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Abstract

Background: Saccharomyces cerevisiae is the first eukaryotic organism for which a multi-compartment genome-
scale metabolic model was constructed. Since then a sequence of improved metabolic reconstructions for yeast
has been introduced. These metabolic models have been extensively used to elucidate the organizational
principles of yeast metabolism and drive yeast strain engineering strategies for targeted overproductions. They
have also served as a starting point and a benchmark for the reconstruction of genome-scale metabolic models for
other eukaryotic organisms. In spite of the successive improvements in the details of the described metabolic
processes, even the recent yeast model (i.e., iMM904) remains significantly less predictive than the latest E. coli
model (i.e., iAF1260). This is manifested by its significantly lower specificity in predicting the outcome of grow/no
grow experiments in comparison to the E. coli model.

Results: In this paper we make use of the automated GrowMatch procedure for restoring consistency with single
gene deletion experiments in yeast and extend the procedure to make use of synthetic lethality data using the
genome-scale model iMM904 as a basis. We identified and vetted using literature sources 120 distinct model
modifications including various regulatory constraints for minimal and YP media. The incorporation of the
suggested modifications led to a substantial increase in the fraction of correctly predicted lethal knockouts (i.e.,
specificity) from 38.84% (87 out of 224) to 53.57% (120 out of 224) for the minimal medium and from 24.73% (45
out of 182) to 40.11% (73 out of 182) for the YP medium. Synthetic lethality predictions improved from 12.03% (16
out of 133) to 23.31% (31 out of 133) for the minimal medium and from 6.96% (8 out of 115) to 13.04% (15 out of
115) for the YP medium.

Conclusions: Overall, this study provides a roadmap for the computationally driven correction of multi-
compartment genome-scale metabolic models and demonstrates the value of synthetic lethals as curation agents.

Background
Saccharomyces cerevisiae is the first eukaryote whose
genome was fully sequenced and annotated [1]. It has
since then been the focus of many genome-scale recon-
struction efforts. Forster et al [2] reconstructed the first
multi-compartment genome-scale metabolic model for
yeast (i.e., iFF708). The model accounted for 708 open
reading frames (ORFs) (~10.5% of all ORFs) and 1,175
metabolic reactions. The metabolic reactions for this
model were compartmentalized between cytosol and
mitochondria. Transport mechanisms between these two

compartments as well as between the environment and
cytosol were included in the model. Soon thereafter, the
iND750 model was introduced, which included five
additional compartments (i.e., peroxisome, nucleus, golgi
apparatus, vacuole and endoplasmic reticulum) by re-
assessing the localization of gene products [3]. In a par-
allel study [4], the predictive capability of iFF708 was
improved through a number of modifications in the bio-
mass equation and the removal of blocked reactions
(iLL672 model). Subsequently, another version of the
yeast metabolic model with an improved description of
the lipid metabolism containing 800 genes and 1,446
reactions (i.e., iIN800) was introduced by Nookaew et al
[5]. These improvements to the yeast model culminated
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with the iMM904 model [6] that increased the size of
iND750 to 904 genes and 1,412 reactions. All these
metabolic reconstruction efforts were carried out largely
independently of one another using different data
sources or in some cases different interpretations of the
same literature evidence. This lack of consistency moti-
vated the yeast systems biology community to consoli-
date all available metabolic models into a single
consensus reconstruction and annotation model [7].
This model has been updated regularly since it was pub-
lished and the latest version (i.e., Yeast 4.0) contains, in
decompartmentalized form, 1102 reactions and 924 pro-
teins [8].
Despite all these efforts there still exists a gap in the

quality between the available metabolic reconstructions
for yeast and corresponding models for microbial meta-
bolism. Table 1 summarizes the quality metrics for the
E. coli [9], M. genitalium [10], B. subtilis [11], P. putida
[12], H. pylori [13] and Salmonella Typhimurium [14]
latest genome-scale models when growth predictions are
contrasted against experimental data for single gene
deletions. As shown in this table, the accuracy (i.e., the
fraction of correctly predicted lethal knockouts) of the
iMM904 metabolic model of the yeast is significantly
worse than any one of corresponding microbial models.
This is partly caused by uncertainty in enzyme localiza-
tion and inter-compartment metabolite transport in
yeast [15]. This implies that a draft model reconstruc-
tion followed by even a detailed manual curation may
not be a sufficient strategy to bring a eukaryotic gen-
ome-scale model to the same quality level as a microbial
one. Here we explore the extent of model correction
that can be brought about by systematically comparing
the model predictions for single and multiple gene dele-
tions with available experimental data.
The established standard [15] for testing the accuracy

of genome-scale metabolic models is to contrast the
predicted growth phenotype of single mutant strains
with the available experimental data under various
growth conditions [6,9,16,17]. These comparisons result
in four different outcomes [18]: GG or NGNG when

both model and experimental data either imply growth
(G) or no growth (NG) for the mutant strain, NGG
when the model predicts that the gene deletion is lethal
but the experiment shows that it is viable, and finally
GNG when the model predicts that the mutant strain
would be viable but in vivo observations show a lethal
effect. Reed et al [19] proposed a systems analysis
approach to restore growth for NGGs for a variety of
growth media through the addition of appropriate meta-
bolic and transport functions to the model. In another
study, Satish Kumar et al [20] introduced GapFind and
GapFill, to first identify metabolites that cannot be pro-
duced or consumed in the model under any uptake con-
ditions and then bridge these gaps by adding missing
functionalities to the model. Subsequently, another pro-
cedure termed GrowMatch [18] was proposed to recon-
cile both NGG and GNG growth prediction
inconsistencies across different substrates (see Orth and
Palsson [21] for a review). Notably, in the GrowMatch
procedure [18], the GNG mismatches are corrected by
modifying the metabolic model so as to convert them to
NGNGs. Alternatively, Motter et al [22,23] suggested to
reconcile GNGs by identifying candidate gene knockouts
that can restore the growth of the mutants that were
initially non-viable in vivo.
Recent studies have suggested that making use of not

only single gene deletion information but also synthetic
lethal pairs or (higher orders) can provide an additional
layer for curation and validation of metabolic models.
Harrison et al [24] showed that the investigation of fal-
sely predicted synthetic lethals of S. cerevisiae can help
to improve functional annotation. Furthermore, recent
research by our group [25] demonstrated that mis-
matches between both growth and auxotrophy pheno-
types of synthetic lethal predictions and in vivo
observations can be used to provide 19 model correction
hypotheses for the iAF1260 model of E. coli. In this
paper, we modify and deploy automated approaches
[18,20] for resolving falsely predicted single and multiple
gene deletions under aerobic minimal and a complex
(YP) medium, through the generation of appropriate

Table 1 Accuracy of microbial metabolic models vs iMM904 model.

