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Abstract

Drug response prediction is a critical step for personalized treatment of cancer patients and

ultimately leads to precision medicine. A lot of machine-learning based methods have been

proposed to predict drug response from different types of genomic data. However, currently

available methods could only give a “point” prediction of drug response value but fail to pro-

vide the reliability and distribution of the prediction, which are of equal interest in clinical

practice. In this paper, we proposed a method based on quantile regression forest and

applied it to the CCLE dataset. Through the out-of-bag validation, our method achieved

much higher prediction accuracy of drug response than other available tools. The assess-

ment of prediction reliability by prediction intervals and its significance in personalized medi-

cine were illustrated by several examples. Functional analysis of selected drug response

associated genes showed that the proposed method achieves more biologically plausible

results.

Introduction

Identifying individual therapy for cancer patients to maximize drug efficacy is a fundamental

and key step towards precision medicine. In theory, the efficacy of a drug depends on a variety

of factors including molecular, clinical and environmental features of a patient sample. So,

given a set of samples with drug response data, it is feasible to design machine-learning meth-

ods to predict drug response values from different types of genetic and clinical features.

One of the earliest attempts in this task could trace back to the NCI60 data set, which con-

sists of gene expression profiles of 60 human cancer cell lines with different tissue origin and

cytotoxicity profiles of>100,000 chemical compounds [1]. Ever since then, a number of meth-

ods have been proposed to predict drug response based on gene expression profiles. For exam-

ple, Riddick et al. built an ensemble regression model using Random Forest [2]; Lee et al.
developed a co-expression extrapolation algorithm by comparing the differences of gene

expression between sensitive and resistant cell lines [3]. However, one important drawback of

the NCI60 dataset is its small sample size, which potentially leads to many false positive
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associations between gene expression and drug response. With the advent of high-throughput

techniques, scientists are able to monitor drug responses and genomic features of large num-

ber of samples in parallel with affordable cost. For example, two consortiums, the Cancer Cell

Line Encyclopedia (CCLE) [4] and Cancer Genome Project (CGP) [5], collectively analyzed

around 1,000 clinically-relevant human cell lines and their pharmacological profiles for 149

cancer drugs. These two studies also included the gene expression profiles and mutation status

for each cell line, and applied a sparse linear regression model, i.e., the elastic net, to select

expression and mutation signatures that are predictive of drug responses. Based on the same

dataset, Geeleher et al. applied another sparse regression model, the Ridge regression, to pre-

dict drug response for breast cancer cell lines using baseline gene expression data [6]. Fang

et al. applied the iterative sure independence screening (ISIS) integrated with lasso to predict

the activity area of 24 anti-cancer drugs [7]. Wan and Pal utilized the top features in different

genomic characterizations via an integrated random forest model [8].

All the aforementioned methods focused on point prediction via the conditional mean

(expectation) of drug responses, with little discussion on their prediction intervals (PIs). For

example, mean squared error (MSE) and the correlation between predicted and observed values

can be used to quantify the accuracy of point prediction, however, they give little information

on the possible fluctuation of the drug response for each sample. In contrast, prediction interval

not only gives a range where the drug response locates in with high probability but also provides

the prediction reliability by its length simultaneously. At the same confidence level, the shorter

interval indicates more reliable prediction. So in precision medicine, besides the extensively

studied point prediction, prediction interval for drug response is also helpful [9].

Under the normality assumption on the drug response or random error, it is not difficult to

estimate the variance of predicted values and further derive prediction intervals by traditional

regressions. However, as suggested by the boxplots and Q-Q plots in Fig 1, activity areas (drug

responses) for most drugs in the CCLE dataset do not follow normal distribution. To solve this

problem, we can resort to quantile regression [10] which has been studied extensively in many

fields including finance, sociology, immunology, etc. [11–15]. Quantile regression does not

require to assume a specified distribution for drug response. Moreover, different from least

squares which only fit one curve (the conditional mean of drug response given genomic fea-

tures [4,7]), quantile regression can fit a bunch of curves (conditional quantiles) thus generate

a more comprehensive characterization of drug response. Consequently, prediction intervals

for drug response can be constructed by the predicted quantiles.

