
Research Article
A Linear-RBF Multikernel SVM to Classify Big Text Corpora

R. Romero, E. L. Iglesias, and L. Borrajo

Department of Computer Science, Higher Technical School of Computer Engineering, University of Vigo, 32004 Ourense, Spain

Correspondence should be addressed to E. L. Iglesias; eva@uvigo.es

Received 22 August 2014; Revised 10 November 2014; Accepted 13 November 2014

Academic Editor: Juan M. Corchado

Copyright © 2015 R. Romero et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Support vector machine (SVM) is a powerful technique for classification. However, SVM is not suitable for classification of large
datasets or text corpora, because the training complexity of SVMs is highly dependent on the input size. Recent developments in the
literature on the SVM and other kernel methods emphasize the need to consider multiple kernels or parameterizations of kernels
because they provide greater flexibility. This paper shows a multikernel SVM to manage highly dimensional data, providing an
automatic parameterization with low computational cost and improving results against SVMs parameterized under a brute-force
search.Themodel consists in spreading the dataset into cohesive term slices (clusters) to construct a defined structure (multikernel).
The new approach is tested on different text corpora. Experimental results show that the new classifier has good accuracy compared
with the classic SVM, while the training is significantly faster than several other SVM classifiers.

1. Introduction

Theamount of information stored in public resources contin-
ues to grow. For example, theMedline bibliographic database,
the most important source in the biomedical domain, stores
documents since 1950 and contains more than 22 million
citations.Thus, in order tomanage this volume of documents,
the use of sophisticated computer tools must be considered.

In the last years, researchers show a special interest of
applying text mining techniques to the field of biomedicine,
as pattern recognition, automatic categorization, or classi-
fication techniques. In order to get good results, the need
to establish a unified data structure to represent documents
must be accomplished.

A well-known data structure supported by the scientific
community is the sparse matrix [1], which is commonly
managed by classifiers as input data. In it, each document is
decomposed as a vector of its more relevant terms (words).

Unfortunately, although an efficient data structure solves
problems related to performance, other inconveniences about
the size of the corpora impact negatively over classifiers
and their accuracy. Data imbalance problems exist in a
broad range of experimental data and have captured the
attention of researchers [2, 3]. Data imbalance occurs when
the majority class in a document corpus is represented by

a large portion of documents, while the minority class has
only a small percentage [4]. When a text classifier encoun-
ters an imbalanced document corpus, the performance of
machine learning algorithms often decreases [5–8].

Another important situation in a classification process,
which can render the problem unmanageable, is related to
the sparse matrix dimensionality. The matrix dimension is
directly connected to the amount of attributes (terms) of the
documents included in it, affecting the performance of the
classifier and attaching a high computational cost. At this
point, algorithms to select relevant terms from whole data
structuremust be considered. As a result, an optimized sparse
matrix is generated.

Regarding classifiers, support vector machine (SVM) [9–
12] is one of the most well-known classification techniques
used within the scientific community. It obtains good results
in a variety of classification problems, although it is difficult to
determine its parameterizationwith imbalanced data. A SVM
classifier uses a kernel function to make a transformation
over the data and change the workspace, separating relevant
from nonrelevant documents. Taking into account that some
kernels have additional parameters that must be selected, the
parameterization of a SVM has a high cost.

As with other classifiers, SVMs are not suitable to classify
large datasets due to their high training complexity. Support

Hindawi Publishing Corporation
BioMed Research International
Volume 2015, Article ID 878291, 14 pages
http://dx.doi.org/10.1155/2015/878291

http://dx.doi.org/10.1155/2015/878291

2 BioMed Research International

Document processing Manage data
dimensionality

Training and
prediction

Stemming Stopwords Instance
filtering

Attribute
selection

Choosing a
classifier

Parameter
tuning

Generic classification process

Figure 1: Schema of a generic text classification model.

vectors are internally computed to represent the dataset;
this helps to find a hyperplane that separates the contents
of each class. The complexity of a SVM is given by the
number of support vectors needed to get the hyperplane.Data
dimensionality negatively affects the kernel coverage, such
that a unique kernel may not be enough to get an optimal
division between classes.

One solution is to divide the dataset into small portions,
attaching a specific kernel to each slice, decreasing the train-
ing complexity, and improving classification results.This idea
is known as a SVM based on a multikernel transformation.

Multikernel algorithms combine predefined kernels in
order to obtain accurate hyperplanes. These kernels and
their parametrization are usually determined by different
learning methods. However there is not an efficient learning
method to cover all classification scenarios, because it is
highly dependent of the field of study. Gönen and Alpaydın
[14] establish a category of existing multikernel algorithms
focused on their learning methods and properties.

(i) Fixed rules are functionswhich combinemultiple sin-
gle kernels grouping them as sums or products and
working over the data slice by slice [15, 16]. Kernels
are usually unweighted and do not need any training
before applying them. However, other approxima-
tions include several coefficients to weigh each term
in order to penalize some multikernel parts. Even
so, value coefficients are adjusted based on empirical
results or brute-force algorithms.

(ii) Heuristic approaches combine the idea behind fixed
rules to weigh each multikernel term under best
coefficient values [17, 18]. These values are usually
determined by unsupervised algorithms such as ID3
trees, hierarchical clustering, or self-organizingmaps,
among others, which may be applied separately (term
by term) or one over all of them. In almost all
cases, the search space is extremely wide (original
or feature), becoming the scenario in a NP-complete
problem.Thus, the computational cost and the system
performance must be taken into account.

(iii) Optimization approaches consist in providing opti-
mal values for kernel function parameters. Usually,
based on external models, this optimization can be
integrated as a part of a kernel-based learner or

reformulated as a different mathematical model for
obtaining the parameter values, and then parametrize
the learner [19, 20].

(iv) In Bayesian approaches, kernels are combined and
interpreted as probabilistic variables. These param-
eters (in kernels) are used to perform inference for
learning them and the base learner parameters.
Bayesian functions measure the quality of the result-
ing kernel function constructed from candidate ker-
nels using a Bayesian formulation. In general, we
use as target function the likelihood or the posterior
to find the maximum likelihood estimator and then
obtain the model parameter values [21, 22].

(v) Boosting approaches, inspired on ensemble algo-
rithms, combine weak learning models to produce a
new complex strong one [23]. A set of pairwise SVM-
kernels may be configured and trained separately to
get a final voting result in testing stage. There are
different ways in which the combination can be done,
including the previous approaches. The models may
be predefined or it is possible to add a new kernel until
the performance stops improving [23, 24].

In this paper, we show a multikernel SVM to manage
highly dimensional data, providing an automatic parameter-
ization with low computational cost and improving results
against SVMs parameterized under a brute-force search.

The remainder of the paper proceeds as follows. The
general text classification model is described in Section 2.
The proposed model is presented in Section 3, matching and
explaining differences with the previous section.The analysis
of experimental tests and comparative results with other
authors are shown in Section 4. Finally, the most relevant
conclusions are collected at Section 5.

2. Text Classification

Text classification is focused on assigning a class to each
document of a corpus.Thus, a class encloses those documents
which are representative from a specific topic. The class
assignment can be performed manually or automatically.

In general, the text classification process includes a set of
steps, as shown in Figure 1.These steps are detailed in the next
subsections.