Microorganism Name of the metabolic model Specificity (%) Reference

Saccharomyces cerevisiae iMM904 38.8 [6] and this study

Escherichiae coli iAF1260 73.4 [9]

Mycoplasma genitalium iPS189 79.0 [10]

Bacillus subtilis iBSU1103 89.3 [11]

Pseudomonas putida - 74.5 [12]

Helicobacter pylori iIT341 GSM/GPR 73.0 [13]

Salmonella Typhimurium iMA945 66.7 [14]

Comparison of the fraction of correctly predicted lethal knockouts (i.e., specificities) of microbial genome-scale metabolic models against the yeast iMM904
model for single gene mutation experiments.
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model-correction hypotheses for the iMM904 model of
the yeast. We chose iMM904 for this study because it
contains biomass composition and reaction reversibility
information making it suitable for performing FBA com-
putations. Following the workflow presented in this
paper we pinpointed 90 model corrections and identified
30 missing regulatory constraints with supporting litera-
ture evidence that almost doubled the prediction accu-
racy of the growth phenotype of single and double gene
deletions under aerobic minimal and YP media for the
iMM904 model. Examples of literature evidence include
interaction of two proteins to support a modification in
GPR associations, presence of a specific compound in
the cell wall to corroborate its inclusion in the biomass
equation, or gene expression data to confirm suppres-
sion of a gene under a given condition. The majority of
modifications proposed here (i.e., 86% of them) remain
relevant even for the latest update of the community
yeast model (Yeast 4.0) [8].

Results and discussion
Single gene perturbations
Analysis of the impact of single gene or reaction dele-
tions on the growth phenotype (for the iMM904 model)
revealed 106 essential genes and 163 essential reactions
for growth using a minimal medium as well as 57 essen-
tial genes and 92 essential reactions for the YP medium.
We contrasted the predicted essential genes in both
media to the experimental single gene deletion data
reported by Kuepfer et al [4] to pinpoint any model
inconsistencies. A summary of the model/experiment
(mis)matches is given in Figure 1A and 1B (see Addi-
tional file 1 for details). We note that the two metrics
specificity and sensitivity in this figure represent the
fraction of correctly predicted lethal and viable mutants,
respectively. Comparing the accuracy of the iMM904
model with iFF708 (specificity = 68.2%) [2,26] for
growth using YP medium, we find that there is a signifi-
cant reduction in specificity. This reduction is primarily
due to uncertainties associated with the assignment of
functionalities to compartments as well as the expansion
of the model with less studied reactions, as pointed out
earlier [15]. We applied the computational procedures
described in the Methods section to reconcile these false
predictions with the experimental growth. We note that
all reaction and metabolite abbreviations throughout
this manuscript are based on the iMM904 model.
Resolution of NGG inconsistencies
As denoted in Figure 1A and 1B, we identified 19 NGGs
for the minimal and 14 for the YP medium. A summary
of the pathways in which the NGGs for both growth
media are involved is given in Additional file 1. The first
step towards resolution of NGGs in the GrowMatch
procedure is to look for alternate genes in yeast capable

of carrying the same function but absent from the
model or specific gene-protein-reaction (GPR) associa-
tions [18]. A bidirectional protein-protein BLAST (i.e.,
BLASTp) search against the S. cerevisiae genome
revealed that seven of the genes involved in NGGs
under the minimal medium and three under the YP
medium share significant sequence similarity over the
entire length of protein (i.e., forward and backward
BLASTp expectation value of less than 10-13) with other
ORFs in yeast. We however, rejected three such resolu-
tion strategies in the minimal medium and one in the
YP medium due to contradicting experimental evidence
(see Additional file 2 for details). Alternative correction
strategies for the resolved NGGs were also explored.
Two NGG inconsistencies under the minimal medium
and one under the YP medium were resolved by relax-
ing the irreversibility of at least two reactions. For exam-
ple, the deletion of gene ADK1 (YDR226W), which is
involved in nucleoside salvage pathway, becomes non-
lethal by treating any of the reactions ADPT (Adenine
phosphoribosyltransferase), HXPRT (Hypoxanthine
phosphoribosyltransferase (Hypoxanthine)), UPPRT
(Uracil phosphoribosyltransferase) or GUAPRT (Gua-
nine phosphoribosyltransferase) as reversible. The rever-
sibility of these reactions was further supported based
on the value of free Gibbs energy change, ΔG, or pre-
vious reports in literature [27-30] (also see Additional
file 2). Notably, relaxing the irreversibility constraint on
any of these reactions enables the production of prpp
(5-phospho-alpha-D-ribose 1-diphosphate), which serves
as a precursor for many biomass components.
Upon incorporation of these two global modifications