In this paper, we proposed a three-step quantile regression forest (QRF) approach for pre-

dicting the drug responses and applied it into the CCLE dataset. To capture potentially impor-

tant features and reduce noise, we firstly implemented primary feature screening and then

trained a random forest for variable selection. Consequently, we obtained point predictions

based on the mean and median of predicted drug response by QRFs. At the same time, we con-

structed prediction intervals to assess the prediction reliability. To further compare drug

responses when point predictions are the same, we also tested the homogeneity of variances

based on the Levene test, and gave two examples to state the significance of reliability predic-

tion. Finally, we annotated the selected drug response associated genes by David tools (https://

david.ncifcrf.gov/summary.jsp) and showed more biologically meaningful results.

Materials and methods

Data resources

In this paper, we used the cancer genomic and drug response data from the Cancer Cell Line

Encyclopedia (CCLE). The CCLE dataset (http://www.broadinstitute.org/ccle) consists of
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large-scale genomics data, including expression profile of 20089 genes, mutation status of 1667

genes, copy number variation of 16045 genes for 947 human cancer cell lines, and 8-point

dose-response curves for 24 chemical drugs across 479 cell lines. Drug sensitivities to a

given cell line are evaluated by IC50, EC50, and activity area (the area over dose-response

curves). In this study, activity area is used as a drug sensitivity measurement due to its ability

to capture the efficacy and potency of drug sensitivity simultaneously compared to IC50 and

EC50.

Fig 1. Boxplots and normal Q-Q plots of the activity areas in the CCLE dataset. Panel (A) shows the boxplots of activity areas for 24 drugs. Panel

(B) shows the normal Q-Q plots of activity area for two example drugs Lapatinib and Paclitaxel.

https://doi.org/10.1371/journal.pone.0205155.g001
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Method overview

QRFs for 24 chemical compounds were trained based on three types of genomic features,

including gene expressions, mutation status and copy number variation. Motivated by Riddick

et al. [2], we designed a three-step quantile regression forest method as follows (Fig 2). In the

first stage, some important genomic features were filtered through the correlation test. Then, a

random forest was trained on the filtered features and variables are ranked and furtherly

selected based on their importance. Finally, QRF is built using selected features.

Fig 2. Workflow of the three-step quantile regression forest method. All features were screened by their Pearson

correlations with drug response. Then a random forest was trained to rank selected features by their importance. The

variables with the importance of twice standard deviation greater than the mean of importance were selected for the

final quantile regression forest.

https://doi.org/10.1371/journal.pone.0205155.g002
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Feature screening by Pearson correlation coefficient

Due to the ultra-high dimension of genomic features in CCLE dataset, building QRFs directly

from all available features is difficult and time-consuming. So a screening method was first

applied to filter the potentially important features [16]. We calculated the Pearson correlation

coefficients (PCCs) of genomic features with drug responses and ranked the importance of fea-

tures by p-values of two-sided t-tests for PCCs. Features with p-value under 0.05 were then

selected. For each drug in CCLE, the above feature screening process ranked the marginal

importance of genomic features and selected around 2000 genes.

Variable selection by random forests

We next trained a random forest on the recruited genomic features and further selected a

small subset of variables based on the generated variable importance. In detail, each tree in the

random forest is a bootstrap sample from the original data, and some observations are not in

the bootstrap sample, called the out-of-bag (OOB) cases. For each tree, the prediction perfor-

mance (measure by residual sum of squares) on the OOB proportion of data is recorded. The

same procedure is done after permuting the values of each variable. Decrease of the prediction

performance after permutation averaged over all the trees is taken as a measurement of vari-

able importance. In this stage, we trained 25000 trees for the random forest. The variables were

selected if their importance values are 2 � SD above the mean of all variable importance values.

