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Almost every biomedical systems analysis requires early decisions regarding the choice of
the most suitable representations to be used. De facto the most prevalent choice is a
system of ordinary differential equations (ODEs). This framework is very popular because it
is flexible and fairly easy to use. It is also supported by an enormous array of stand-alone
programs for analysis, including many distinct numerical solvers that are implemented in
the main programming languages. Having selected ODEs, the modeler must then choose
a mathematical format for the equations. This selection is not trivial as nearly unlimited
options exist and there is seldom objective guidance. The typical choices include ad hoc
representations, default models like mass-action or Lotka-Volterra equations, and generic
approximations. Within the realm of approximations, linear models are typically successful
for analyses of engineered systems, but they are not as appropriate for biomedical
phenomena, which often display nonlinear features such as saturation, threshold
effects or limit cycle oscillations, and possibly even chaos. Power-law approximations
are simple but overcome these limitations. They are the key ingredient of Biochemical
Systems Theory (BST), which uses ODEs exclusively containing power-law
representations for all processes within a model. BST models cover a vast repertoire
of nonlinear responses and, at the same time, have structural properties that are
advantageous for a wide range of analyses. Nonetheless, as all ODE models, the BST
approach has limitations. In particular, it is not always straightforward to account for
genuine discreteness, time delays, and stochastic processes. As a new option, we
therefore propose here an alternative to BST in the form of discrete Biochemical
Systems Theory (dBST). dBST models have the same generality and practicality as
their BST-ODE counterparts, but they are readily implemented even in situations where
ODEs struggle. As a case study, we illustrate dBST applied to the dynamics of the aryl
hydrocarbon receptor (AhR), a signal transduction system that simultaneously involves
time delays and stochasticity.

Keywords: canonical model, delay, discrete event, generalized mass action system, power-law approximation,
system, stochastic event, aryl hydrocarbon receptor

INTRODUCTION

Arguably the greatest challenge of systems modeling in the biomedical sciences is the choice of
optimal process representations. Often the true magnitude of this challenge is ignored and the
modeler either constructs an ad hocmodel or chooses a default, such as a Lotka-Volterra system for
describing the interactions among competing populations (Volterra, 1926; Lotka, 1956; May, 1973)
or a mass action formulation or some variation of the Michaelis-Menten rate law for enzyme
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catalyzed processes (Michaelis and Menten, 1913; Voit et al.,
2015). These default representations may be further extended or
refined with the inclusion of environmental variables in a
population model (Stein et al., 2013; Dam et al., 2020) or the
inclusion of modulating effects, such as the regulation of a
biochemical reaction through competitive or allosteric
inhibition (Cornish-Bowden, 2012). Because there are no iron-
clad rules for choosing a model, researchers often arrive at rather
different formulations even for the same phenomenon. An
illustrative example is the phosphofructokinase reaction in
glycolysis, for which numerous rate functions of drastically
different complexity have been proposed (Voit, 2017a). The
choice of optimal representations becomes even more
challenging at the intersections of typical biological domains,
such as the combination of genetics, metabolism, and organismal
physiology, because the default models of the various
subdisciplines are different, thereby creating the need of
multiscale models that operate at different temporal, spatial
and organizational scales.

One could argue that biological processes must obey the laws
of physics and that, therefore, optimal—or at least
adequate—representations are prescribed. While this is true in
a fundamental sense, most biological processes are so convoluted
that exact physical representations of all contributing aspects
become infeasible (Voit, 2008). As an example, consider the
generation of two daughter cells from a bacterial mother cell.
At a high level, one bacterium becomes two, two become four,
and so on, and it is easy to formulate an exponential function that
describes the progression well. However, if it is necessary to
account for more details, for instance, in order to understand a
mutant with aberrant behavior, it becomes clear that the cell
division process is immensely complicated (Schafer, 1998;
Carlton et al., 2020). It is multifaceted and involves so many
different aspects at the molecular level that it is hardly possible to
formulate the governing processes, proceeding in time and space,
with elementary functions that are directly derived from the first
principles of physics.

A second aspect of the challenge of biomedical systems
modeling is the fact that it is usually difficult to capture the
dynamics of a molecular or cellular component directly. Even the
simple Michaelis-Menten rate law of enzyme kinetics does not
prescribe the changing concentration of a substrate or product as
the reaction progresses, but expresses the speed of the reaction as
a function of the substrate concentration. By contrast, it is often
feasible to characterize all influences that lead to an increase or
decrease in a system component over time (Voit, 2020). Indeed,
the literature contains uncounted articles about “the effect of . . .
on . . .,” which explicitly or implicitly describe how a target
variable changes in response to some input. Thus, this view
focuses on the change in a component, rather than the state of
this component, and this change is driven by the totality of all
contributing factors. A natural mathematical formulation of this
situation is a system of ordinary differential equations (ODEs)
which, after all, equate the instantaneous change in a variable to
all processes affecting this variable. Consequently, the
biomathematical literature contains an enormous body of
work using ODEs to analyze biological systems [for

introductory texts, see (Keshet, 2005; Klipp et al., 2016; Voit,
2017b)]. Even so, it must be kept in mind that ODEs are
approximations of natural processes, which are often
genuinely discrete (see Supplementary Data S1, S2).