BioMed Research International 3

2.1. Document Processing. During the first step, each docu-
ment 𝑑𝑗 in the corpus is processed to extract its most rep-
resentative keywords (terms). As each term 𝑡𝑖 has a different
relevance when it is used to describe the document content,
a numerical weight 𝑤𝑖𝑗 is assigned. This weight quantifies
the importance of the term for describing the document
semantic. Moreover, a data normalizing process is used to
transform term weights into a new unified value range, with
TF-IDF (term frequency-inverse document frequency) being
the most used normalization process [1].

As a result, each document 𝑑𝑗 is represented by a 𝑚-
dimensional vector (instance), where 𝑚 is the total number
of terms in the corpus and an associated class (relevant or
nonrelevant) (see (1) (term vectors for a document corpus)).
The similarity between two documents is computed based on
the distance of their representative vectors. Consider

𝑡1 𝑡2 ⋅ ⋅ ⋅ 𝑡𝑚 class
𝑑1 𝑤11 𝑤21 ⋅ ⋅ ⋅ 𝑤𝑚1 relevant
𝑑2 𝑤12 𝑤22 ⋅ ⋅ ⋅ 𝑤𝑚2 unrelevant

.

.

.

.

.

. d
.
.
.

.

.

.

𝑑5 𝑤15 𝑤25 ⋅ ⋅ ⋅ 𝑤𝑚5 unrelevant
.
.
.

.

.

. d
.
.
.

.

.

.

𝑑𝑛 𝑤1𝑗 𝑤2𝑗 ⋅ ⋅ ⋅ 𝑤𝑚𝑛 relevant.

(1)

2.1.1. Stemming and Stopwords. In many cases, irrelevant
terms are included on the sparse matrix, thus decreasing the
classification results. In order to partially remove the noise,
some stemming techniques and stopword removal are used.

Stemming techniques [25] morphologically identify
terms and their variants (nouns, adjectives, adverbs, etc.)
and reduce the data dimensionality through a step called
conflation. It is to extract the stem of all the terms and apply
a matching process to fuse or combine the terms, avoiding
variants in the final representation.

Stopword lists [26] are wordlists composed of irrelevant
terms such as articles, determiners, or interrogative particles.
These terms are usually excludedduring the documentmatrix
generation.

In this way, combining stopword filtering and stemming
techniques helps to avoid nonuseful terms and to significantly
improve the information retrieval systems and their results.

2.2. Manage Data Dimensionality. In general, the use of
stemming and stopword removal is not enough to obtain
a good document classification for huge datasets. Thus,
in a postprocessing step, algorithms and techniques are
focused on reducing, compacting, or transforming thematrix
containment. Normally, two approaches are considered.

(i) Instance filtering focused on balancing the number
of instances (documents) in each class (topic), taking
into account their difference factor. In some cases,
unbalanced problems may negatively affect the clas-
sification process causing overfitted models.

(ii) Attribute (term) selection algorithms transform and
remove (in some cases) current terms in the docu-
ment matrix in order to reduce its size and compu-
tational cost.

2.2.1. Instance Filtering. Data imbalance problem appears
when a majority class, usually the negative class, contains
many more instances that the other class [2–4]. When a text
classifier encounters an imbalanced document corpus, the
machine learning performance often decreases [5–8].

Instance filtering represents a powerful tool against over-
fitting cases with regard to a specific class type (majority class
in almost all cases). Two well-known techniques, oversam-
pling and subsampling, may be applied on texts to redistribute
each class and solve the imbalance [27, 28].

The subsampling technique removes instances in the
majority class by taking into account a difference factor with
the minority class. A random algorithm is usually used to
select which instance is removed until the redistribution
factor is reached. Similarly, the oversampling technique adds
new or replicated instances in the minority class until the
difference factor with the majority class is reached. Equal
to subsampling, a random algorithm is used to select which
instances are the base of the replication process.

Finally, both techniques can be applied simultaneously,
increasing instances at the minority class and decreasing on
the majority class. This process is known as resampling [29].
TheWeka library [30], used in this study, provides algorithms
which implement these techniques.

2.2.2. Attribute Selection. Data sizes can be optimized by try-
ing to find the most relevant attributes (terms) in a dataset.
Attribute selection algorithms are focused on the relevance
of a term in a document, class, or both, removing, merging,
and/or transforming those terms that are less important and
generating a new dataset. Therefore, an attribute selection
task pursues the following goals: (i) to reach better classifica-
tion results, (ii) to generate more efficient models, and (iii) to
reduce the data dimensionality and therefore computational
costs.

The Weka library provides algorithms for the attribute
selection. Some of them were previously analyzed by the
authors [31]. In this work, we apply the principal compo-
nent analysis (PCA) algorithm [32]. PCA looks for linear
combinations between attributes to remove their individual
dependency (noise) and to reduce the original data.

2.3. Train and Prediction. Once the document matrix is built
and optimized, it can be used as input in a classifier. Train
and prediction are divided in two complex steps: (i) choosing
a classifier, in which a model must be selected, trained, and
tested, and (ii) parameter tuning, involving algorithms and
techniques in order to fit the classifier parameters and obtain
better results.

2.3.1. Choosing a Classifier. In the last step of the process,
a reasoning model is selected to classify those documents
contained in the dataset as relevant and nonrelevant.

4 BioMed Research International

Input space Feature space

𝜙()

𝜙()

Figure 2: Mapping samples from input to feature space. Image adapted from http://mechamind.in/, verified at 10/29/2014.

To perform this task, several algorithms supported by the
scientist community were analyzed: K-nearest neighbor [4,
7], naive Bayes [7, 33], and SVM [6, 34]. Finally, we choose
the SVM classifier because it gets the best results with regard
to the text classification [7, 35, 36].

2.3.2. Understanding the Support Vector Machines. SVMs
were developed from the theory of statistical learning and
structural risk minimization [12, 37]. In almost all cases,
linear or nonlinear, a new decision surface is calculated,
mapping the input space through a 𝜙 function in which
samples are separable. Thus, the idea behind SVMs consists
of discovering a hyperplane to discriminate positive and
negative samples (relevant and nonrelevant documents).

To understand how it works, consider a separable training
set in the input space equal to the identity function (linear
case), 𝑆 = {(𝑑𝑖, 𝑦𝑖)}

𝑛
𝑖=1 with 𝑑𝑖 ∈ R𝑚 and 𝑦𝑖 ∈ {−1, 1},

and a linear decision function 𝑓(𝑑) = ⟨𝑤, 𝑑⟩ + 𝑏, enclosed
by support vectors defining the maximum margin between
positive and negative samples, where 𝑏 is the bias hyperplane
off-set determined by Karush-Kuhn-Tucker conditions.

In order to get an optimal hyperplane, a quadratic
programming optimization must be considered:

min𝑤,𝜉:
1

2
𝑤
𝑇
𝑤 + 𝐶

𝑛

∑

𝑖=1

𝜉𝑖,

subject: 𝑦𝑖 (𝑤
𝑇
𝜙 (𝑑𝑖) + 𝑏) ≥ 1 − 𝜉𝑖,

𝜉𝑖 ≥ 0,

(2)

where 𝜉𝑖 is a slack variable (computed during optimization)
which serves to control training errors and keep constraints
up, 𝐶 is the trade-off parameter for controlling the compro-
mise between the margin maximization and violated restric-
tions (soft-margin), and 𝜙(𝑑𝑖) are the equation coefficients.
The class 𝑦𝑖 for a document 𝑑𝑖 is determined by the sign of

(3), where the 𝑠V parameter is the number of support vectors
previously calculated on (2). Consider

𝑦𝑖 = sign
𝑠V

∑

𝑗=1

[𝛼𝑗𝑦𝑗 ⟨𝑑𝑗, 𝑑𝑖⟩ + 𝑏]

sign (𝑦𝑖) = {
relevant if 𝑦𝑖 ≥ 0,
unrelevant if 𝑦𝑖 < 0.