Quantile regression forests

We first denote the τ-th quantile of Y given X = x by qτ(X|Y = x). For X = x, the conditional dis-

tribution function F(y|X = x) is the probability that Y is smaller than or equal to y 2 R, i.e.,

FðyjX ¼ xÞ ¼ PðY � yjX ¼ xÞ:

For a continuous distribution, the τ-th quantile qτ(X|Y = x) is defined as “y” such that F(y|X =

x) = τ. While this definition cannot be extended to all cases, especially to discrete distributions,

although the drug response (activity area) in this paper is continuous. In general, it is accepted

that qτ(Y|X = x) = inf{y:F(y|X = x)� τ}.

Quantile regression forests (QRFs) [17] estimate the conditional quantiles of response (Y)

given the features (X) by building random forests. To build a QRF, a set of T un-pruned regres-

sion trees are generated based on bootstrap sampling from the original data. In this paper, we

used T = 15000. For each node of the regression trees, a random set of m features selected from

the whole set of M features is used for fitting a regression tree based on the bootstrap samples.

In this paper, m was taken as M/3 as suggested by Hastie et al. [18]. In the tree generating pro-

cess, a node with less than 10 training samples is not portioned any more [17]. Then the condi-

tional distribution is estimated by the weighted distribution of the observed response variables.

More specifically, we consider the conditional distribution of Y given X = x based on the tree C.

Suppose the leaf which contains x is denoted by Ln(x,C), then the weight ωi(x,C) is given by

oi x;Cð Þ ¼
IðXi 2 Lnðx;CÞÞ
fj : Xj 2 Lnðx;CÞg

:

Let the T trees of the random forests be C1.. . .,CT, and ωi(x) be the average of ωi(x,C) over all

the trees. Then

oi xð Þ ¼
1

T

XT

t¼1

oiðx;CtÞ:
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The estimated F̂ðyjX ¼ xÞ is then given by

F̂ðyjX ¼ xÞ ¼
Pn

i¼1
oiðxÞIðYi � yÞ: ð1Þ

Then τ-th quantile qτ(x) is predicted by

q̂tðYjX ¼ xÞ ¼ inf fy : F̂ðyjX ¼ xÞ � tg:

On the other hand, based on the generated trees in QRF, if we make a small change to the right

side of formula (1), i.e.,
Pn

i¼1
oiðxÞYi, then the mean (expectation) of Y given X = x is predicted.

So besides the conditional quantiles, QRFs can easily predict the conditional mean of response

Y.

In this study, we implemented QRFs by R package “quantregForest” (version 0.2–3) and

assessed the variable importance by permutation used in the original random forest algorithm.

Prediction interval construction

The prediction intervals are constructed from the conditional quantiles of drug response pre-

dicted by QRFs. In detail, the (1 − α) × 100% prediction interval for drug response Y given

genomic features X (a p-dimensional vector) is built by I(x) = [qα/2(Y|X = x), q1−α/2(Y|X = x)].

For example, the 95% prediction interval for drug response is estimated by

IðxÞ ¼ ½q0:025ðYjX ¼ xÞ; q0:975ðYjX ¼ xÞ�:

It means that for a given x, drug response locates in the interval I(x) with high probability. The

length of the prediction interval fluctuates with X.

Performance evaluation of prediction intervals

For each observation, we can obtain OOB prediction using the trees not containing this obser-

vation. OOB prediction is virtually equivalent to the prediction by cross validation when the

number of trees is large [19]. In this study, we generated 15000 trees in QRFs and evaluated

the prediction performance by QRFs using OOB prediction, avoiding the intensive computa-

tion of 10-fold cross validation [4]. For the point predictions of drug responses by QRFs, the

Pearson correlation coefficients between the observed and predicted (OOB) values were used

to quantify the accuracy. But the true conditional quantiles of drug responses are unobserv-

able. So as suggested by Wang et al. [20], the prediction error of the τ-th conditional quantile

was assessed based on the average of the value

rtðY � q̂tðYjX ¼ xÞÞ

over all observations, where ρτ(r) = τr − rI(r < 0) is called the quantile loss function, for 0< τ
< 1[10,20].