in the model, we pursued the resolution of additional
NGGs by adding transport reactions or reactions from
the KEGG database [31] (see Methods). We were able to
reconcile the growth inconsistencies for two NGGs in
the minimal medium by this method. For example, ADE8
(YDR408C), which codes for reaction GARFTi (phos-
phoribosylglycinamide formyltransferas) was fixed by
adding reaction R06974 (glycinamide ribonucleotide
transformylase) to the model. GARFTi that serves as a
step in the de novo purine nucleotide biosynthetic path-
ways is the only reaction in the model responsible for
producing the essential metabolite fgam (N2-Formyl-N1-
(5-phospho-D-ribosyl)glycinamide). Addition of reaction
R06974 to the model provides an alternative way of pro-
ducing fgam that can compensate for the absence of
GARFTi. By performing the BLAST bi-directional test we
identified an ORF in the yeast genome (i.e., ADE2) with
very high sequence similarity (forward E-value = 3 ×
10-24 and backward E-value = 3 × 10-24) with the enzyme
phosphoribosylglycinamide formyltransferase 2 (EC
2.1.2.-) catalyzing R06974 in Methanococcus jannaschii,
which supports the presence of this reaction in yeast.
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Except for two cases (i.e., RIB1 and RIB4), all other
NGGs identified for the YP medium are also present
and therefore corrected when considering the mini-
mal medium. Both RIB1 (YBL033C) and RIB4
(YOL143C) are fixed not by modifying the iMM904
model but by adding missing compounds to the
in silico YP medium description. Both of these genes
are involved in riboflavin (vitamin B2) biosynthesis,
which is a biomass precursor. Because yeast extract is
reported to be a major source of vitamin B2 [32], we
decided to add riboflavin to the list of components in

the in silico YP medium. This renders the deletion of
RIB1 and RIB4 non-lethal. Notably, the importance of
correctly describing the medium composition in
growth phenotype predictions has been raised in pre-
vious studies [26]. Overall, by using the GrowMatch
procedure along with literature searches we were able
to fix thirteen NGGs under the minimal medium and
eleven under the YP medium (see Figure 1). The
details of this analysis together with the evidence(s)
found in support of each modification are provided as
Additional file 2.

Figure 1 Accuracy of the iMM904 model before and after modifications using single gene perturbations. The number of false and
correct predictions of the iMM904 model before (A and B) and after (C and D) applying the modifications for single gene mutations under
minimal and YP media, respectively. Note that specificity = #NGNG/(#NGNG + #GNG), sensitivity or true viable rate (TVR) = #GG/(#GG + #NGG)
and false viable rate (FVR) = #GNG/(#GNG + #NGNG).
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Resolution of GNG inconsistencies
As shown in Figure 1A and 1B, a total of 137 GNG
inconsistencies in both minimal and YP media was iden-
tified with 128 of them jointly present. The distribution
of these genes across different functional classes of
metabolism revealed that most of them are involved in
tRNA charging, oxidative phosphorylation and extracel-
lular transport (see Additional file 1). Resolution of
these GNGs by GrowMatch generally involves suppres-
sion of incorrectly present alternative production routes
of biomass components in the model. The identified
GNGs are divided into three major categories based on
how they affect the flux distribution in the network [18].
The first category is comprised of genes coding for iso-
zymes alluding that the deletion of these genes should
not affect the reaction flux. A straightforward resolution
strategy in this case is to suppress the other gene(s)
whose product serves as isozyme for the coded reaction.
An alternative hypothesis is to modify the corresponding
GPR relationship so as to recast the deletion of that
gene as lethal. These resolution strategies would be
viable only if the coded reaction(s) are essential or form
synthetic lethal(s) according to the model. For example,
gene ACO1 (YLR304C), identified as a GNG under
minimal medium, is an isozyme (with ACO2) for mito-
chondrial aconitase (ACONTm) and also independently
catalyzes cytosolic aconitaase (ACONT) according to
the iMM904 model. Notably, reactions, ACONT and
ACONTm form a synthetic lethal pair under the mini-
mal medium according to the iMM904 model. We did
not find any evidence indicating that ACO2 is sup-
pressed under aerobic glucose condition. Instead, we
found that the protein coded for by ACO2 (Aco2p) is a
putative mitochondrial aconitase isozyme, whose func-
tion has been assigned only based on the sequence simi-
larity with Aco1p [33,34]. Therefore, we decided to
remove ACO2 from the GPR for ACONTm thus ren-
dering the deletion of ACO1 as lethal. This modification
is consistent with the latest update of the community
model [8]. Notably, another possibility is that ACO2 is
correctly assigned to ACONTm, but ACO1 is involved
in other unaccounted in the model essential functions
(e.g., mitochondrial DNA maintenance [35]) in addition
to its aconitase activity. We manage to fix five GNGs
under the minimal medium and three under the YP
medium by using this procedure.
The second category of GNGs contains genes that

code for blocked reactions, i.e., the reactions that cannot
carry any flux. This implies that even though the dele-
tion of these genes will not affect the flux distribution
in silico, their knockout is lethal in vivo. Resolution of
these inconsistencies involves first unblocking the coded
reactions and next rendering its deletion lethal under
the examined conditions. Notably, 52 of such these

GNGs code for reactions that are always blocked in the
model mainly due to the presence of a no-consumption
metabolite. One can thus resolve the inconsistency by
exploring whether the no-consumption metabolite is a
component of the biomass equation. Interestingly, we
found that 21 of such these GNGs code for tRNA char-
ging reactions that can be converted to NGNG consis-
tencies by including the charged and uncharged tRNA
molecules in place of the corresponding amino acids in
the biomass equation. This strategy has been previously
used in the reconstruction of the Salmonella metabolic
model [14]. For example, the GNG prediction for WRS1
(YOL097C), which codes for the blocked reaction
TRPTRS (Tryptophanyl tRNA synthetase), was corrected
by including charged tRNA (trptrna) and uncharged
tRNA (trantrp) as a reactant and product of the biomass
reaction, respectively. This modification simultaneously
unblocks reaction TRPTRS and renders it essential.
In many cases, including the no-consumption metabo-