(3)

For nonlinear cases (𝜙 is not trivial), input samples are
mapped to a feature space, dimensionally higher than original
one, where a linear separation may be feasible (see Figure 2).
The mapping process is achieved by applying a nonlinear
kernel function over each pair of vectors.

As a result, a linear solution is discovered by getting the
optimal hyperplane and solving the mentioned nonlinear
case [38].

However, given the possible scenario about infinite
dimensions in kernel space, the nonlinear mapping function
𝜙 : R𝑑 → ℏ cannot be formulated explicitly. A solution
consists of expressing the matrix operations in the kernel
space𝜙(𝑑𝑖)

𝑇
𝜙(𝑑𝑗) as dot products in the input space𝐾(𝑑𝑖, 𝑑𝑗),

so-called kernel trick [37]. Therefore, (3) is reformulated as
follows to include the kernel mapping:

𝑦𝑖 = sign
𝑠V

∑

𝑗=1

[𝛼𝑗𝑦𝑗𝐾(𝑑𝑗, 𝑑𝑖) + 𝑏] . (4)

2.3.3. Parameter Tuning. The classification process based on
SVM is usually supported by several kernels [9]: linear (5),
radial basis function (RBF) (6) or Sigmoid (7):

Linear: 𝐾(𝑑𝑖, 𝑑𝑗) = ⟨𝑑𝑖, 𝑑𝑗⟩ , (5)

Radial Basis Function RBF:

𝐾(𝑑𝑖, 𝑑𝑗) = exp (−𝜎 ⋅ 𝑑𝑖 − 𝑑𝑗

2
) ,

(6)

Sigmoid: 𝐾(𝑑𝑖, 𝑑𝑗) = tanh (𝜎 ⋅ ⟨𝑑𝑖, 𝑑𝑗⟩ + coef) . (7)

BioMed Research International 5

(Small distance)

(Large distance)

(Dissimilar)(Highly similar)

Original
space

0

0.549

1

0.741 1 0.165 0.067 0.020 0.002 0

0.0180.1350.2730.4070.5490.8190.905

𝜎 ∞

0 0.1 0.2 0.6 0.9 1.3 2 4

(

(0∘)

)

(25.2∘) (35.04∘) (56.71∘) (66.01∘) (74.18∘) (82.22∘) (89∘)

(0∘) (42.19∘) (56.71∘) (80.48∘) (86.14∘) (88.84∘) (89.86∘)arccos(K)

arccos(K)
d2 − d1 = 1

d3 − d1 = 1.732

(90∘)
d3 = [1, 0, 0]

d2 = [0, 1, 0]

d1 = [0, 1, 1] ‖‖
‖‖

K d2, d1)(
K d3, d1)(

Figure 3: RBF behavior.

Some kernel functions, such as radial or sigmoid, provide
extra parameters to improve their transformation surface
making it more suitable for the dataset morphology. Unfortu-
nately, getting an optimal configuration for these parameters
usually results in an NP-complete problem, requiring addi-
tional computation cost. Well-known solutions, restricted in
almost all cases to a range of values, may be a brute-force
search, heuristic methods, or genetic algorithms [35, 36].

2.3.4. Kernel Behavior. In order to understandwhich range of
values are the most suitable to each case, the kernel behavior
must be analyzed. As an example, an explanation about
the behavior of the RBF kernel is considered here. Figure 3
describes how tomeasure the similarity between three vectors
𝑑1 = [0, 1, 1], 𝑑2 = [0, 1, 0], and 𝑑3 = [1, 0, 0] using a RBF
kernel, in which 𝑑1 − 𝑑2 are more similar than 𝑑1 −𝑑3. Sigma
values and the search space were obtained based on practical
guides and empirical tests [9, 36, 39, 40].

In practice, distances between samples are estimated
using the same 𝜎 value for all cases and must be carefully
selected.

(i) Kernel values close to 1 mean that samples are in the
same class. Otherwise, values close to 0 mean that
samples are in different classes.

(ii) If cosine values are close to 1, samples are very similar
in the feature space. Otherwise, if cosine values are
close to 0, samples are very dissimilar in the feature
space.

(iii) if 𝜎 values are gradually increased, the angle between
vectors {𝑑𝑗, 𝑑𝑘} denotes that they are closer to each
other, in the feature space, than other ones like
{𝑑𝑖, 𝑑𝑘}. Therefore if values are increased, the first
angle will increase less than the second one (see
Figure 4).

Following the previous criteria, an intermediate value
represents the best choice to compute the similarity for
all vectors. However, in our tests 0.2 and 0.6 values were
considered because they maintain both the smallest distance
for 𝑑1, 𝑑2 and the largest for 𝑑1, 𝑑3 at the same time.

1

3

2

3

2

2
3

2
3

2

2
3

3

2

1

1

2

3 d3 = [1, 0, 0]

d2 = [0, 1, 0]

d1 = [0, 1, 1]

(d
eg

)

Radius (

Cosine angle

𝜎)

𝜎
=
0.
1

𝜎
=
0.
3

𝜎
=
0.
6

𝜎
=
0.
9

𝜎
=
1.
3

𝜎
=
2.
0

𝜎
=
4
.0

90.0∘

88.9∘

89.8∘ 82.2∘

88.8∘
74.1∘

86.1∘

66.0∘

80.4∘

56.7∘

56.7∘

35.0∘

35.0∘

42.19∘

25.2∘

Figure 4: Sigma curves for dissimilar documents.

3. Proposed Classification Model

In this section, we introduce a novel text classifier based on
SVM over a set of modified RBF kernels. It is developed to
manage highly unbalanced data, to autoparameterize itself
under low computational cost, and to improve results against
brute-force search.

The idea behind the model consists of spreading the
dataset into cohesive term slices (clusters) to construct a
defined structure. Each cluster is attached with an RBF kernel
and the remaining (terms not considered for clustering) are
enclosed in a linear kernel creating a multikernel model.

The model was developed to solve cases in which a
dataset contains very similar samples for both classes, such as
scientific corpora, making it difficult to obtain good results
using conventional kernels on SVM classifiers.

Figure 5 shows a brief schema of the architecture.

6 BioMed Research International

Proposed classification process

Document processing

Clustering

Training and
prediction

(a) Build hierarchies (b) Cophenetic analysis (d) Get the optimal cut(c) K‐S nomality test

(b) Generating the multikernel matrix

Input space Kernel space

Manage data
dimensionality

Principal component analysis
(PCA)

(a) Computing kernel parameters from clusters

Lovins
stemmer

Gate
stopwords

tf‐idf
normalization

For n linkages

Cluster1 Cluster2 Clustern· · ·

p1 p2 pn

∑ kernel

Figure 5: Proposed model architecture.

(1) For the first step, we use a dataset to generate a doc-
ument matrix using the vector model. To identify the
most relevant terms, a stemming algorithm (Lovins
stemmer [25]) and a stopword list extracted from
GATE tool [41] are used. In addition, the TF-IDF
normalization is used to weight terms based on their
frequencies.