While ODEs have become the standard modeling default, the
conundrum of determining the best possible model structure
persists. Two generic solutions are 1) the use of ad hoc
representations that are often chosen simply for convenience
and match the natural processes sufficiently well and 2) suitable,
unbiased approximations. Among the latter, linear systems are
most straightforward but are often at odds with the genuine
nonlinearities of biomedical systems. A prominent alternative is
Biochemical Systems Theory (BST) (Savageau, 1976; Voit, 2000;
Torres and Voit, 2002; Voit, 2013), which uses power-law
representations for all processes, thereby creating highly
structured nonlinear models in immutable, predefined formats
(Supplementary Data S1).

Independent of what representations are chosen to design
ODE models, the ODE format in itself faces a number of
challenges. Of particular prominence among these are time
delays and stochastic effects (Supplementary Data S2).
Sometimes, these can be addressed with sophisticated
numerical ODE solvers, but the formulation and
implementation can quickly become convoluted and often
requires intimate knowledge of the inner workings of these
solvers.

An illustrative example for the crucial role of delays is a
situation that arose when we analyzed the dynamics of anemia
during malaria, a disease that is caused by Plasmodium parasites
that invade red blood cells and eventually cause them to burst.
Red blood cells furthermore disappear in large numbers due to a
so-called bystander effect, in which many non-infected red blood
cells perish for reasons that are not well understood. One difficult
challenge that arose during our modeling attempts was the fact
that red blood cells naturally have a narrowly determined life
span with rather small variation; in humans, it is about 115 days ±
15% (Franco, 2012). The modeling challenge becomes apparent
in the assessment of howmany cells are expected to disappear at a
given time point during the infection (Fonseca and Voit, 2015;
Fonseca et al., 2016). Some disappear due to the infection or the
bystander effect, but many are removed by the spleen because
they have reached the end of their natural life. To account for the
latter aspect, one needs to know the age of each cell at any given
point in time. However, ODEs do not recount the ages of
individual cells. Thus, the disappearance of cells from the
blood stream must be based on averages, which are adequate
under steady-state conditions, but not for dynamic changes
caused by the growing parasite population. Even the use of
delay differential equations (DDEs) is inconvenient in this
case, whereas a discrete, recursive modeling approach is
straightforward (Fonseca and Voit, 2015; Fonseca et al., 2016).
Other pertinent examples of delays and stochasticity are
presented in Supplementary Data S2.

This article proposes an alternative to BST models that
facilitates the modeling of genuine discreteness, delays, small
numbers of components, stochastic events and combinations of
these complicating factors. This alternative consists of a discrete,
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recursive version of BST, here dubbed “dBST,” which is
straightforwardly constructed and implemented.

RESULTS

For the practicing computational modeler in the biosciences, a
partial solution to the drawbacks of ODEs can be the use of
systems of discrete-time, recursive equations, where the
changes in variables are represented on the basis of power-
law functions, as is the case in BST. This replacement of ODEs
with recursive equations raises the immediate question
whether any genuine features of ODE models are lost. The
answer can be approached in two ways. First, it is rather
evident that the recursive equations converge to the ODEs
if the step size decreases to 0 in the limit. In fact, computer
algorithms for solving ODEs use small discrete step sizes.
Second, one may test whether representative nonlinear
phenomena that are typically represented with ODEs, such
as saturation, limit cycles, and deterministic chaos, can also be
represented through recursive equations with a reasonable step
size. Supplementary Data S3 discusses mathematical
similarities between BST and dBST systems. Here, we focus
on the response repertoire of dBST systems and their features.
We also present a case study illustrating the de novo design of a
dBST system that simultaneously accounts for both, delays and
stochasticity.

Response Repertoire of Discrete
Biochemical Systems Theory Models
Simple Introductory Example of a Linear Pathway
The 2-variable BST system

_X1 � 2X0 − rX0.8
1

_X2 � rX0.8
1 − 2.5X0.5

2 (1)

X0 = 1
X1(t0) = 1.18
X2(t0) = 0.64

represents a simple linear pathway with constant input X0 = 1
and rate r = 1.75 for the conversion of X1 into X2. The pathway is
shown in Figure 1:

As an illustration, the system is initiated very close to its steady
state (1.181653, 0.64). At t = 5, the input X0 is persistently
increased by 20%. Solving the equations shows that the system

responds to the changed input by approaching a new steady state
(1.484, 0.922) (Figure 2).

