts for the electrons to
flow, thereby maintaining the polymer conductivity.
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Table 3. Electrical conductivity of UP/POSS-MMT nanocomposites.

Sample Name Electrical Conductivity
(S m−1)

UP 2.12 × 10−8
± 0.0003

UP/POSS-MMT-0.50 1.96 × 10−2
± 0.009

UP/POSS-MMT-1 0.7500 ± 0.030
UP/POSS-MMT-3 3.846 ± 0.135
UP/POSS-MMT-5 0.153 ± 0.025

3.6. Shrinkage wt.% Loss of UP/POSS-MMT Nanocomposites

The free radical polymerization initiated during the UP curing process impinge the overall weight
of the polymer, resulting in shrinkage weight loss [60]. The onus on reducing the shrinkage weight
loss relies on nanoclay approaching the polymer matrix and promoting the interfacial interaction.
POSS-modified MMT impregnate the microstructure void within the UP matrix and that results in a
reduction of shrinkage wt.% loss, as shown in Figure 10. However, UP with incorporation of 1% MMT
and 1% POSS abstain from shrinkage weight loss reduction due to an improper interaction with UP.
This explains the vitality of the synergistic effect of POSS-MMT in reducing the shrinkage phenomenon
and furnishing interesting noteworthy outputs [36]. The homogenous dispersion of the nanofillers
has yielded degradation in shrinkage wt. loss % from 11.5 (pure UP) to 8.3 at UP/POSS-MMT-3.
The crystalline structure of POSS aided MMT for a compatible interaction with UP and concocting
interfacial adhesion. The addition of POSS-attached nanoclay has limited the reaction induction
time by posing as an auxiliary accelerator between UP and styrene during the curing process of
UP in order to affect the shrinkage weight loss [39]. The agglomerated diffusion of POSS-MMT
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in UP at 5 wt.% perturbed the shrinkage weight loss with the values increasing from 8.3 to 8.9.
This happens due to improper dispersion of POSS-MMT within the matrix. The impact of POSS-MMT
in developing the polymer prevails low shrinkage weight loss and matures into a potential candidate
for industrial applications.Polymers 2020, 12, x FOR PEER REVIEW 12 of 16 
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4. Conclusions

The effect of POSS-MMT within the UP matrix was explored by fabricating UP/POSS-MMT
nanocomposites via in-situ polymerization. POSS-MMT substantiated to be an excellent reinforcement
in UP, owing to their superior aspect ratio and meticulous polymer interfacial interaction. This critical
aspect steered towards inclusive property enhancement of UP. The thermal stability of UP elevated
by 35 ◦C with 5 wt.% POSS-MMT addition. The combination of POSS and MMT posed as a barrier
withstanding the thermal degradation of UP. The tensile strength of UP likewise demonstrated 54.7%
amelioration with 3 wt.% POSS-MMT addition. This could be attributed to the admirable potential of
POSS-MMT to achieve maximum stress load transfer to the polymer matrix. The electrical conductivity
of UP/POSS-MMT also displayed 108 S/m improvement due to the tendency of POSS-MMT to act
as a conducting network in UP and overcoming the insulating characteristics of UP. The influence
of POSS-MMT had an adverse effect on the volumetric shrinkage during the curing process of
UP. The superb reinforcement characteristics of POSS-MMT in UP reduced the overall volumetric
shrinkage of the polymer. Such high performance nanofillers unfurl the path of exploring the versatility
of UP-based nanocomposites. The future scope of adapting the fabricated nanocomposites into
fiber-reinforced plastics is imminent and this could explore the industrial application aspects of UP.
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