(2) For the second step, data dimensionality is managed
through the principal component analysis (PCA).
Terms are compacted using linear combinations
between them. As a result, a matrix containing the
new subset is generated.

(3) The third step starts by transposing the term matrix
to build a hierarchical clustering per each linkage
method available (see [37, 42] for more details about
hierarchical clustering). It continues analyzing resul-
tant hierarchies with the cophenetic matrix to deter-
mine which hierarchy best fits the matrix. Finally, the
Kolmogorof-Smirnov normality test [43] is applied
to each cluster and hierarchy level to determine the
optimal cut.

(4) The last step consists of building the multikernel
Linear-RBF (MLRBF) in the existent clusters from the
optimal cut.

All these steps are optimized in order to reduce the
computational cost and improve the results.

The next subsections explain each step of the process.The
matrix generation is omitted or simply referenced.

3.1. Principal Component Analysis. The principal component
analysis (PCA) [32] is usually used on text mining to reduce
the data dimensionality with a minimum risk of information
loss. Dimensionality reduction is accomplished by choosing
the eigenvectors, which contain a certain percentage of
variance (based on their eigenvalues) with respect to the
original data and transforming them.

As a result, the document matrix is reduced according to
the linear combination of the most representative terms (the
most dispersed), transforming the input space into a smaller
one. The new terms are known as principal components.

In this paper, PCA is not used as data reduction algo-
rithm. The internal process looks for linear combinations
between terms, producing components which may follow
a normal distribution. This means, for relevant documents,
that there are terms which are approximately normally
distributed. However, this is not the case in the irrelevant
documents.

As a consequence, terms may be agglomerated into
cohesive groups (clusters) causing the matrix fragmentation
(Figure 6), allowing a better adjustment in the next steps.

The steps to perform a PCA are listed below.

(1) Terms {𝑡1, 𝑡2, 𝑡3 . . . , 𝑡𝑚} are standardized (zero mean
and unit variance, see the following equation) to
ensure the independence of each resultant compo-
nent:

Std (𝑤𝑖𝑗) =
𝑤𝑖𝑗 − 𝜇𝑖

𝜎𝑖

, (8)

BioMed Research International 7

...
...

d1
d2

dn

Class
Relevant

Relevant]

Relevant

Nonrelevant

NonrelevantRelevant[Nonrelevant

Cluster2Cluster1 Clusterp

t1
t2
t3

tm
tm−1
tm−2

dj: document
wij: weight of term i in document j
ti: term
Clusterp: cluster of terms

Class: type of document
m: total number of terms
n: total number of documents

(
t1 t2 t3 t4 tm
w11 w12 w13 w14 · · · wm1

w1n w2n w3n w4n · · · wmn

)w21 w22 w23 w24 · · · wm2

...
...

...
... ⋱

...

Documents

Figure 6: Terms following a normal distribution and agglomerated
in cohesive groups.

where 𝜇𝑖 is arithmetic mean of term 𝑖 and 𝜎𝑖: standard
deviation of the frequencies of the term 𝑖 in the
corpus.

(2) Once the terms are standardized, a correlationmatrix
is computed and the eigenvalues and eigenvectors are
obtained.

(3) Terms are sorted in descending order taking into
account their eigenvalues.

(4) Terms with a variance (eigenvalue) lower than 90%
are discarded [44].

(5) Terms not discarded (principal components) are used
to transform the input space based on their eigenvec-
tors.

3.2. Clustering. To divide the matrix in cohesive parts several
agglomeration (clustering) techniques have been analyzed.

Well-known solutions such as 𝐾-means [45] or COWEB
[42] were discarded due to their initial parameterization.
Hierarchical techniques [37] are the most adequate for our
problem because they are not subject to initial requirements
for clustering morphology, making it possible to analyze the
clusters to determine which size and number are best for an
optimal process.

The following subsection helps to get a better understand-
ing of hierarchical clustering and the algorithms that have
been developed to analyze the output.

3.2.1. Hierarchical Clustering. On the hierarchical clustering,
entities are agglomerated into groups (clusters) andhierarchi-
cally ordered as a heap structure (see Figure 7). Each upper
level on the structure contains more components than the
previous one due the fact that the clusters are fused into new
ones, thus increasing their size. To determine which clusters
are the most suitable, each level structure is usually analyzed
by algorithms that achieve the optimal cut.

Each fusion level is determined by a linkage algorithm
which selects the most suitable clusters. Special care is taken
in choosing an appropriate linkage method, since it directly

affects the final cluster set. In order to do so, a correlation
analysis between the original dataset and the resultant hierar-
chical clustering is performed through the calculation of the
cophenetic coefficient [46].Thus, all linkage methods may be
measured to obtain the best one from them.

Several linkagemethods such as complete, single, average,
median, or ward [47] were tested. The complete linkage (see
(9)) is the most suitable method for our datasets. The search
space for the complete linkage is focused on far clusters
attempting to avoid the local minima problem. Consider

distance (𝐴, 𝐵) : max
𝑡𝑖∈𝐴,𝑡𝑗∈𝐵

dist (𝑡𝑖, 𝑡𝑗) , (9)

where dist(𝑡𝑖, 𝑡𝑗) is the distance between the terms 𝑡𝑖 and 𝑡𝑗
and 𝐴, 𝐵 are term clusters.

A linkage algorithm also needs a metric to measure
distances between terms. In this paper, Euclidean distance
dist(𝑡𝑖, 𝑡𝑗) = √∑

𝑟
𝑘=1(𝑡𝑖[𝑤𝑘𝑖] − 𝑡𝑗[𝑤𝑘𝑗])

2 [47] is selected based
on empirical results.

Regarding software, a hierarchical clustering algorithm
was implemented (see Algorithm 1) in order to include a
cophenetic analysis to determine the best linkage method or
to calculate the optimal cut. The algorithm iterates over each
linkage method computing its associated hierarchy and com-
paring the correlation through a cophenetic analysis. Once
the best linkage method has been identified, its resultant
hierarchy is returned.

This implementation includes some operations such as
an improved internal distance matrix structure (line 2),
logic to restore the distance matrix (line 11), or manageable
structures to store each fused level of the hierarchy. These
basic operations were crucial to construct a competitive
system, reducing the elapsed time needed to build the model.

3.2.2. Optimal Cutting Selection. Once the hierarchy is built,
it is analyzed in order to determine the optimal level of the
final agglomeration.

Although several well-known solutions [47] may be
adapted to produce a feasible solution, some requirements
about cluster morphology are not totally satisfied.

(i) A final cohesive slice is considered as a normal
multivariate cluster if all components have a normal
distribution.

(ii) An optimal level is only composed of final cohesive
slices.

(iii) Large clusters have a smaller probability of following
a multivariate distribution than small ones.

(iv) The size and number of the final clusters must be
controlled.

(v) An optimal cutting composed of very small clusters
provides a better adjustment of the results (overfitting
problem) but increases computational costs. On the
contrary, taking only large clusters into account,
computational costs are amenably reduced but result
in a poorer fit.

8 BioMed Research International

⋱⋱
⋰

⋰⋰

· · ·

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 tm−3 tm−1 tmm−2t

l = h

l = h − 1

l = h − 2

l = 3

l = 2

l = 1

Figure 7: Hierarchical clustering dendogram.