lite of a blocked reaction encoded by a GNG into the
biomass equation was not a viable option as it also con-
verted some GG consistencies to NGG mismatches (i.e.,
a conditional modification). Using the GapFind proce-
dure [20] we found that such problem metabolites are
all upstream no-consumption, implying that they can be
fixed if their corresponding root (or one of its down-
stream) no-consumption metabolite(s) is resolved.
Therefore, we tested whether these GNGs can be fixed
globally, if the root or one of the downstream no-con-
sumption metabolites is included as a component of the
biomass equation. An additional seven GNGs corre-
sponding to blocked reactions were fixed by this method
but were not added to the list of proposed model modi-
fications due a lack of experimental validation (see
Additional file 2 for uncorroborated model changes).
We note that the incomplete description of the biomass
equation has been implicated as an important source of
false model predictions in earlier studies [3,4,26]. There-
fore, we exercised great caution when modifying the
biomass equation to fix an inconsistency. Corrections
were accepted only if solid corroborating literature evi-
dence was found.
Two other GNGs were identified to correspond to a

reaction that is blocked only under minimal conditions:
Genes MPH2 (YDL247W) and MPH3 (YJR160C) encode
isozymes catalyzing the transport of maltose from the
extra-cellular environment to cytosol (reaction MALTt2
in iMM904). This reaction is blocked since no maltose
is present in the minimal medium. Therefore, we
explored whether these two genes are also involved in
the transport of D-glucose (reaction GLCt1). A BLAST
bi-directional analysis revealed that both of these genes
have very high sequence similarity with glucose trans-
port genes. Interestingly, we found that previous studies
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have reported on the involvement of MPH2 and MPH3
in mediating residual glucose uptake [36].
The third category of GNGs contains genes whose

deletion affects the flux distribution in the network. To
rectify these mismatches we employed the original
GrowMatch procedure introduced in [18] and its modi-
fied version proposed in this study (see Methods) to
identify the minimal number of genes/reactions whose
suppression lower the biomass formation below the pre-
specified viability threshold. We performed this analysis
by allowing for up to two simultaneous gene/reaction
suppressions for each GNG leading to the correction of
18 inconsistencies under the minimal and 19 under the
YP medium. Twelve of these fixed GNGs in the minimal
medium and fourteen in the YP were excluded from the
list of corrected mismatches as we did not find any sup-
porting evidence in the literature. Overall, we fixed 33
GNGs in the minimal and 28 in the YP medium by glo-
bal modifications that do not conflict with any correctly
predicted growth phenotype for single gene mutants.
We note that 27 GNGs that appeared in both media
were corrected by the same mechanisms (see the Addi-
tional file 2 for the exhaustive list of corrections).
Upon incorporating into the model only the correc-

tions for NGGs and GNGs for which we found litera-
ture evidence, the accuracy of the iMM904 model was
substantially improved. The number of correctly pre-
dicted lethal knockouts (i.e., specificity) out of a total of
224 was increased from 87 to 120 for the minimal med-
ium and from 45 to 73 (out of a total of 182) for the YP
medium. The corresponding false viability rate (FVR)
was decreased from 61.16% to 46.43% for the minimal
medium and from 75.27% to 59.89% for the YP medium.
These results are summarized in Figure 1C and 1D.

Double gene perturbations
We employed the SL-Finder procedure [25] to identify
the set of all synthetic lethal (SL) gene pairs under both
minimal and YP media based on iMM9904 model of the
yeast. This analysis led to identification of 97 SL pairs in
the minimal medium and 42 in the YP medium. Model
SL prediction inconsistencies were identified by con-
trasting against the available experimentally identified
SLs (see Additional file 1 for a complete list of predicted
and experimentally identified synthetic lethal interac-
tions). As shown in Figure 2, this comparison reveals a
number of additional ways that model and experiment
may differ in their predictions. Notably, the “no growth”
phenotype in this case could be due to either essentiality
(ES) or synthetic lethality (SL) of the gene deletions. For
example, GES and GSL inconsistencies refer to cases
where the in silico deletion of a gene pair is not lethal
(i.e., Growth) but in vivo they are lethal due to gene
essentiality or synthetic lethality (i.e., ESsential or

Synthetic Lethal). Similarly, ESG and ESSL represent
mismatches where the single deletion of one of the
genes in silico is lethal (i.e., ESsential), however, their
simultaneous deletion in vivo results in either a viable
strain (i.e., Growth) or a lethal phenotype (i.e., Synthetic
Lethal), respectively. Finally, SLG and SLES denote
inconsistencies where the model implies that only the
double gene mutation is lethal (i.e., Synthetic Lethal) but
experimental observations support either growth (G) or
lethality of any of the two single gene deletions (i.e.,
ESsential), respectively.
In the following we describe how the restoration of

each type of these inconsistencies can be used to
improve the predictive capability of the iMM904 model.
In analogy to the definition of specificity for single gene
mutations, we define the specificity for double gene per-
turbations as the fraction of correctly predicted syn-
thetic lethals (SLSL), i.e., Specificity = #SLSL/(#SLSL +
#ESSL +# GSL). We do not comment on the resolution
of GES and ESG mismatches, as they are completely
equivalent to GNG and NGG inconsistencies. In addi-
tion, we note that all the model corrections are based
on the currently available incomplete list of experimen-
tally identified SLs.
Resolution of GSL inconsistencies
The GSL inconsistencies denote cases where the model
implies growth under the simultaneous deletion of two
genes while experimental results show a lethal effect. A