The corresponding dBST system in standard notation
(Supplementary Data S3) is

X1,q·ϑ � X1,(q−1)·ϑ + ϑ[2X0 − rX0.8
1,(q−1)·ϑ]

X2,q·ϑ � X2,(q−1)·ϑ + ϑ [rX0.8
1,(q−1)·ϑ − 2.5X0.5

2,(q−1)·ϑ] (2a)

To simplify this notation for easier reading, we rename ~Xi �
Xi,q·ϑ and Xi � Xi,(q−1)·ϑ, for i = 1, 2, which simplifies the
appearance of Eq. 2a to

~X1 � X1 + ϑ [2X0 − rX0.8
1 ]

~X2 � X2 + ϑ[ rX0.8
1 − 2.5X0.5

2 ] (2b)
Choosing as step size ϑ = 0.5 reveals output that is quite

similar to that of the BST system, although one notes that the
responses, especially of X2, are slightly different immediately
following the switch in input (t = 5). Importantly, both
formulations exhibit essentially the same dynamics and
approach exactly the same steady state (Figure 2). Other
step sizes yield similar results.

Limit Cycles
Limit cycles are representations of oscillations that are stable in a
sense that, when perturbed by external influences, return to the
original frequency and amplitude. Limit cycles are ubiquitous in
biology (Keshet, 2005).

It has been proposed that many disease patterns can be seen
mathematically as shifts from physiological to pathological limit
cycles (Claude, 1995).

FIGURE 1 | Simple linear pathway with constant input X0.

FIGURE 2 | Comparison between the results of corresponding 2-
variable BST (lines) and dBST (dots) models (Eqs 2, 10).
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Like BST systems, dBST systems can capture the dynamics of
stable limit cycles (Lewis and Voit, 1991; Yin and Voit, 2008). An
example is the stable oscillator

_X1 � 0.011 [X2
1X

3
2 −X1X2]

_X2 � 0.01[X−1
1 X4

2 −X3
1X

5
2] (3)

which in standard dBST format reads

X1,q·ϑ � X1,(q−1)·ϑ + ϑ · 0.011 · [X2
1,(q−1)·ϑ X3

2,(q−1)·ϑ
−X1,(q−1)·ϑ X2,(q−1)·ϑ]

X2, q·ϑ � X2,(q−1)·ϑ + ϑ · 0.01 · [X−1
1,(q−1)·ϑX4

2,(q−1)·ϑ
−X3

1,(q−1)·ϑX5
2,(q−1)·ϑ] (4a)

To the human eye, this format may look rather unwieldy,
but it is easily implemented into computer code.
Furthermore, using the simplified notation introduced in
Eq. 2, we obtain

~X1 � X1 + ϑ · 0.011 · [X2
1X

3
2 −X1X2]

~X2 � X2 + ϑ · 0.01 · [X−1
1 X4

2 −X3
1X

5
2] (4b)

Solving the system with step size ϑ = 0.1 confirms that the
system indeed has a stable limit cycle. Namely, initial
conditions inside the limit cycle, like (X1,0, X2,0) = (1, 1.3),
lead to increasing oscillations, while conditions outside, such
as (X1,0, X2,0) = (1.1, 1.8), generate damped oscillations;
starting essentially on the limit cycle, e.g., (X1,0, X2,0) =
(0.7249193, 0.8685822) demonstrates constant amplitudes.
In the phase plane, the corresponding plots are outward
and inward spirals, as well as the stable orbit (Figure 3). If
we use the step size ϑ = 1, the system still displays a limit cycle
of similar shape, but with larger amplitudes (not shown).
Much larger step sizes eventually become too coarse and
destroy the features of the limit cycle.

Deterministic Chaos
Discrete BST systems are also rich enough to permit
deterministic chaos. While a rigorous proof is difficult, an
example is a discrete system gleaned from the well-known
Lorenz oscillator (Lorenz, 1963), which mathematician and
meteorologist Edward Lorenz developed as a simplified
representation of atmospheric convection, which had been
modeled previously as a fluid layer for which the
temperatures at the top and the bottom were kept constant

FIGURE 3 | The dBST system in Eq. 4models a stable limit cycle, as confirmed by simulations starting inside (A), outside (B) and essentially on the limit cycle (C).
Panel (D) displays a typical phase-plane plot with superimposed oscillations spiraling out (dark green) or in (light green) toward the limit cycle, as well as starting very close
to the limit cycle itself (cyan); the initial locations are indicated by circles. The trajectories appear to be smooth because the step size is rather small. The ODE model
produces essentially the same solutions, even though the maximal amplitudes are slightly different.
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at different values (Saltzman, 1962). The ODE format of this
system reads:

_X1 � 0.2 ·X2 − 0.2 ·X1

_X2 � 0.6 ·X1 − 0.02 ·X2 − 0.02 ·X1 ·X3 (5)
_X3 � 0.02 ·X1 ·X2 − 0.05 ·X3

The reformulation into recursive equations is
straightforward, and the dBST in simplified notation (see
Eq. 2) reads

~X1 � X1 + ϑ · 0.2 · [X2 −X1]
~X2 � X2 + ϑ · [0.6 ·X1 − 0.02 ·X2 − 0.02 ·X1 ·X3] (6)

~X3 � X3 + ϑ · [0.02 ·X1 ·X2 − 0.05 ·X3]
Solving the system with step size ϑ = 1 and initial conditions

(10, 10, 30) reveals dynamics similar to that of the chaotic Lorenz
equations in ODE format, both in the time domain and in phase
plane (Figure 4), although the numerical details of the results are
different, which is not surprising, as chaotic systems are
extremely sensitive to all numerical settings, such as parameter
values, initial conditions, and the step size for solving the ODEs or
the discrete equations. One also notes that the maximum
amplitudes of the BST system are somewhat higher than in
the ODE model.