Input:𝑀 is a dataset matrix 𝑑𝑛𝑋𝑡𝑚
LMS is a set of linkage methods

Result: Best agglomeration correspondence
(01) Truncate (𝑀);
(02) dmatrix← CalculateDistances (𝑀);
(03) bestAgglomeration← { };
(04) ccoef← 0;
(05) foreach linkage method lm of the set LMS do
(06) linkageLevelList← { };
(07) while Size (dmatrix) > 0 do
(08) linkageResult← ComputeLevelLinkage (lm, dmatrix);
(09) linkageLevelList← linkageLevelList ∪ {LinkageResult};
(10) UpdateDistanceMatrix (dmatrix, linkageResult);
(11) Restore (dmatrix);
(12) ccoefAux← CompCopheneticMatrix (linkageLevelList, dmatrix);
(13) if ccoef < ccoefAux then
(14) ccoef← ccoefAux;
(15) bestAgglomeration← linkageLevelList;
(16) return bestAgglomeration

Algorithm 1: Hierarchical clustering algorithm (pseudocode).

Therefore, we present a new algorithm to divide the
matrix into cohesive slices and support these requirements
(see Algorithm 2).

To evaluate each cluster, a Kolmogorof-Smirnov test with
Lilliefors correction [43] was used. Thus, each term in a
cluster is checked for a normal distribution, assuming that a
multivariate cluster is one in which each term is considered
normally distributed (𝑃 value greater than 0.05) [44]. In other
words, there is no evidence to reject the null hypothesis per
term and therefore that clustermay be considered as a normal
multivariate distribution.

3.3. Training and Prediction. This last step is focused on
parameterizing each kernel portion for training and predic-
tion scenarios.

Our implementation was built on the LibSVM [9] library.
Several parameters were set by taking into account the
LibSVM practical guide [40]. The cost parameter 𝐶 was
established to 1 according to a small margin, minimizing the
trade-off between wrong classified samples.

On the other hand, the kernel (10), defined as a RBF
and linear kernels composition (see Section 2.3) was param-
eterized based on the resultant clusters from the optimal
hierarchy level:

MLRBF (𝑑𝑖, 𝑑𝑗) = ⟨𝑑𝑖 [𝑡𝑎 ⋅ ⋅ ⋅ 𝑡𝑏] , 𝑑𝑗 [𝑡𝑎 ⋅ ⋅ ⋅ 𝑡𝑏]⟩⏟⏟⏟

Linear kernel

+

𝑝

∑

𝑘=1

RBF𝑘 (𝑑𝑖 [𝑡𝑘1 ⋅ ⋅ ⋅ 𝑡𝑘𝑙] , 𝑑𝑗 [𝑡𝑘1 ⋅ ⋅ ⋅ 𝑡𝑘𝑙]) ,

(10)

where 𝑝 = number of clusters in optimal level, RBF =

RBF kernel function, [𝑡𝑘1 ⋅ ⋅ ⋅ 𝑡𝑘𝑙] = terms of the cluster 𝑘, and
[𝑡𝑎 ⋅ ⋅ ⋅ 𝑡𝑏] = terms nongrouped in any cluster.

Recalling the main idea about identifying cohesive slices
to divide the matrix, each slice (cluster) is composed of
normal distribution terms and defined as a common pattern
(multivariate normal distribution). Clusters provide a simple

BioMed Research International 9

Input: LL is the best agglomeration
Result: Optimal hierarchy level

(01) optimalLevel← { };
(02) foreach level l in LL do
(03) counter← 0;
(04) foreach cluster c in l do
(05) test←MultiLillieforsTest (𝑐);
(06) if test is true then
(07) counter← +1;
(08) aux← NumClusters (l);
(09) if aux = counter then
(10) optimalLevel← l;
(11) else
(12) break; //Breaks outer loop
(13) return optimalLevel

Algorithm 2: Optimal hierarchy level algorithm (pseudocode).

Optimal cut

MLRBF di, dj

𝜎1 𝜎2 𝜎p

...

d1
d2

dn

Cluster1 Cluster2 Clusterp

(
t1 t2 t3 t4 tm
w11 w12 w13 w14 · · · wm1

w1n w2n w3n w4n · · · wmn

)w21 w22 w23 w24 · · · wm2

...
...

...
... ⋱

...
...

Class
Relevant

Relevant

Nonrelevant

𝜎i =
max{eigen values Ci }

size
· 4

()
Ci()()

Figure 8: Computing multikernel from optimal level.

way to parameterize RBF kernels in the proposedmultikernel
(see Figure 8).

Each 𝜎𝑖 parameter corresponding to a RBF kernel is
computed taking into account the maximum eigenvalue of
its associated cluster; specifically, for each term we compute
its eigenvalue to finally obtain the maximum by cluster (see
(11)). Note that all resultant values have been normalized to
prevent absolute eigenvalues, by enclosing them in a defined
range interval (0, 4] according the explanation in Section 2.3,
to get better results. Consider

𝜎𝑘 =
max {eigen values (𝐶𝑘)}

size (𝐶𝑘)
⋅ 4. (11)

On the other hand, those terms which are not included in
a cluster are enclosed by forming the linear kernel.

In addition, some changes in the input data were per-
formed in order to precompute themultikernel outputmatrix
due to the complexity of the proposed model.

In the training, eachmember in thematrix kernel is com-
puted by applying the MLRBF function over all document
vectors. However, the testing step differs in that each test
sample is computed against each train vector. To illustrate
it, Figure 9 shows how to compute the kernel matrix in a
training scenario.

4. Results and Discussion

This section includes several tests of preconfigured SVM
classifiers and the proposed multikernel from different view-
points: classification results, model building time perfor-
mance, and a comparative with other authors.

To evaluate the effectiveness of themodel, some statistical
measures were used: recall (fraction of relevant documents
that are correctly classified), precision (fraction of documents
correctly classified as relevant), 𝐹-measure (harmonic mean
between recall and precision), and kappa statistic (which
takes the output confusion matrix of an evaluation and
reduces it to one value).

As input dataset, the TREC Genomics 2005 corpus [13]
was chosen due to the similarity between relevant and
nonrelevant documents, offering more realistic classification
scenarios. In 2005, the TREC committee provided a set of
evaluation tasks to obtain valuable knowledge in biological
fields by applying information extraction techniques.

The track is divided in two tasks. One of them consists
in categorizing documents regarding different criteria (allele,
expression, gene ontology annotation, and tumor) in the
genomics domain.Thus, an ad hoc collection, extracted from
4.591.008 MEDLINE records, was prepared by experts to
support the task [13]. Having four criteria, resultant records
were reorganized to generate each respective corpus (see
Table 1).

According to the imbalance problem, only allele and go
annotation (GoA) corpora contain enough documents per
class to perform our tests applying the subsampling tech-
nique. expression and tumor corpuses contain few relevant
documents and the oversampling techniques or similar are
needed, as used in [13].

Documents were processed to get a suitable structure for
SVM classifiers (see Section 3). In addition, PCA was used to
determine linear combinations between terms, reducing their
amount considerably, and a random subsampling technique
to filter instances. Randomly generated subsets contain a
uniform distribution (1 : 1), that is, the same number of
documents per class. As shown below, it produces different
results because samples are not removed in the same order
each time they are applied. Thereby, we generated 10 datasets
per each corpus (allele and GoA) in order to get trusted
results.