Homogeneity test of variances for drug responses

Given the prediction intervals, we next consider prioritizing patients with very close point pre-

dictions of drug response to the same drug. As aforementioned, a shorter prediction interval

indicates the higher stability of prediction at the same confidence level. Thus, the length of pre-

diction interval reflects the prediction reliability. In this circumstance, patients with longer

prediction intervals need further consideration and expect other medical plans. The strategy is

intuitive but not statistically rigorous, so we used the homogeneity test of variances as a com-

plement. Note that for each drug, we have only one response value for a specific patient (cell

line), thus do not have enough replicates to carry out the homogeneity test directly. However,
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taking advantage of our random forest model, we have estimated the quantiles of drug re-

sponse qτ(Y|X = x) for each cell line by the quantile regression forest. In detail, for any τ
between 0 and 1, we have obtained the estimate of qτ(Y|X = x). The quantile function of drug

response equals to the inverse of cumulative distribution function since drug response is con-

tinuously distributed. This inspires us to use the inverse transform sampling to get the samples

of drug responses [21]. In detail, for patient with geometric features X = x, we firstly generate

different τ0s denoted as {τ1,..,τk} from the standard uniform distribution U[0,1]. Then the cor-

responding fqt1
ðYjX ¼ xÞ; . . . qtk

ðYjX ¼ xÞg was taken as the random samples of drug

responses for the considered patient. However, qτ(Y|X = x) is unknown, we thus treat

fq̂t1
ðY jX ¼ xÞ; . . . q̂tk

ðYjX ¼ xÞg as the unobserved fqt1
ðYjX ¼ xÞ; . . . ; qtk

ðYjX ¼ xÞg as

the random samples and carry out the rest analyses.

For simplicity, we denote q̂tðY jX ¼ xÞ as Y� in the remaining content. Assume that

patients 1 and 2 have almost the same point predictions for a certain drug. By the inverse

transform sampling, after randomly sampling τij0s from U[0,1] (i = 1,2,j = 1,. . .,k), we get

fY�
11
;Y�

11
; . . . . . . ;Y�

1kg and fY�
21
;Y�

21
; . . . . . . ;Y�

2kg for patients 1 and 2, respectively. Then we

consider the following hypothesis problem

H0 : s2

1
¼ s2

2
v:s: H1 : s2

1
6¼ s2

2
:

Here s2
1

and s2
2

are the variances of drug responses for patients 1 and 2. We then use the

Levene test [22], which is robust to the non-normal distributed samples, to test the difference

of variances. Note that Levene test is not only restricted to two-group comparison, so we can

also discuss the multi-patient test problem in the future. Similarly, the homogeneity test can

also be used to compare different drugs for the same patient. In this paper, the significance

level was set to 0.05. We tried different values for k, and did not observe significant changes at

different values of k. So we finally took k as 500.

Results

Quantile regression forests improve the accuracy of drug response

prediction

We applied the three-step quantile regression forest (QRF) method to the CCLE dataset. Both

the predicted mean and median of drug responses are taken as the point predictions for 24

drugs. The prediction accuracy quantified by the Pearson correlation coefficients of observed

and predicted values, was reported in Table 1. Comparisons of QRFs with other methods

including elastic net regression (ENR) [4], iterative sure independence screening (ISIS) [7]

and weight-based integrated random forest with 20000 trees for CCLE data set (CRF-20000)

[8] are shown in Fig 3A (also reported in S1 Table). We can observe that both the mean and

median predictions by QRFs are much better than other approaches for most drugs. For

QRFs, the accuracy of median prediction is slightly lower than mean prediction. Scatter plots

of observed and predicted drug responses by QRFs (for mean) of 4 example drugs were drawn

in Fig 3B. We conclude that the good correlations are fairly reasonable and not overestimated

by a few outliers (Fig 3B).