Typical Simulations in dBST That Are More
Intuitive Than in ODE Models
The simulations described in this section are straightforwardly
implemented in dBST, and while it is possible to implement some
of them in ODEs, such an implementation is sometimes
cumbersome or difficult to intuit. Indeed, one may have to be
creative if some of these issues are to be included into ODE
solutions and understand the inner workings of the numerical
solution algorithms. For example, the widely used Runge-Kutta
method averages the slope for each solution step, and additional
statements, such as if-conditions, can influence this average or
cannot be taken into consideration, depending on how the solver
was coded. Furthermore, using numerical solvers with variable
step size requires care so that the choice of the optimal step size is
not affected.

In the following, we focus on different types of stochastic
events and the dependence of the system dynamics on thresholds
for dependent variables. Details regarding delays are discussed in
Supplementary Data S2 and in the later Case Study Aryl
Hydrocarbon Receptor Signal Transduction.

Stochastic Variations in Rates
Returning to the introductory at the beginning of the Results
section, it is easy in dBST to replace the constant rate r of the
process converting X1 into X2 with a rate that stochastically varies

FIGURE 4 | The dBST system in Eq. 6 captures deterministic chaos, similar to the ODE system proposed by Lorenz. The top panel shows results in the time
domain, in comparison to the corresponding ODE system (thin grey lines). The BST and dBST systems diverge quickly (top panel), which is a genuine feature of chaotic
systems. The bottom panel displays phase-plane plots of the two models, showing the discrete nature of the system in the form of connected straight lines. The initial
locations are indicated with circles. Note that the maximal amplitudes of the dBST system are larger.
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within a range of, say, ± 10% of the nominal value in the example.
For this illustration, we randomly sampled a rate from this range
at every iteration. Two solutions are shown in Figure 5.
Variations on this theme are also readily implemented. For
instance, it is possible to sample a new rate less frequently
than at every step.

EventsWhere System Variables Affect External Events
Suppose a signaling system responds stochastically to an
environmental trigger, which is a ubiquitous situation in
biological systems, especially if the concept of an
“environment” includes the biophysical surroundings of cells.
We develop this example in several steps, because some cases are
easily addressed with ODEs, whereas others are not. In the
simplest case of a stochastic environmental input it is possible
to include if-statements into a numerical solver, such as the
deSolve R package (Soetaert et al., 2010), which was designed
to solve various initial-value problems, differential algebraic
equations and partial differential equations. However, if one or
more of the system variables influence the random variable, the
situation is much more complicated, as the random variable must
be adressed inside the solver, which is difficult for a ODE solver
but straightforward in the discrete case.

Suppose at first that the environmental trigger is present or
absent for stochastically long time periods that begin at random

time points and whose magnitude affects the response of the
signaling system. As a specific example, consider the lac operon of
the bacterium E. coli, where external lactose triggers changes in
gene expression (Lewis, 2005). Savageau (2001) proposed a model
of the system in the form of the diagram in Figure 6 and
represented it with S-system equations. In this model, X1 is
the concentration of mRNA of the lac operon, X2 is the
concentration of the enzyme β-galactosidase, which catalyzes
the conversion of lactose into galactose and glucose, and X3

and X4 are the intracellular and extracellular concentrations of
lactose, respectively. X4 is considered an independent variable
and therefore that does not require its own differential equation.

Savageau discussed the kinetic orders (g and h parameters) but
did not provide specific parameter values for them or for the rate
constants (α and β parameters). We use this example for a series
of demonstrations, specifying the parameter values as shown in
Eq. 7.

_X1 � 0.2X2
3 − 0.1X1

_X2 � 0.5X1 −X2 (7)
_X3 � 0.1X4 − 0.1X2X3

For the first demonstration, suppose that the stimulus,
external lactose (X4), is available in irregular time periods and
concentrations that vary randomly within reasonable ranges. If

FIGURE 5 | Comparison of results from the deterministic and two instances (A and B) of stochastic models (ϑ = 0.5) of the simple pathway in Figure 2. The two dBST
simulations were obtained with a stochastically varying rate r in Eq. 1 (dots), starting from different seeds, while the solid lines are the results of Eq. 2 with constant rate r.

FIGURE 6 | Diagram of the lac operon and corresponding equations, as proposed by Savageau (2001).
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the switch points and magnitudes of X4 are known beforehand,
the simulation of the ODE system is straightforward. For
instance, if the system starts at its steady state (0.43, 0.22,
0.46) with X4 = 0.1 and the stimulus changes according to
Table 1, one directly obtains the output in Figure 7A.