Figure 2 Different types of mismatches between in silico
predictions and in vivo observations for double gene
perturbations. The abbreviations G, ES and SL in this figure refer to
Growth, Essential and Synthetic Lethal, respectively. Here, ‘No Growth’
can be due to either essentiality or synthetic lethality of single or
double gene deletions.
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total of 104 GSLs in the minimal medium and 98 in the
YP medium were identified. We note that GSLs for dou-
ble perturbations can be treated similarly to the GNG
mismatches for single perturbations with the only differ-
ence that “no growth” in GNGs is due to the essentiality
of single genes whereas in GSLs it is the result of syn-
thetic lethality.
The strategy for fixing GSLs involved in coding for

isozymes is to repress the other genes coding for that
isozyme under the examined condition or modify the
GPR associations. When both genes code for isozymes
for the same reaction this resolution strategy is viable
only if that reaction is essential in silico. Alternatively,
when two genes are associated with two (or more) dif-
ferent reactions they must form a synthetic lethal. We
note that the gene repressions for this group of GSLs
can be inferred either manually by inspection of the
GPR associations for each inconsistency (as we did for
GNGs), or automatically, by using the modified version
of the GrowMatch (see Methods). As an example, the
modified GrowMatch procedure suggests that the GSL
(ASN1,ASN2) can be fixed by suppressing gene
YML096W. By reviewing the GPR relationships we
found that genes ASN1 (YPR145W) and ASN2
(YGR124W) together with YML096W provide isozymes
for catalyzing the essential reaction ASNS1 (asparagine
synthase (glutamine-hydrolysing)). Therefore, suppres-
sing gene YML096W will render the simultaneous dele-
tion of ASN1 and ASN2 lethal. Note, however, that we
did not find any evidence in support of YML096W sup-
pression under aerobic minimal conditions, but we
found that this gene is coding for a putative protein of
unknown function and has been assigned to ASN1 only
based on the sequence similarity [37-39] prompting us
to remove YML096W from the GPR association to
ASN1. This example demonstrates that the identified
gene suppressions by GrowMatch may allude to incor-
rect assignment of genes to reactions.
Resolution of GSL inconsistencies coding for the

blocked reactions is more complicated than for GNGs.
Different cases need to be examined: (1) If both genes
appear in the GPR relationship for the same blocked
reaction then we revert to the method discussed for fix-
ing GNGs. (2) If the two genes are coding for two (or
more) different reactions that are all blocked because of
the same root no-consumption metabolite then explor-
ing the addition of the (common) downstream, or the
corresponding root problem metabolite, to the biomass
equation as a reactant may fix the inconsistency. (3) If
the two genes are coding for reactions that are blocked
because of different root no-consumption metabolites or
one of the genes codes for a non-blocked reaction then
we cannot reconcile the growth inconsistency by simply
modifying the biomass reaction. To resolve such GSLs,

the GapFill procedure is applied first to correct the root
no-consumption metabolites by adding a consumption
or export pathway to the model, thereby unblocking the
coded reactions. With this modification, these GSLs can
now be treated as those where deletion of each single
gene will change the flux distribution in silico. We could
only fix one GSL inconsistency by modifying the
biomass equation: KRE6 (YPR159W) and SKN1
(YGR143W) that provide isozymes for the blocked reac-
tion 16GS (1,6 b-glucan synthase) were fixed by includ-
ing 16BDglcn (1,6 b-D-glucan) a root no-consumption
metabolite in the biomass equation as a reactant. This
modification is corroborated by the previous reports
showing that 1,6 b-D-glucan is a key component of the
yeast cell wall [40-42].
Reconciling GSLs where disruption of each single gene

affects the in silico flux distribution, involves identifying
missing regulatory constraints on genes/reactions by
using the GrowMatch procedure and its modified ver-
sion. We followed this analysis by allowing for up to
two simultaneous gene/reaction suppressions for each
GSL and considered only the global modifications. For
example, genes ZWF1 (YNL241C) and RPE1 (YJL121C)
are both involved in the pentose-phosphate pathway and
form a GSL (under minimal medium). The deletion of
either ZWF1 or RPE1 will change the flux distribution
in silico. Application of the GrowMatch to fix this
inconsistency suggests suppressing reaction G6PDH2er
(glucose-6-phosphate dehydrogenase [endoplasmic reti-
culum]) which is identical to the reaction catalyzed by
Zwf1p in the cytosol (i.e., G6PDH2). This suggests that
glucose-6-phosphate dehydrogenase activity in the endo-
plasmic reticulum is not sufficient to compensate for its
deficiency in cytosol in an RPE1 mutant background.
Interestingly, it has been shown [43] that mammalian
cells have two sets of enzymes catalyzing the reactions
of the pentose phosphate pathway (including glucose-6-
phosphate dehydrogenase) with the more active set in
the cytoplasm and the less active in the endoplasmic
reticulum. If this holds true for yeast then this could
resolve the inconsistency. An alternative hypothesis for
fixing the inconsistency is that ZWF1 independently
codes for glucose-6-phosphate dehydrogenase activity in
the endoplasmic reticulum (i.e., reaction G6PDH2er) as
well as in the cytosol (i.e., reaction G6PDH2). In another
example, FUR1 (YHR128W) and URA3 (YEL021W)
form a GSL. They catalyze two reactions that serve as
alternative production routes for ump (uridine mono-
phosphate) a biomass precursor. Application of the
GrowMatch procedure to fix this GSL suggests repres-
sing reaction PYNP2r (pyrimidine-nucleoside phosphor-
ylase (uracil)). According to the iMM904 model,
reaction PYNP2r provides a source of uri (uridine),
which subsequently is converted into ump. Suppression

Zomorrodi and Maranas BMC Systems Biology 2010, 4:178
http://www.biomedcentral.com/1752-0509/4/178

Page 7 of 15



of PYNP2r will thus render the simultaneous deletion of
FUR1 and URA3 lethal by blocking all production routes
for the biomass precursor ump (see Figure 3). Note that
since PYNP2r does not have any gene association in the
model, its suppression to fix the GSL inconsistency also
raises the possibility that this reaction is erroneously
included in the model and should thus be removed.
Not surprisingly all the identified suppressions for cor-

recting GSLs for the minimal medium were also valid
for the YP medium. We identified only one case of a
gene suppression to resolve a GSL, which was valid for
only the YP medium. Genes MET12 (YPL023C) and
MET13 (YGL125W), identified as a GSL in both mini-
mal and YP media provide isozymes for reaction
MTHFR3 (5,10-methylenetetrahydrofolatereductase
(NADPH)), which is involved in folate metabolism.
Application of the modified GrowMatch to resolve this
inconsistency suggests suppression of CYS3 (YAL012W)
in both minimal and YP media. However, suppressing
CYS3 under the minimal medium will change some
GGs to NGGs (i.e., it is a conditional modification)
whereas, it is a global suppression in the YP medium.
Interestingly, in support of CYS3 suppression in the YP
medium, it was reported before that this gene is cystein,
methionine and glutathione suppressed [44].
Finally, in some cases GSL mismatches allude to

incorrect GPR relationships in the model. For example,
we found four GSLs (under minimal medium) involved
in a GPR that implicates genes PRS1 through 5. The
first two include two genes (i.e., (PRS1,PRS5) and (PRS3,