Quantile regression forests construct prediction intervals

We next predicted the quantiles of drug response for the 24 drugs at different quantile levels,

including τ = 0.025,0.1,0.25,0.5,0.75,0.9,0.975). S2 Table reported the prediction errors for dif-

ferent quantiles of drug response. The column labeled by “MPE” in S2 Table denotes the mean

of prediction errors based on the quantile check loss function with the standard deviation

Predicting drug response and assessing prediction reliability
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Table 1. The Pearson correlation coefficients of observed and predicted drug responses (activity area) by QRFs.

Drug mean median Drug mean median

17−AAG 0.6430 0.6255 PD−0332991 0.6263 0.6096

AEW541 0.5833 0.5637 PF2341066 0.6300 0.5455

AZD0530 0.5427 0.4818 PHA−665752 0.5509 0.5191

AZD6244 0.6697 0.6687 PLX4720 0.6261 0.5956

Erlotinib 0.6276 0.611 Paclitaxel 0.6568 0.6343

Irinotecan 0.7512 0.7478 Panobinostat 0.6721 0.6648

L−685458 0.6852 0.6688 RAF265 0.6366 0.6215

LBW242 0.5319 0.4279 Sorafenib 0.5960 0.6089

Lapatinib 0.6195 0.5947 TAE684 0.6059 0.5862

Nilotinib 0.7001 0.5943 TKI258 0.5826 0.564

Nutlin−3 0.5350 0.485 Topotecan 0.6889 0.6788

PD−0325901 0.7001 0.6951 ZD−6474 0.5900 0.5679

“mean” and “median” respectively represent the mean and median predictions of drug response by QRFs.

https://doi.org/10.1371/journal.pone.0205155.t001

Fig 3. Prediction performance of quantile regression forests for CCLE data set. (A) Bar chart of Pearson correlation coefficients of drug responses and predicted

values by QRFs, ENR, ISIS, and CRF-20000. QRFs (mean): (conditional) mean prediction of drug response given genomic features using QRFs; QRFs (median): median

prediction of drug response using QRFs. (B) Scatter plots of observed and predicted drug responses (activity area) for four drugs in CCLE using QRFs.

https://doi.org/10.1371/journal.pone.0205155.g003
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reported in column “SD”. The prediction errors in S2 Table are very small, indicating good

prediction performances for different quantiles. The detailed predicted quantiles of drug

responses for 24 chemical compounds were listed in S3 Table. Based on the predicted quan-

tiles, prediction intervals of drug response can be constructed (see details in Methods). Table 2

shows the average length and coverage probability of 95% and 80% prediction intervals. We

find that most of the coverage probabilities are very close to 95% or 80%. This indicates the

constructed prediction intervals are very reliable.

Prediction reliability assessed by prediction intervals provides more

information for precision medicine

In contrast to point prediction with a single value and no information about the possible fluc-

tuations of drug response, prediction interval gives a range containing the drug response with

a high probability and assess the reliability by its length. At a certain given confidence level,

shorter prediction interval indicates less fluctuations of drug response and hence means more

reliable drug. Thus a drug with shorter prediction interval may possibly beat another one with

longer prediction interval, especially when the point predictions are very close to each other.

Also, for the same drug, it is more appropriate to distinguish the candidate patients with close

point predictions but quite different prediction intervals. Since the patients with longer

Table 2. Information of the 95% and 80% prediction intervals of drug responses for 24 drugs.