If the timing and magnitudes are stochastic, a simulation with
a standard ODE solver can be cumbersome as one needs to know
how to evaluate functions of time inside the algorithm.
Nonetheless, this situation can still be addressed, for instance,
with deSolve or in Matlab. This case is again straightforwardly
implemented in a dBST system. One set of results is shown in
Figure 7B for event times sampled from an exponential
distribution with a rate of 1/60. The magnitude of the signal
at every event was sampled from a normal distribution with mean
μ = 0.5 and standard deviation σ = 0.25.

As the next phase of the example, we analyze the situation
discussed by in Savageau (2001), where the format of the first
ODE in Figure 6 depends on the current value of X3. Specifically,
the author defined

_X1 �
⎧⎪⎨⎪⎩

α1L − β1X1 ifX3 <X3L

α1X
g13
3 − β1X1 ifX3L ≤X3 ≤X3H

α1H − β1X1 ifX3 >X3H

(8)

where X3L and X3H are threshold values and the corresponding
“low” and “high” rate constants α3L and α 3H are different. While
it is possible to address this task by embedding if-conditions
into an ODE solver, these situations of thresholds are much
more easily called up in dBST: The If-statements are directly
implemented in the recursive step for variable X1. As a
demonstration, suppose again that the external trigger
changes in unpredictable patterns, which we assume to be
random in terms of timing and magnitude, as before, and that
the thresholds are in effect. Two typical results are shown in
Figures 7C,D.

As the most complicated variation of the example, let us
now suppose that both the magnitude and frequency of the
stochastic events depend on the state of the system. For
instance, the amount of external lactose X4 to be imported
into the cell could stochastically depend on the current mRNA
prevalence X1 and also the internal lactose concentration X3,
which together could have an effect on the characteristics of
the import transporters. This situation cannot easily be
addressed with an ODE solver, if at all, as one can no
longer first calculate the current level of X4 and then
present it to the solver as a time-dependent function.
Instead, such a situation mandates that the stochastic
variables be evaluated inside the solver, a process that can
interfere with the ODE solution. By contrast, the discrete
version is easily implemented. An example is presented in
Figure 7E.

Parameter Estimation
Much has been written about the estimation of parameter values
of ODE systems from time series data [e.g., see reviews
(Gennemark and Wedelin, 2007; Chou and Voit, 2009;
Gennemark and Wedelin, 2009; Gábor and Banga, 2015)]. In
order to make typical gradient methods and evolutionary

TABLE 1 |A priori known schedule of switches in stimulus in the lac operonmodel.

Time 0 10 60 110 160 210 260 310

Stimulus 0.1 1 0.5 0.1 1.2 0.4 1 0.1

FIGURE 7 | Comparison of responses of BST (faint grey lines) and dBST
models (dots) to perturbations in external lactose concentraion (solid lavendar
line). (A) Timing and magnitudes are known a priori (Table 1). (B) Signaling
events occur in a stochastic manner and signal magnitudes are random
within a given range (see Text for details). (C,D) Two sets of responses, where
switches in the equation of X1 depend not only on the stochastic input X4, but
also on the value of X3. (E) The value of X3 is used to generate a success
probability for a Bernoulli random variable. Specifically, if the Bernoulli process
returns 1, the new value for X4 is given by a truncated normal with mean 0.5
and a standard deviation equal to the value of X1.
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algorithms more efficient, it has been suggested to smooth the
time series data, use points from the smoothed trends, and
estimate slopes of the time trends corresponding to the chosen
points (Varah, 1982; Voit and Savageau, 1982; Voit and Almeida,
2004). Substituting these quantities in the ODE system converts
the task of estimating parameter values for ODEs into an
estimation from algebraic equations. Thus, for estimation
purposes, the ODE for each variable Xi,

_Xi � Fi(X1, . . . , Xn) i � 1, ..., n (9)
is converted into a system of K algebraic equations of the
format

Si(t1) � Fi(X1(t1), . . . , Xn(t1))
Si(t2) � Fi(X1(t2), . . . , Xn(t2)) (10)
Si(tK) � Fi(X1(tK), . . . , Xn(tK))

Here, each equation corresponds to one chosen time point.
The X values are either the raw data or the corresponding data
from the smoothed time trend, while S indicates the
corresponding slope of the time course.

This method of using estimated values and slopes tends to be
computationally much more efficient than parameter inferences
directly from ODEs, for instance with a gradient method or an
evolutionary algorithm (Voit and Almeida, 2004). One drawback
is that the estimation of slopes exacerbates noise in the data
(Knowles and Renka, 2014; Voit, 2017b). To some degree, this
problem is alleviated by smoothing the data appropriately.

For the discrete system, no slopes need to be estimated as the
difference to be used instead,Xi,q·ϑ −Xi,(q−1)·ϑ, is directly obtained
from the data. Thus, given measurements for all Xi at different
time points, and possibly a smoothing step, the estimation of the
parameters of a dBST system is straightforward.