PRS5)) and the other two contain three genes (i.e.,
(PRS1,PRS2,PRS4) and (PRS3,PRS2,PRS4)). All these
genes provide isozymes for the essential reaction PRPPS
(phosphoribosylpyrophosphate synthetase) according to
the iMM904 model. The inconsistency between model
predictions and experimental observations can be
resolved by changing the GPR relationship from (PRS1
OR PRS2 OR PRS3 OR PRS4 OR PRS5) to (PRS1 AND
PRS3) OR [(PRS2 OR PRS4) AND PRS5)] to render the
simultaneous deletion of each of the aforementioned
gene pairs/triple combinations lethal (see Figure 4).
Interestingly, in a previous study a strong interaction
between PRS1 and PRS3 as well as between PRS5 and
either PRS2 or PRS4 has been described [45]. In total,
we fixed eleven GSLs in the minimal medium and five
in the YP medium by converting them to SLSL consis-
tencies by relying on literature vetted global modifica-
tions (see Additional file 2 for details).
Resolution of ESSL inconsistencies
The ESSL inconsistencies refer to cases where the model
predicts that one or both of the genes are essential even
though the experimental results show that they form a
SL. Based on the available data in literature, we identi-
fied 13 ESSLs containing seven in silico essential genes
in the minimal medium and nine ESSLs containing five
in silico essential genes in the YP medium (see Addi-
tional file 1). Not surprisingly, all these in silico essential
genes were part of the previously identified NGG mis-
matches for the single gene mutations. Consequently, a
direct resolution strategy to fix the ESSLs is resolving

Figure 3 Resolution of a GSL through reaction suppressions. (A) FUR1 and URA3 form a GSL since based on the iMM904 model there exists
alternative pathways for producing the biomass precursor ump in the absence of these genes. (B) By suppressing (or removing) the reaction
PYNP2r, all the production routes towards the biomass precursor ump is blocked, rendering the simultaneous deletion of FUR1 and URA3 lethal.
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the NGGs for the single gene perturbations. Following
this route, we found that three ESSLs in the minimal
medium and one in the YP medium were automatically
rectified and converted to SLSLs through the resolution
of NGGs (see Additional file 2 for details). However, the
rest of them were not resolved, instead they were con-
verted into new GSL mismatches. Except for one case,
application of the methods discussed in the previous
section for resolving GSL mismatches did not identify
any global or literature supported correction strategies.
An interesting example of ESSL mismatches is the

gene pair CHO2 (YGR157W) and OPI3 (YJR073C)
where each gene is essential in vivo [4]. CHO2 catalyzes
the first step in conversion of pe_SC (phosphatidyletha-
nolamine) to pc_SC (phosphatidylcholine) in phospholi-
pid biosynthesis pathway (reaction PETOHM_SC in the
iMM904 model), whereas, OPI3 catalyzes the last two
steps (reactions MFAPS_SC and PMETM_SC). We were
not able to fix neither CHO2 nor OPI3 as separate
NGGs by any of the methods discussed previously.
However, the fact that these two genes form a SL in
vivo suggests that they may act as isozymes for reactions
PETOHM_SC, MFAPS_SC or PMETM_SC. Interest-
ingly, by mining the literature we found that previous

studies have already demonstrated that OPI3 can par-
tially contribute as an isozyme in catalyzing reaction
PETOHM_SC [46] implying that the GPR for this reac-
tion should be changed to (CHO2 OR OPI3). There
were no reports implicating CHO2 as an isozyme for
catalyzing reactions MFAPS_SC or PMETM_SC. How-
ever, previous studies have reported that S. cerevisiae is
flexible with respect to phospholipid composition and
can substitute pe_SC, ptdmeeta_SC (phosphatidyl-
monomethylethanolamine) or ptd2meeta_SC (phosphati-
dyl-dimethylethanolamine) for pc_SC to a substantial
extent [46-49]. In order to capture this lack of specificity
we removed pc_SC from the biomass reaction and
instead added a proxy phospholipid compound with the
same stoichiometric coefficient as that for pc_SC. Subse-
quently, we added four hypothetical reactions to the
model that produce the phospholipid from any of
pc_SC, pe_SC, ptdmeeta_SC or ptd2meeta_SC. Note
that these modifications to the model were all global
and fixed the inconsistencies for OPI3 as a NGG as well
as (CHO2, OPI3) as an ESSL mismatch.
Resolution of SLG inconsistencies
The SLG inconsistencies represent a mismatch where
the two genes form an in silico SL, however, their simul-
taneous deletion results in a viable strain. SLG mis-
matches for double gene perturbations can be viewed as
NGG mismatches for single gene perturbations in the
sense that they both imply that certain functionalities
are missing in the model. The only difference between
NGGs and SLGs is that the “no-growth” in NGGs is
due to the essentiality of single genes whereas in SLGs
it is the result of synthetic lethality of gene pairs. There-
fore, we simply adapt the same procedure that we used
for fixing NGGs to resolve SLG inconsistencies.
We found and resolved one case of such an inconsistency

in both minimal and YP media. This SLG pertains to genes
PGM1 (YKL127W) and PGM2 (YMR105C) that code for
isozymes of reaction PGMT (phosphoglucomutase)
involved in glycolysis/gluconeogenesis. The simultaneous
deletion of PGM1 and PGM2 is lethal based on the
iMM904 model since glygogen, a biomass precursor, can-
not be produced in the absence of these two genes. Appli-
cation of the GrowMatch procedure to fix this SLG, did not
lead to any literature-supported correction strategy. We
next mined the literature for a possible isozyme for this
reaction and identified that gene PGM3 (YMR278W) is
known to catalyze the interconversion of glucose-1-pho-
phate to glucose-6-phosphate [50], however, it is missing in
the iMM904 model. The addition of PGM3 to the GPR for
reaction PGMT (i.e., PGM1 OR PGM2 OR PGM3) renders
the simultaneous deletion of PGM1 and PGM2 non-lethal.
Resolution of SLES inconsistencies
The SLES mismatches denote cases where the model
predicts that only the simultaneous deletion of both