Regarding to the parameterization, our multikernel con-
tains internal procedures to determine the most suitable
value for each kernel parameter during the classification
process (see previous sections). As preconfigured classi-
fiers do not provide automatic methods to get a suitable
configuration, sigmoid and RBF parameters (gamma and
sigma, resp.) were determined by brute-force. Brute-force
was implemented as a grid search, included in the Lib-
SVM library [40], under a set of predefined range values
{0.03125, 0.0625, 0.125, 0.25, 0.5, 1.0, 2.0, 4.0}. Gamma values
(sigmoid case) were reduced to [0, 4] taking into account the
performed empirical tests. In addition, cost SVM parameter
was set to 1 for MLRBF case, to obtain a small-margin hyper-
plane due to its high precision. On the preconfigured kernels

10 BioMed Research International

w11 w21 · · · wm1

w12 w22 · · · wm2

...
... ⋱

...
w15 w25 · · · wm5

...
... ⋱

...
w1j w2j · · · wmn

k d1, d1 · · ·
· · ·

...
...

... ⋱
...

· · ·

...
...

... ⋱
...

· · ·

⌊

⌈⌉⌉
⌉⌉⌉⌉
⌉

⌊

⌈⌉⌉⌉⌉⌉⌉⌉...

...

Class
Relevant

Relevant

Unrelevant

Unrelevant
...

...

d1
d2

dn

d5

...

...

d1
d2

dn

d5

K dj, dj

t1 t2 tm d1 d2 d3 dn· · ·· · · ()
k d1, d5()
k d1, dn()
k d1, d2() k d2, d1()

k d2, d5()
k d2, dn()
k d2, d2() k d3, d1()

k d3, d5()
k d3, dn()
k d3, d2() k dn, d1()

k dn, d5()
k dn, dn()
k dn, d2()

()
⌉

⌊

⌈⌉⌉
⌉⌉⌉⌉
⌉⌉ ⌉

⌊

⌈⌉⌉⌉⌉⌉⌉⌉
⌉

Figure 9: Building the kernel matrix.

Table 1: Number of documents of the experimental corpora.

Corpus
Criteria

TRAIN TEST
Total Relevant Nonrelevant Total Relevant Nonrelevant

A (alelle) 5837 338 5499 6043 332 5711
E (expression) 5837 81 5756 6043 105 5938
G (GO annotation) 5837 462 5375 6043 518 5525
T (tumor) 5837 36 5801 6043 20 6023

it was determined by the previous grid-search algorithm
under a soft-margin range [2−5,25].

Table 2 shows a comparison between preconfigured clas-
sifiers and ourmodel. Precision, recall, kappa, and𝐹-measure
statistics were considered to measure the quality of each
model. Results were grouped by their minimum (Min),
maximum(Max), and average (Avg) values due to the amount
of test cases per classifier.

Tests were performed in an Intel Core i7 at 3.8 Ghz
with 8Gb of RAM. They were restricted to one execution
thread because preconfigured classifiers on LibSVM [9] are
implemented under a single execution thread.

With the results, we can conclude that the multikernel
obtains competitive values on both corpuses, and it presents
a steady behavior in almost all situations compared to other
classifiers. The average statistic shows which multikernel
obtained the most stable results. As the subsampling tech-
nique produces random datasets, if the instances are easily
separable by single kernels similar results to our proposed
multikernel may be obtained. However, if the instances of
different classes are too close, a hyperplane may be extremely
difficult to trace since it has only one kernel.Thus, best results
on average statistics like recall (0.823), precision (0.893), or
𝐹-measure (0.858) were achieved by our model on both
corpuses.

Table 2 also helps to identify which kernels got maximum
or poor results by statistic. Concerning to the allele case, the
Sigmoid kernel got somemaximum results on the 𝐹-measure
(0.888) or recall (0.882) with gamma values close to zero, but
its average or minimum stats are lower than those obtained
by the multikernel. The behavior of the linear kernel was
very similar to our model, obtaining a maximum peak on

precision (0.913). Finally, the RBF got the worst results (sigma
values close to 0).

Regarding the GoA corpus, best results were achieved
by MLRBF in almost all cases, except recall (Max case),
demonstrating that, on those corpuses which are not easily
separable on original space (linear case), our multikernel
offers results with high values on precision and recall statis-
tics, as a consequence of a very accurate hyperplane. We
would like to clarify that the RBF kernel got a high value on
the recall statistic at the expense of other stats, achieving poor
results on the kappa statistic, meaning that classes were not
correctly trained. Therefore, we can conclude that the RBF
kernel is not suitable for the GoA corpus.

Table 3 shows the time to build a model respect a specific
corpus, divided by folds.

As shown, the building time on linear andMLRBFkernels
presents a similar steady growth because the parametrization
time of our model is almost constant and linear kernels do
not have parameters. Even so, the needed time to configure
a linear-SVM is around 1/3 less than MLRBF with regard to
allele and a bit less on GoA.

On the other hand, RBF and Sigmoid kernels enclose
a high runtime cost because their parameterizations are
determined by an external technique. Note that the brute-
force cost increases depending on the search space size.

To conclude, the MLRBF kernel offers a good solution
with low runtime cost compared with RBF or Sigmoid
kernels, but the linear still continues getting the lowest cost.

As a final analysis, a comparison with other authors is
included. The TREC 2005 Overview [13] document offers a
wide explanation about tasks, tests, and results performed in
the competition. Note that the categorization task is focused

BioMed Research International 11

Table 2: Comparative results between preconfigured classifiers and the proposed model.

Statistics Classifiers
Linear RBF Sigmoid MLRBF

Allele
Precision

Min 0.840 0.645 0.830 0.860
Avg 0.891 0.725 0.855 0.893
Max 0.913 0.855 0.895 0.910

Recall
Min 0.741 0.652 0.745 0.771
Avg 0.803 0.755 0.818 0.823
Max 0.834 0.834 0.882 0.834

𝐹-measure
Min 0.800 0.650 0.795 0.810
Avg 0.847 0.735 0.836 0.858
Max 0.872 0.844 0.888 0.870

Kappa
Min 0.712 0.542 0.718 0.719
Avg 0.729 0.610 0.731 0.732
Max 0.754 0.692 0.778 0.746

GoA
Precision

Min 0.621 0.472 0.701 0.732
Avg 0.653 0.493 0.729 0.753
Max 0.689 0.501 0.759 0.780

Recall
Min 0.584 0.496 0.619 0.641
Avg 0.617 0.640 0.662 0.674
Max 0.639 0.797 0.686 0.707

𝐹-measure
Min 0.602 0.490 0.657 0.702
Avg 0.635 0.552 0.694 0.713
Max 0.652 0.614 0.719 0.742

Kappa
Min 0.227 −0.07 0.355 0.450
Avg 0.289 −0.01 0.416 0.478
Max 0.337 0.002 0.450 0.508

Table 3: Time (seconds) needed to build a model per number of folds.

Classifiers Folds
1 2 3 4 5 6 7 8 9 10

Allele
Linear 4 s 9 s 13 s 17 s 21 s 26 s 30 s 34 s 39 s 43 s
MLRBF 15 s 31 s 46 s 62 s 77 s 93 s 108 s 124 s 139 s 155 s
Sigmoid 36 s 72 s 108 s 144 s 180 s 216 s 252 s 288 s 324 s 360 s
RBF 44 s 88 s 132 s 176 s 220 s 264 s 308 s 352 s 396 s 440 s

GoA
Linear 7 s 14 s 21 s 28 s 35 s 42 s 49 s 56 s 63 s 70 s
MLRBF 35 s 70 s 105 s 140 s 175 s 210 s 245 s 280 s 315 s 350 s
Sigmoid 40 s 80 s 120 s 160 s 200 s 240 s 280 s 320 s 360 s 400 s
RBF 56 s 112 s 168 s 224 s 280 s 336 s 392 s 448 s 504 s 560 s

12 BioMed Research International

Table 4: Comparative against other authors (data source TREC 2005 [13]).