As an example, consider the branched pathway in Figure 8, for
which we pretend to have experimental measurements that had
been smoothed, for instance, with a spline. For the illustration, we
actually created synthetic “data” from a GMA (BST) model in
ODE format and did not worry about noise, in order to assess
most clearly to what degree BST and dBST models correspond
and reflect the synthetic data. Analogously to the BST model, the
format of the dBST equations is dictated directly by the flow
structure and regulation of the pathway. In the simplified
notation of Eq. 2b, the dBST equations take the form

~X1 � X1 + ϑ · [a1 ·Xg1
3 − b1 ·Xh11

1 − c1 ·Xh12
1 ·Xh13

3 ]
~X2 � X2 + ϑ · [b1 ·Xh11

1 − b2 ·Xh2
2 ]

~X3 � X3 + ϑ · [b2 ·Xh2
2 − b3 ·Xh3

3 ] (11)
~X4 � X4 + ϑ · [c1 ·Xh12

1 ·Xh13
3 − c2 ·Xh4

4 ]
and we suppose that the values of the parameters are unknown.
We analyze datasets with different densities of observation time
points. For each parameter optimization, we use the optim
function in R (R Core Team, 2018), which is based on the
Nelder-Mead method (Nelder and Mead, 1965). Multiple
sequential optimizations were performed for each example and
the process was stopped when the difference of consecutive errors
was less than 10–3.

For the first illustration, we suppose that data had been
obtained in intervals of τ =1, that is, for t = 0, 1, 2, ..., 60, and
define ϑ = 1. The estimation result, shown in Figure 9A, captures
the data well. The associated residual error, divided by the total
number of data in the four time courses (4 n) is SSE/4 n =
0.1007525/(4 * 61) = 4.13 × 10–4. Fitting the same data, but with
step size ϑ = 0.5 (results not shown), the fitting error is roughly
halved, with SSE/4 n = 0.0443176/(4 * 61) = 1.81 × 10–4.

As a second illustration, we assume that the data are much
sparser (τ =3), that is, with measurements obtained at time points
t = 0, 3, 6, 9, . . . , 60; we again define ϑ = 1. The result is shown in
Figure 9B. The model still fits the data well, with a residual error,
divided by the total number 4 n of data, of SSE/4 n = 0.03697914/
(4*21) = 4.40 × 10–4, which is slightly, but not substantially higher
than for the denser dataset. The estimated parameter values are
slightly different from those obtained for the denser dataset,
which is not surprising. However, it is interesting that the
sparsity of the data hardly seems to affect the estimation.

Quasi as a baseline for comparison, we also fit the synthetic
data with ODE equations in GMA format. They also recapture
the data well (Figure 9C), even though the estimated
parameter values are not identical to those used to create
the data (Table 2), indicating some numerical redundancy
among the parameters. The residual error, divided by the
number of data is SSE/4 n = 0.03966285/(4*61) = 1.62 ×
10–4, which is again in the same range as for the discrete
model. The parameter values are slightly different from those
estimated with the dBST model. This result is to be expected
because the meaning of each multiplicative parameter is,
strictly speaking, not identical for BST and dBST models, as
the former represent instantaneous rates and the latter
stepwise changes.

Case Study: Aryl-Hydrocarbon Receptor
Signal Transduction
The aryl-hydrocarbon receptor (AhR) is a highly conserved
sensor for specific cues during development and normal
physiology (Stockinger et al., 2014; Brinkmann et al., 2019;
Zhu et al., 2019), as well as for external, xenobiotic
compounds (Stevens et al., 2009; Simon et al., 2015) or danger
signals derived from the invasion of parasites, which are mediated
through compounds like the tryptophan-derivative kynurenine

FIGURE 8 | Simple branched feedback with dual regulation by X3.
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(Julliard et al., 2014; Gupta et al., 2022). In response to such
signals, the AhR signal transduction system triggers the
upregulation of a host of genes, most prominently those
coding for cytochrome P450 enzymes that metabolize toxicants.

The generic functionality of the AhR-system is depicted in
Figure 10. Once a ligand (L) binds to AhR, the activated AhR
forms a complex with the AhR nuclear translocator ARNT. This
complex translocates to the nucleus, where it serves as a
transcription factor that binds to the xenobiotic response
element XRE—or a non-canonical XRE analog—within the
promotor regions of numerous inducible target genes (Huang
and Elferink, 2012). The AhR repressor AhRR competes with
AhR for ARNT (Evans et al., 2008). Intriguingly, the gene
coding for AhRR is itself under the control of the AhR-ARNT
transcription factor, thereby creating a negative feedback loop that
eventually stops the expression of AhR-ARNT controlled genes
(Zudaire et al., 2008). As one might expect, reality is more
complicated, for instance, due to compounds like the hypoxia

inducible factor-1α (HIF1α) that compete with AhR and AhRR
for ARNT (Spence et al., 1970) and to several cofactors modulating
the process (Simon et al., 2015), but the AhR-ARNT-AhRR system
by itself contains enough interesting complexity for the present
illustration.