95% PI 80% PI

Drug AveL CP(%) AveL CP(%)

17-AAG 3.6591 96.2472 2.4550 0.8256

AEW541 1.9829 95.8057 1.8736 0.8102

AZD0530 2.4721 94.2731 1.7946 0.8260

AZD6244 3.3958 94.9227 1.9058 0.8124

Erlotinib 1.7705 93.1567 1.7617 0.8102

Irinotecan 3.3840 96.4413 1.8078 0.8221

L-685458 1.2236 81.6327 1.6639 0.7029

LBW242 1.9626 94.7020 1.5935 0.7837

Lapatinib 1.8360 92.0705 1.5459 0.7996

Nilotinib 1.8769 93.3333 1.5041 0.7920

Nutlin.3 1.4540 93.6123 1.4501 0.8106

PD-0325901 4.2187 94.9339 1.5704 0.8128

PD-0332991 1.7023 91.5167 1.5412 0.8021

PF2341066 1.7343 95.1542 1.5056 0.7753

PHA-665752 1.6059 89.8455 1.4727 0.8079

PLX4720 1.4942 90.3803 1.4398 0.7964

Paclitaxel 4.1470 95.3642 1.5183 0.8146

Panobinostat 2.3412 94.6667 1.5209 0.8022

RAF265 2.5618 95.8838 1.5291 0.8208

Sorafenib 1.4507 95.1435 1.5004 0.7991

TAE684 2.7567 95.5947 1.5141 0.8040

TKI258 1.8532 94.2731 1.5003 0.8194

Topotecan 3.8207 96.0352 1.5456 0.8150

ZD-6474 2.3895 95.5257 1.5464 0.8210

"95% PI" and "80% PI" denote the 95% and 80% prediction intervals; "AveL" stands for the average length of prediction intervals; "CP" denotes the coverage probability.

https://doi.org/10.1371/journal.pone.0205155.t002
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prediction intervals are inclined to have more instable curative effect, it should be better for

them to try other drugs. We want to point out that evaluation of drug efficacy based on the

length of prediction intervals is intuitive but not statistically strict. In this paper we also pro-

posed a homogeneity test of variances for drug responses to provide more statistical evidences.

Besides the reliability inflected by the length of prediction interval, another layer of reliabil-

ity lies in the upper and lower ends (prediction limits) of the interval. For example, the upper

end of the 95% prediction interval is the 97.5%-th quantile prediction of drug response, which

means that the drug response may exceed the upper end with a probability around 2.5%; simi-

larly, the lower end is the 2.5%-th quantile prediction, which means the drug response can out-

perform the lower end with a probability around 97.5%. Therefore, this layer of reliability can

offer guidelines to different orientations of medical treatments. To be specific, the drug with

the highest upper prediction limit is more likely to give an aggressive treatment; while the drug

with the highest lower prediction limit may be a good choice as a conservative plan.

So, in summary, prediction reliability assessed by prediction intervals can provide more

information for precision medicine. In order to explain this more clearly, we then give two

examples from CCLE dataset as follows.

Example A. In this example, we explore the potential treatment choices, Paclitaxel and

Panobinostat, for the patient “CAPAN2” and “C2BBE1” due to their high predicted drug

response. As is shown in Fig 4A, both drugs show very small difference in terms of the point

predictions. But actually, Panobinostat shows a shorter prediction interval compared to Pacli-

taxel and the homogeneity test of variances for these two drugs brings the p-value less than

2.2 × 10−16. So Panobinostat is preferred due to its more stable curative effect. Similarly, in Fig

4B for patient “C2BBE1”, Paclitaxel is the better choice due to its highest mean prediction of

drug response if the fluctuations of drug response are neglected. But Panobinostat, which has

the second highest point prediction, gives much shorter 95% prediction intervals than Pacli-

taxel. Moreover, the p-value of homogeneity test of variances for Paclitaxel and Panobinostat

is much less than 0.001. Thus, Panobinostat should be a better decision if the stability of treat-

ment effect is taken to the consideration. Furthermore, Paclitaxel possesses a higher predicted

upper limit and lower limit compared to Panobinostat for both patients (Fig 4A and 4B). Thus,

the better drugs may be different for different purposes. Generally speaking, Panobinostat is

applicable for a conservative treatment, while Paclitaxel is more risky and aggressive.

By this example, we concluded that prediction intervals provide more suggestions for thera-

peutic strategies. Prediction intervals can help to make more sensible decisions based on the

expectation of the curation.