Precision Recall 𝐹-score Tag Tag 𝐹-score Recall Precision

Allele

0.910 0.834 0.870 MLRBF MLRBF 0.742 0.708 0.780

GoA

0.541 0.867 0.666 THUIRgA0p9x gibmadz05m1 0.423 0.617 0.321
0,507 0.900 0.649 aibmadz05m1 gibmadz05m2 0.420 0.621 0.317
0,502 0.900 0.645 aibmadz05m2 gibmadz05s 0.415 0.583 0.322
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0.233 0.259 0.245 aLRIk1 gLRIk2 0.101 0.102 0.100
.0.230 0.250 0.239 aLRIk2 gMUSCUIUC2 0.100 0.173 0.070
0.219 0.262 0.238 aLRIk3 gLRIk1 0.097 0.102 0.093

Min 0.219 0.250 0.238 0.097 0.102 0.070 Min
Avg 0.357 0.893 0.506 0.318 0.650 0.210 Avg
Max 0.795 0.957 0.666 0.423 0.936 0.554 Max

on how to maximize the number of relevant documents that
are correctly classified (recall), putting aside other stats like
precision or 𝐹-measure. In order to compare our system
against other authors we reorganized the results based on the
𝐹-measure (𝐹-score) stat.

Table 4, extracted from TREC 2005 Overview, shows a
comparison against other works of the conference. As seen,
MLRBF offers trusted results with high precision (0.9102) on
allele and 0.780 on GoA.

Several solutions on TREC were developed as a statistical
system based on a semisupervised learning and modulating
the original dataset under the medline mesh domain. Best
results for other authors were achieved only if the mesh
domain is used and no other data transformation is con-
sidered. Otherwise, applying other domains and building
balanced systems, their results were similar to our system.

In conclusion, MLRBF may offer good results on general
scenarios, even though a specific term domain is not speci-
fied.

5. Conclusions and Future Work

In this research, we present a new multikernel for SVM
classifiers. The model divides the dataset in small portions to
assign an independent kernel which is adjusted to take into
account the containment of its slice.

The multikernel offers a stable behavior, thus avoiding
some difficulties from text datasets. It achieved the best
average results compared to other classifiers and some peaks
as maximum values on precision or 𝐹-measure on allele
corpus. Regarding GoA, our model got the best results in
almost all statistics except for recall, in which the RBF kernel
got better results keeping aside other stats.

With regard to runtime cost, the multikernel approach
obtains a steady growth curve similar to linear kernel. Even
so, MLRBF needs less time to completely build the model
than RBF or Sigmoid.

At the end, we compare the novel model against other
existing works in TREC 2005 competition, concluding that
our system raises results under a high precision and 𝐹-
measure stats even though a specific domain was not spec-
ified.

As future lines of work, we are going to focus our effort
on reducing the computational cost of the preprocessing step
when applying subsampling, which is known to produce
different results because samples are not removed in the same
order each time they are applied.

We are going to focus our effort on developing a prepro-
cessing step which helps to avoid the quadratic programming
cost, while at the same time solving the problem associated
with applying the subsampling technique.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work has been funded by the European Union Seventh
Framework Programme [FP7/REGPOT-2012-2013.1] under
Grant agreement no. 316265, BIOCAPS, the “Platform of
integration of intelligent techniques for analysis of biomedical
information” project (TIN2013-47153-C3-3-R) from Spanish
Ministry of Economy and Competitiveness and the [14VI05]
Contract-Programme from the University of Vigo.

References

[1] G. Salton and C. Buckley, “Term-weighting approaches in auto-
matic text retrieval,” Information Processing and Management,
vol. 24, no. 5, pp. 513–523, 1988.

[2] R. Barandela, J. S. Sanchez, V. Garcia, and E. Rangel, “Strategies
for learning in class imbalance problems,” Pattern Recognition,
vol. 36, no. 3, pp. 849–851, 2003.

[3] G. M. Weiss, “Mining with rarity: a unifying framework,” ACM
SIGKDD Explorations Newsletter, vol. 6, pp. 7–19, 2004.

[4] S. Tan, “Neighbor-weighted K-nearest neighbor for unbalanced
text corpus,” Expert Systems with Applications, vol. 28, no. 4, pp.
667–671, 2005.

[5] L. Borrajo, R. Romero, E. L. Iglesias, and C.M. RedondoMarey,
“Improving imbalanced scientific text classification using sam-
pling strategies and dictionaries,” Journal of Integrative Bioinfor-
matics, vol. 8, no. 3, p. 176, 2011.

BioMed Research International 13

[6] P. Kang and S. Cho, “EUS SVMs: ensemble of under-sampled
SVMs for data imbalance problems,” in Neural Information
Processing, vol. 4232 of Lecture Notes in Computer Science,
chapter 93, pp. 837–846, Springer, Berlin, Germany, 2006.

[7] R. Romero, E. L. Iglesias, and L. Borrajo, “Building biomedical
text classifiers under sample selection bias,” in International
Symposium on Distributed Computing and Artificial Intelligence,
vol. 91 of Advances in Intelligent and Soft Computing, pp. 11–18,
Springer, Berlin, Germany, 2011.

[8] R. Romero, E. L. Iglesias, L. Borrajo, and C. M. R. Marey,
“Using dictionaries for biomedical text classification,” Advances
in Intelligent and Soft Computing, vol. 93, pp. 365–372, 2011.

[9] C.-C. Chang and C.-J. Lin, “LIBSVM: a Library for support
vector machines,” ACM Transactions on Intelligent Systems and
Technology, vol. 2, no. 3, article 27, 2011.

[10] K.-K. Tseng, Y. Li, C.-Y. Hsu, H.-N. Huang, M. Zhao, and M.
Ding, “Computer-assisted system with multiple feature fused
support vector machine for sperm morphology diagnosis,”
BioMed Research International, vol. 2013, Article ID 687607, 13
pages, 2013.

[11] T. W. Pai, H. W. Wang, Y. C. Lin, and H. T. Chang, “Prediction
of B-cell linear epitopes with a combination of support vector
machine classification and amino acid propensity identifica-
tion,” Journal of Biomedicine andBiotechnology, vol. 2011, Article
ID 432830, 12 pages, 2011.

[12] W. Zhang, T. Yoshida, and X. Tang, “Text classification based
onmulti-word with support vector machine,” Knowledge-Based
Systems, vol. 21, no. 8, pp. 879–886, 2008.

[13] W. Hersh, A. Cohen, J. Yang, R. T. Bhupatiraju, P. Roberts,
and M. Hearst, “TREC 2005 genomics track overview,” in
Proceedings of the 14th Text Retrieval Conference (TREC ’05), pp.
14–25, November 2005.

[14] M. Gönen and E. Alpaydın, “Multiple kernel learning algo-
rithms,” Journal of Machine Learning Research, vol. 12, pp. 2211–
2268, 2011.