One issue in setting up an ODE model is the substantial time
delay between transcription factor binding, the actual availability of
AhRR, and the resulting repression of target gene expression
(Koussounadis et al., 2015). In yeast and mouse, this type of
delay was found to be at the order of 3–6 h (Fournier et al.,
2010) (Liu et al., 2016). A delay of this magnitude is crucial in
the AhR system, as it noticeably delays the inhibitory effect of AHRR
on target gene expression.

A second issue is the fact that transcription and translation are
known to be stochastic processes (Raj and van Oudenaarden, 2008).
In fact, at least in some cases, activation of a promotor causes the
production of proteins to occur in short bursts and yields variable
protein amounts that occur at random time intervals (McAdams and

FIGURE 9 | Data fits with dBST [τ = 1 (A) and τ = 3 (B)] and BST (C) models.
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Arkin, 1997). Delays and stochasticity of course are not mutually
exclusive but occur at the same time (Gedeon and Bokes, 2012). A
model of this stochasticity for the case of AhR, using a discretemodel
based on the Gillespie algorithm, was presented by Simon et al.
(2015). However, it did not explicitly account for the time delays
between AhR binding and target protein expression and the role of
AhRR as repressor.

Taken delays and stochasticity into account, we can formulate
a dBST model that allows us to test the effects of delay and
stochasticity. In mass-action and power-law format, and with
simplified notation (see Eq. 2b),such a model has the following
format:

The variable names are defined in Figure 10. For this
illustration, we choose reasonable rate constants as shown in
Table 3 and set the inhibition parameter as g = −4; to avoid
numerical issues for X6 = 0, we define the inhibition as (X6 + 1)g.

FIGURE 10 | Diagram of the AhR signal transduction system. AhR is activated by a ligand L and binds to the nuclear translocator ARNT. The complex serves as a
transcription factor of genes whose promoter regions contain the xenobiotic response element XRE. These genes code for a variety of target proteins (TP) including,
notably, the AhR repressor AhRR. AhRR competes with AhR for ARNT, and the complex inhibits gene expression. Transcription and translation incur delays (τ1, τ2) and
are stochastic in nature (σ1, ..., σ4). L is also considered to be stochastic.

TABLE 2 | Parameter estimates obtained for different settings of the dBST model in Eq. 11 and the corresponding BST model.

Parameter Value for “data” generation dBST (τ =1) ϑ = 1 dBST (τ =1) ϑ = 0.5 dBST (τ = 3) ϑ = 1 BST

X0 1 0.981337 0.826518 0.951492 1.553729
a1 0.25 0.263397 0.279577 0.263219 0.15743
b1 0.08 0.166199 0.132337 0.159418 0.140825
b2 0.2 0.276071 0.245437 0.265376 0.249848
b3 0.3 0.395566 0.355906 0.386093 0.351592
c1 0.15 0.091586 0.091028 0.089742 0.097641
c2 0.25 0.169922 0.172505 0.166313 0.173117
d1 0.1 4.775786 10.00496 8.298336 −0.02349
g1 −2 −1.71411 −1.94822 −1.76486 −2.03513
h11 1 0.55773 0.677036 0.56065 0.625422
h12 2 1.736943 2.072465 1.794026 2.459446
h13 0.5 −0.29347 0.072883 −0.24301 0.619297
h2 0.4 0.327098 0.355548 0.345685 0.358772
h3 0.6 0.498803 0.531523 0.525627 0.504745
h4 0.8 0.935483 0.968566 0.950606 1.038234
SSQ/n 4.13 × 10–4 1.81 × 10–4 4.40 × 10–4 1.62 × 10–4
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The simulations start at the steady state in the absence of ligand
(L = 0), which is (X10, ..., X90) = (10, 0, 10, 0, 0, 0, 0, 0, 0). The
shaded terms are subject to delay, stochasticity, or both (see
Figure 10). Time is roughly in hours. The step size was taken as
ϑ = 0.1.

We show the result of three scenarios. In the first, the time
delays and any stochasticity are simply ignored (Figure 11A).
The second scenario accounts for two types of delays
(Figure 11B), one for transcription and one for translation
and activation of protein, and the third incorporates both,
delays and noise (Figure 11C). For simplicity, we assume the
same delay for the transcription (τ1 = 3 h) and translation and
activation (τ2 = 4 h) of AhRR and a representative target protein
(TP), even though these delays are in reality protein-specific
(Koussounadis et al., 2015). Also for simplicity, we assume the
same stochastic structure for σ1 and σ2 and for σ3 and σ4 (see
Figure 10). Specifically, these stochastic events are modeled with
values from the normal distribution N (1, 0.1), which are
multiplied to the affected fluxes. We also added stochasticity
to the ligand availability; it did not have much effect but shows up
in the dynamics of X1, ..., X4.