Example B. In this example, we discuss the response of different patients treated with the

same drug. As shown in Fig 4C, due to the closer mean predictions of drug responses, four

patients can be classified together if prediction intervals are not considered. However, if pre-

diction intervals are taken into account, patients “OPM2” and “MHHES1” have relatively lon-

ger prediction intervals than “CMK86” and “P31FUJ”. To further validate this result, we took

the homogeneity tests of variances for the drug responses of these patients. The difference

between “CMK86” and “P31FUJ” is not significant (p-value = 0.8717). But if “OPM2” or

“MHHES1” is incorporated, the p-value of homogeneity test becomes less than 0.001. Both

prediction intervals and homogeneity tests indicate the treatment effects for “OPM2” and

“MHHES1” are highly variable. So it is better to consider other drugs for patients “OPM2” and

“MHHES1”, and the four patients are then distinguished. A similar example was shown in Fig

4D where the 95% confidence interval of patient “LP1” is the longest. The homogeneity test of

variances for the other three patients is not significant with p-value 0.7686, while the test shows

high significance with the p-value 2.569 × 10−13 when all the four patients were incorporated.

This example clarifies that the patients who are grouped together by point predictions may be
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possibly distinguished when considering prediction reliability of drug response. So we con-

clude that prediction intervals are useful to determine a better personalized treatment.

Functional annotations of genes used by quantile regression forests

The genes used by quantile regression forests (QRFs) for 24 drugs were listed in S4 Table,

ranked by their importance for predicting the conditional mean of drug response. We drew

the bar plots of the importance of the top 30 gene signatures in Fig 5A and 5B for 17-AAG and

Fig 4. The 95% prediction intervals and mean predictions by quantile regression forests. Red triangular indicates the point (or

mean) prediction of drug response, two red dots indicates the upper and lower boundaries of 95% prediction interval. (A) and (B) show

the comparisons of 24 drugs for cell lines “CAPAN2” and “C2BBE1”, respectively. (C) and (D) are the comparisons of four different cell

lines to drugs “Irinotecan” and “Topotecan”, respectively.

https://doi.org/10.1371/journal.pone.0205155.g004
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AZD6244, respectively. In S4 Table, many genes used by QRFs are pointed out to be related

with cancers in literatures. For example, the inhibition activity of 17-AAG can be increased by

the expression of NQO1[23]. Also, the mutation of BRAF is predicted as a drug efficacy marker

for some MEK inhibitors, including AZD6244, PD-0325901 and PLX4720 [24]. These genes

were also detected by elastic net regression and iterative sure independence screening [4,7].

Besides the aforementioned gene signatures, many other drug response related genes which

were not selected by Barretina et al. 2012 [4] or Fang et al. 2015 [7] were also detected by our

study. For example, genes OGDHL, NFKB1, LOC401317, and FGF18 are among the top 10

genes of drug 17-AAG. It has been pointed out that the re- expression of OGDHL can induce

apoptosis in cervical cancer cells [25]. Also, people have detected a significant alteration in

expression of NFKB1 in adenocystic carcinomas, which suggests that NFKB1 might be served

as a target for innovative diagnostic and treatment programs [26]. In addition, LOC401317

Fig 5. Variable importance and word clouds of functional annotations for the genes used by QRFs. Panels (A) and (B) are the bar

charts of variable importance for drugs 17-AAG and AZD6244. Word clouds of functional annotations of the genes for 24 drugs are in

panel (C) (all genes) and panel (D) (ensemble of top 30 genes of each drug), where font size of each annotation indicates its enrichment

score.

https://doi.org/10.1371/journal.pone.0205155.g005
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could induce apoptosis in the nasopharyngeal carcinoma cell line HNE2 [27], and FGF18
(Fibroblast growth factor 18) is a prognostic and therapeutic biomarker for ovarian cancer

[28].