[15] N. Cristianini and J. Shawe-Taylor, An Introduction to Support
Vector Machines: And Other Kernel-based Learning Methods,
Cambridge University Press, New York, NY, USA, 2000.

[16] A. Ben-Hur and W. S. Noble, “Kernel methods for predicting
protein-protein interactions,” Bioinformatics, vol. 21, supple-
ment 1, pp. i38–i46, 2005.

[17] I. M. de Diego, J. M. Moguerza, and A. Muñoz, “Combining
kernel information for support vector classification,” inMultiple
Classifier Systems, F. Roli, J. Kittler, and T. Windeatt, Eds., vol.
3077, pp. 102–111, Springer, Berlin, Germany, 2004.

[18] I. M. de Diego, A. Muñoz, and J. M. Moguerza, “Methods for
the combination of kernel matrices within a support vector
framework,”Machine Learning, vol. 78, no. 1-2, pp. 137–174, 2010.

[19] F. R. Bach, G. R. G. Lanckriet, andM. I. Jordan, “Multiple kernel
learning, conic duality, and the SMO algorithm,” in Proceedings
of the 21st International Conference onMachine Learning (ICML
’04), pp. 41–48, ACM, New York, NY, USA, July 2004.

[20] C. Igel, T. Glasmachers, B. Mersch, N. Pfeifer, and P. Meinicke,
“Gradient-based optimization of kernel-target alignment for
sequence kernels applied to bacterial gene start detection,”
IEEE/ACM Transactions on Computational Biology and Bioin-
formatics, vol. 4, no. 2, pp. 216–226, 2007.

[21] T. Damoulas and M. A. Girolami, “Pattern recognition with
a Bayesian kernel combination machine,” Pattern Recognition
Letters, vol. 30, no. 1, pp. 46–54, 2009.

[22] M. Girolami and S. Rogers, “Hierarchic bayesian models for
kernel learning,” in Proceedings of the 22nd International Con-
ference on Machine Learning (ICML ’05), pp. 241–248, August
2005.

[23] K. P. Bennett, M. Momma, and M. J. Embrechts, “MARK:
a boosting algorithm for heterogeneous kernel models,” in
Proceedings of the 8th ACM SIGKDD International Conference
onKnowledgeDiscovery andDataMining, pp. 24–31, ACM,New
York, NY, USA, July 2002.

[24] J. Bi, T. Zhang, and K. P. Bennett, “Column-generation boosting
methods for mixture of kernels,” in Proceedings of the 10th ACM
SIGKDD International Conference on Knowledge Discovery and
DataMining (KDD ’04), pp. 521–526, NewYork, NY, USA, 2004.

[25] J. B. Lovins, “Development of a stemming algorithm,”Mechani-
cal Translation and Computational Linguistics, vol. 11, pp. 22–31,
1968.

[26] M. F. Porter, “An algorithm for suffix stripping,” Program, vol.
14, no. 3, pp. 130–137, 1980.

[27] J. Zhang and I. Mani, “kNN approach to unbalanced data
distributions: a case study involving information extraction,”
in Proceedings of the Workshop on Learning from Imbalanced
Datasets (ICML’03), 2003.

[28] Q. Zou, Z. Wang, X. Guan, B. Liu, Y. Wu, and Z. Lin, “An
approach for identifying cytokines based on a novel ensemble
classifier,” BioMed Research International, vol. 2013, Article ID
686090, 11 pages, 2013.

[29] A. Estabrooks, T. Jo, and N. Japkowicz, “A multiple resampling
method for learning from imbalanced data sets,”Computational
Intelligence, vol. 20, no. 1, pp. 18–36, 2004.

[30] S. R. Garner, “WEKA: theWaikato environment for knowledge
analysis,” in Proceedings of the New Zealand Computer Science
Research Students Conference, pp. 57–64, 1995.

[31] R. Romero, E. L. Iglesias, andL. Borrajo, “A comparative analysis
of balancing techniques and attribute reduction algorithms,”
in 6th International Conference on Practical Applications of
Computational Biology & Bioinformatics, vol. 154 of Advances
in Intelligent and Soft Computing, pp. 87–94, Springer, Berlin,
Germany, 2012.

[32] I. T. Jolliffe, Principal Component Analysis, Springer, New York,
NY, USA, 2nd edition, 2002.

[33] S. Kim, H. Rim, D. Yook, and H. Lim, “Effective methods for
improving Näıve Bayes text classifiers,” in Proceedings of the 7th
Pacific Rim International Conference on Artificial Intelligence:
Trends in Artificial Intelligence (PRICAI ’02), pp. 414–423,
Springer, 2002.

[34] Y. Tang, Y.-Q. Zhang, and N. V. Chawla, “SVMs modeling for
highly imbalanced classification,” IEEETransactions on Systems,
Man, and Cybernetics, Part B: Cybernetics, vol. 39, no. 1, pp. 281–
288, 2009.

[35] S. Ali and K. A. Smith, “Automatic parameter selection for
polynomial kernel,” in Proceedings of the IEEE International
Conference on Information Reuse and Integration (IRI ’03), pp.
243–249, 2003.

[36] C.-H. Li, H.-H. Ho, Y.-L. Liu, C.-T. Lin, B.-C. Kuo, and J.-
S. Taur, “An automatic method for selecting the parameter of
the normalized kernel function to support vector machines,”
Journal of Information Science and Engineering, vol. 28, no. 1,
pp. 1–15, 2012.

[37] B. Scholkopf and A. Smola, Learning with Kernels: Support
Vector Machines, Regularization, Optimization, and Beyond,
MIT Press, Cambridge, Mass, USA, 2001.

14 BioMed Research International

[38] T. Hill and P. Lewicki, Statistics, Methods and Applications,
StatSoft, Tulsa, Okla, USA, 2007.

[39] J. T. Chang, S. Raychaudhuri, and R. B. Altman, “Including
biological literature improves homology search,” in Proceedings
of the Pacific Symposium on Biocomputing, pp. 374–383, 2001.

[40] C. Hsu, C. Chang, and C. Lin, A practical guide to support
vector classification, 2010.

[41] H. Cunningham, Y. Wilks, and R. J. Gaizauskas, “GATE—a
general architecture for text engineering,” in Proceedings of the
16thConference onComputational Linguistics (COLING ’96), pp.
1057–1060, Copenhagen, Denmark, August 1996.

[42] D. H. Fisher, “Knowledge acquisition via incremental concep-
tual clustering,”Machine Learning, vol. 2, no. 2, pp. 139–172, 1987.

[43] A. Chernobai, S. Rachev, and F. Fabozzi, Composite Goodness-
of-Fit Tests for Left-Truncated Loss Samples, Department of
Statistics and Applied Probability, University of California,
Santa Barbara, Calif, USA, 2005.

[44] B. F. J. Manly, Multivariate Statistical Methods: A Primer,
Chapman & Hall, New York, NY, USA, 2nd edition, 1994.

[45] D. Arthur and S. Vassilvitskii, “k-Means ++: The advantages of
carefull seeding,” in Proceedings of the 18th Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 1027–1035, 2007.

[46] J. S. Farris, “On the cophenetic correlation coefficient,” System-
atic Zoology, vol. 18, no. 3, pp. 279–285, 1969.

[47] I. H. Witten and E. Frank, Data Mining: Practical Machine
Learning Tools and Techniques, MorganKaufmann, 2nd edition,
2005.