Figure 4 Change of GPR for reaction PRPPS. The GSL
inconsistencies (PRS1,PRS5), (PRS3,PRS5), (PRS1,PRS2,PRS4) and (PRS3,
PRS2,PRS4) imply that the GPR for reaction PRPPS should be
changed from (PRS1 OR PRS2 OR PRS3 OR PRS4 OR PRS5) to (PRS1
AND PRS3) OR [(PRS2 OR PRS4) AND PRS5)].
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genes is lethal whereas one of the genes (or both) is
essential in vivo. This implies that deletion of one of
these two genes cannot be compensated for by the
other gene under the experimental conditions. There-
fore, SLES inconsistencies are rectified by suppressing
in the model the gene that is not essential in vivo.
Essential genes participating in in silico SLs yield GNG
inconsistencies. Therefore, the resolution of these
GNGs also fixes the SLES mismatches for the double
gene mutations. We identified 59 SLES mismatches for
the minimal medium and 42 for the YP medium. Fifty
one of these SLESs in the minimal and two in the YP
medium were fixed by using the global modifications
found for GNGs. For example, gene IPP1 (YBR011C)
which codes for PPA (inorganic diphosphatase
involved in oxidative phosphorylation) forms a SL pair
under both minimal and YP medium with gene IPP2
(YMR267W) that codes for the same reaction in mito-
chondria (reaction PPAm). However, IPP1 has been
found to be essential in vivo [4]. Therefore, to resolve
this inconsistency, we conditionally suppress gene IPP2
under aerobic conditions. Interestingly, by investigating
the available expression data for these genes we found
that the expression level of IPP1 under aerobic condi-
tions with glucose as the carbon source is almost 37
times higher than that for IPP2 [51], which may
explain why IPP2 is not able to compensate for the
deletion of IPP1.
In another example, gene PGK1 (YCR012W), which is

associated with reaction PGK (phosphoglycerate kinase)
involved in glycolysis/gluconeogenesis, participates in as
many as 39 in silico SLs under minimal medium. How-
ever, it has been found to be essential in vivo [4]. This
implies that suppressing at least one of the 39 genes
forming a synthetic lethal with PGK1 would resolve all
these SLESs. Although, we did not find any evidence
confirming this resolution hypothesis for any of these
genes except for PCK1 (YKR097W), which is known to
be suppressed in presence of glucose [52,53]: this gene
is involved in gluconeogenesis, a process allowing yeast
to synthesize glucose from non-carbohydrate precursors
such as ethanol or glycerol. Notably, suppression of
PCK1 in the iMM904 model will block production of
three biomass precursors, i.e., phe-L (L-Phenylalanine),
trp-L (L-Tryptophan) and tyr-L (L-Tyrosine) in the
absence of PGK1.
Overall, the resolution of model inconsistencies for

double gene deletions improved the specificity of
iMM904 model from 12.03% to 23.31% (out of a total of
133) for the minimal medium and from 6.96% to 13.04%
(out of a total of 115) for the YP medium. It is worth
noting that these corrections are based on only the
incomplete list of SL data available in literature.

Auxotrophy inconsistencies
These mismatches refer to cases where the essentiality
of single gene deletions or synthetic lethality of double
gene knockouts are in agreements with in vivo observa-
tions, however, the model predictions for supplementa-
tion rescue (i.e., auxotrophy) scenarios are inconsistent
with experimental data. We found seven such these
inconsistencies under minimal and five under YP med-
ium, respectively, for correctly predicted essential genes,
as well as four under both minimal and YP media for
SLSL predictions (see Additional file 1 for a complete
list). Notably, for all of these mismatches, the experi-
mental results show that the single or double gene
mutant strains can restore growth if additional com-
pounds are added to the growth medium, while the
model predictions imply that these genes remain essen-
tial or synthetic lethal even in the presence of these
compounds. These inconsistencies can be treated in
exactly the same way as the NGG or SLG mismatches
were treated, since they refer to the functionalities that
are missing in the model but present under experimen-
tal conditions.
As an example, it has been reported that a strain con-

taining the FOL1 (YNL256W) deletion can grow if the
medium is supplemented with folic acid [54]. Nonethe-
less, folic acid is not included in the list of metabolites
in iMM904 model. By adding folic acid as well as
exchange and transport reactions (between cytosol and
extracellular environment) to the iMM904 model FOL1
remains essential even though folic acid is allowed to be
taken up. GrowMatch suggested addition of any of the
two reactions R00937 (5,6,7,8-tetrahydrofolate:NAD+
oxidoreductase) or R02236 (dihydrofolate:NADP+ oxi-
doreductase) from the KEGG database to the model so
as to connect folic acid to rest of the network. Interest-
ingly, by searching the KEGG database we found that
the enzyme catalyzing these two reactions is present in
yeast and the gene coding for this enzyme (DFR1:
YOR236W) is already present in the iMM904 model.
The gene pair HMG1 (YML075C) and HMG2

(YLR450W), which forms a SLSL under both minimal
and YP media. is an example of auxotrophy mismatches
for double gene perturbations: although in vivo observa-
tions show that a mutant strain lacking these two genes
can be rescued through addition of mev-R (mevalonate)
to the growth medium [55], in silico predictions imply
that their double deletion is still lethal even in the pre-
sence of mev-R. The addition of an exchange and trans-
port reaction between cytosol and extracellular
environment for mev-R to the model resolves this auxo-
trophic inconsistency. Notably, the addition of this
import pathway for mev-R to the model also fixed
the auxotrophy inconsistency for the essential gene
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ERG10 (YPL028W), which is involved in mevalonate
biosynthesis.
Overall, upon including only the global modifications

for which a supporting evidence was found, we could fix
three auxotrophy inconsistencies for essential genes as
well as one for SLs under both minimal and YP media
(see Additional file 2 for details). A summary of all the
suggested modifications for the iMM904 model by using
all types of inconsistencies for single and double gene
perturbations is given in Figure 5. The revised iMM904
model is also available in the Systems Biology Markup
Language (SBML) as Additional file 3.