The drug response related genes of all the 24 drugs were assembled and annotated by David

tools (https://david.ncifcrf.gov/summary.jsp). Word cloud plots of functional annotations

(FDR<0.1) were drawn in Fig 5C and 5D. Fig 5C demonstrates the functional annotations of

all the genes, and Fig 5D refers to the top 30 genes of 24 drugs. We can see that many annota-

tions have close relationship with cancers. For example, “SH2 (Src Homology 2) domain” is

the most significant term in both Fig 5C and 5D. “SH2 domain”, a structurally conserved pro-

tein domain, is important to the treatment of breast cancer [29], the EGFR inhibitor Erlotinib,

and the SRC/multi-kinase inhibitor Dasatinib of lung cancer [30]. Moreover, “tyrosine” and

“protein kinase” appear frequently in Fig 5C, such as in the terms “tyrosine-protein kinase, cat-

alytic domain”, “protein tyrosine kinase activity”, “serine-threonine/tyrosine-protein kinase

catalytic domain” and “receptor signaling protein tyrosine kinase activity” etc. It has been dis-

covered that receptor tyrosine kinases (RTK), play key roles in growth, metabolism, adhesion,

motility, death and oncogenesis [31]. Also, protein kinases are critical in many cellular pro-

cesses, including division, proliferation, apoptosis, and differentiation [32]. In addition, Src-

family of protein-tyrosine kinases are also related with oncogenesis, proliferation, and survival

[33]. In Fig 5D, besides the “SH2 domain” mentioned above, “BRCT domain” (after the C_ter-

minal domain of a breast cancer susceptibility protein) and “Proteoglycans in cancer” are also

top terms. These results show that the drug response related genes involve in various biological

activities of carcinomas.

Discussion and conclusion

In this paper, we proposed a three-step quantile regression forest (QRF) method to give point

and interval predictions of drug response. The method was applied to the CCLE dataset,

modeling on the genomic features including baseline gene expressions, mutation status and

copy number variations. The contribution of our method is two-fold. First, we gave a point

estimation of drug sensitivity prediction based on random forest model. Second, we gave the

prediction confident interval based on the quantile regression forest, which is helpful when

point estimations of two drugs to a patient are very similar. By a series of examples, we state

that the prediction intervals can help to choose different therapeutic regimens from different

orientations, such as the preference of the stability of medical effect, or a radical plan or a con-

servative curation. Such kind of information could further help researchers to determine the

best clinical strategy for a specific patient in some circumstance.

In order to evaluate the difference between two prediction intervals, we also proposed a het-

erogeneity test of variance among patients and differentiating them through the lengths of pre-

diction intervals supplemented by the homogeneity test. By constructing prediction intervals

complemented with homogeneity test of variances, our paper brings a new perspective to

acknowledge and adopt the prediction reliability which is important but usually ignored in

precision medicine. Hereby we also want to point out that the proposed quantile regression

forest based method is applicable for prediction problems with high dimensional covariates in

extensive scientific and social fields, not limited to drug response prediction.

Before building the quantile regression forest, we used Pearson correlation coefficient to

screen all possible features. Actually, besides Pearson correlation coefficient, there are many

other measures that could be used to rank the marginal importance of features to drug

response, such as generalized correlation [34], rank correlation [35], distance correlation [36],

etc. For review of this field, please refer to Liu et al. [37]. We chose the Pearson correlation for
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feature screening mainly due to its straightforward implementation and popularity in drug

response prediction [4, 5].

There are still several shortcomings that should be further explored in the future. First, the

QRFs improved the prediction accuracy by assembling a bunch of regression trees but lost the

interpretability as the price. In other words, we cannot give a clear model with explicit regres-

sion coefficients by this study. A better predictor of drug response with good interpretability

will be our goal in the future. Second, in this paper, we compared the drug response reliability

mainly by statistical inferences, including the prediction intervals and the homogeneity test of

variances but without real experiments for further validations. The experimental validations

need to treat a series of cell lines (or patients) for multiple times simultaneously by a same set

of drugs. Due to our present research conditions, we cannot carry out these experiments. We

hope our results could motivate other experimental researchers to conduct such kind of exper-

iments in the future.
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