Both simulations start at the steady state without ligand
(L = 0). At time t = 2, the ligand concentration is set to 2,
and at t = 12 it is returned to 0. The result of the first scenario
simulation (Figure 11A) reveals that the production of target
protein (TP) very briefly peaks, but that not much TP is
produced, due to the immediate onset of inhibition by AhRR.
By constrast, accounting for time delays yields a dramatically
different dynamics (Figure 11B): Critically, the time delays
permit transcription and translation to occur unabatedly until
the repression sets in. Specifically, after 3 h, mRNA becomes
available, and after an additional 4 h, proteins emerge, including
AhRR, which quickly binds to ARNT and begins repressing
transcription, resulting soon after in decreased protein
production. If the ligand is available beyond time t = 12, the
production of protein oscillates, and as soon as the ligand is no
longer present, the system returns to the original steady state (not
shown). The results for an ODE model without delays and
stochasticity are essentially the same as in Figure 11A, and a
delay differential equation model, ignoring stochasticity,
produces more or less the same results as in Figure 11B. The
combination of delays and stochasticity is difficult to capture with
differential equations, but it is easily implemented in dBST
Figure 11C.

DISCUSSION

Modeling approaches utilizing the framework of Biochemical Systems
Theory (BST) have proven powerful in biomedical systems analysis

TABLE 3 | Parameter values for the AhR signal transduction system.

k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 g τ1 τ2

1 2 1 1 1 2 2 2 10 10 10 10 6 −4 3 4

FIGURE 11 | Simulation results of three scenarios. (A) Time delays
and stochasticity are simply ignored. (B) Delays for transcription and
for translation and activation of protein are taken into account. Note
that the dynamics of X7 and X8 is the same. (C) Ligand availability,
transcription and translation are considered stochastic. See Text for
further details.
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for over seven decades (Savageau, 1969a; Savageau, 1969b; Savageau,
1970). Our goal in the present article was a demonstration that
discrete BST (“dBST”) models are noteworthy alternatives to ODE-
based BST systems and that they can shed light on complex
biomedical phenomena in a similar manner. Discrete dBST
models are arguably also more intuitive to newcomers coming
from the field of biology, for whom differential equations are
often an obscure and dreaded domain of insider mathematics.

The proposal of using dBST is most certainly not a call for
abandoning systems of ODEs in biomedical models. ODEs have
proven immensely beneficial in all of science, and biomedical
applications are no exception. Nonetheless, there are situations
that are difficult to align with the concept of instantaneous
change. Examples include genuinely discrete events, delays, and
stochastic phenomena affecting the phenomenon under study. For
instance, we showed elsewhere, in the context of red blood cell death
duringmalarial anemia, that the precise dynamics of blood infections
is very difficult to capture with ODEs, but straightforward to
implement in a discrete-recursive model (Fonseca and Voit, 2015;
Fonseca et al., 2016). Similarly, we demonstrate here and in the
Supplementary Data S2 that delays and internal or external
stochastic influences affecting a dynamical system are often more
easily incorporated into discrete rather than differential equations.

Many of the advantages of BST as a tool for model selection and
analysis translate directly into its discrete analog, dBST.Whereas it is
generally difficult to choose the most appropriate mathematical
formats for representing ill-characterized phenomena a priori,
BST and dBST offer guidance at the very beginning of the
modeling process, where it is most urgently needed. At the very
least, the use of power-law functions offers a viable, unbiased starting
point. The power-law format used in BST and dBST is no panacea,
but it is a local approximation of mathematically guaranteed quality
that typically has a wider range of validity than linear formulations
and, embedded into ODEs, is provenly rich enough to permit the
inclusion of any differentiable nonlinearities (Voit and Savageau,
1986; Savageau and Voit, 1987).

The use of dBST instead of BST does not create practical design or
implementation problems per se, and paradigmatic nonlinearities,
such as limit cycles and chaos, can be captured in dBST, as we
demonstrated here. If the goal of a dBST model is to mimic a
corresponding ODE system as closely as possible, a small step size
may have to be chosen. For instance, in the example of limit cycles, a
larger step size retained the basic structure and shape of the limit cycle
system, but the numerical features were clearly affected. However, the
typical task in practical applications is not to create an analog of an
ODE system but to convert observed data, together with contextual

information, into a computable structure. This inference process is
actually simpler in dBST than BST, as most biomedical phenomena
are naturally discrete and the determination of optimal parameter
values does not require the estimation of slopes.

We demonstrated the ease of designing a dBSTmodel with several
small examples and with a moderately complex signal transduction
system that triggers changes in gene expression following an exposure
to specific toxicants or internal ligands. This phenomenon is difficult
to capture with an ODE model because it is critically affected by
substantial time delays, which are comingled with the well-known
stochastic nature of gene transcription and translation. Our analysis
makes it evident that these aspectsmust not be ignored lest erroneous
results are obtained. It also shows how straightforward it is to
incorporate these aspects into a dBST model.
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