Conclusions
We identified 120 corrections with supporting evidence
to the iMM904 metabolic model of yeast by using
essentiality and synthetic lethality data. Previous studies
geared towards improving the predictive ability of meta-
bolic models have used growth phenotype inconsisten-
cies for single gene mutation experiments in microbial
systems such as E. coli [18,19]. Here, we go a step
further by demonstrating the utility of synthetic lethality
data for improving the accuracy of a multi-compartment
metabolic model for a eukaryotic organism. This
revealed missing or erroneously present metabolic func-
tions in the model that could not be captured by only
single gene perturbations. In addition, we found that in

some cases fixing a mismatch for double gene deletions
automatically fixes one or more mismatch(s) for single
gene perturbations. This was illustrated for the NGG,
CHO2 for which none of the mechanisms proposed to
resolve the NGGs were found to be successful. Approxi-
mately, 20% of the total suggested corrections for the
iMM904 model use information from both single and
double gene perturbations whereas 17% of them were
exclusively discerned from double gene perturbations. A
far larger contribution of synthetic lethals in providing
model refinement strategies is thus expected as more
synthetic lethality data are becoming available.
The high number of GNG and GSL inconsistencies

identified in this study runs contrary to the general per-
ception that predictive inaccuracy of genome-scale
metabolic models is primarily due to missing metabolic
capabilities. It appears that the presence of not properly
restricted to specific conditions functionalities in the
model is the largest contributor to inconsistent predic-
tions. Application of GrowMatch to eliminate and/or
properly regulate these functionalities led to the identifi-
cation of 30 growth medium-specific regulatory con-
straints. These growth prediction inconsistency-based
constraints complement existing regulatory constraints
based on gene expression data [44,56,57].
In this study we considered not only essentiality and

synthetic lethality predictions but also disagreements in
auxotrophy complementation. We also demonstrated that
the identified growth-phenotype discrepancies are some-
times due to an incorrect or incomplete in silico descrip-
tion of the complex growth medium not the inaccuracy of
the metabolic model. Overall, we significantly improved
the predictive capability (i.e., specificity, sensitivity and
false viability rate) of the iMM904 model for essentials
and synthetic lethals by incorporating a minimum of 112
(out of 120) suggested corrections. All of these modifica-
tions are global as they do not invalidate any of the correct
model predictions. The proposed corrections span a wide
array of changes to the model including relaxation of the
irreversibility constraints on existing reactions in the
model, adding new reactions, compounds or genes to
the model, modifying the biomass equation, changing the
GPR associations and medium-specific regulatory con-
straints. As we found independent corroborating evidence
for the proposed corrections, the vast majority (i.e., 103) of
them remain relevant even for the latest update of the
community yeast model (Yeast 4.0) [8]. This includes 73
model refinement strategies as well as 30 identified med-
ium-specific regulatory constraints. Of the remaining
modifications to the iMM904 model, twelve were also
independently incorporated in Yeast 4.0 whereas five are
different from the ones adopted in Yeast 4.0. A compari-
son of the suggested corrections with Yeast 4.0 is given in
Additional file 2.

Figure 5 A summary of all modifications to the iMM904 model
using the single and double gene perturbations. (A) Venn
diagrams for minimal and YP media representing the number of
modifications involved in fixing the inconsistencies associated with
single or double gene deletions or both. (B) A Bar chart
demonstrating the number of each type of modifications made to
the iMM904 model.
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In addition to model refinement strategies with sup-
porting evidence, we identified more than 60 other glo-
bal modifications for which there was neither conflicting
nor supporting evidence (see Additional file 2 for a
complete list). These modifications can be treated as
testable hypotheses for which experiments can be
designed to prove/disprove their validity. Overall, our
study demonstrates the value of bringing to bear multi-
gene deletion data to further improve the predictive
capability of genome-scale metabolic models. The avail-
ability of high-throughput experimental techniques
[58-61] as well as efficient computational tools
[25,62,63] to elucidate synthetic lethal interactions
opens the door to rapidly reveal additional model defi-
ciencies. The model refinement approaches presented in
this study are versatile enough to be employed for a
wider range of experimental conditions (e.g., other
growth media) or synthetic lethal interactions of increas-
ing size (e.g., triples, quadruples, etc).

Methods
We applied the SL Finder procedure developed by
Suthers et al [25] to the iMM904 model of S. cerevisiae
[6] comprised of 904 genes and 1,412 reactions to deter-
mine the set of essential genes/reactions as well as dif-
ferent orders of synthetic lethals. All simulations were
performed for aerobic growth on two different media
with glucose as the sole carbon source: minimal medium
and a complex (yeast-extract peptone or YP) medium.
The in silico minimal medium contains ammonium, sul-
fate and phosphate as nitrogen, sulfur and phosphor
sources, respectively, as well as necessary salts (such as
Na and K). In addition to all these components the in
silico YP medium contains all 20 amino acids and all
four nucleotides [3]. All simulations were performed for
a strain auxotrophic for methionine, leucine, histidine
and uracil to closely mimic the conditions used in
experimental studies [4]. This auxotrophy was simulated
by deleting genes (his3Δ leu2Δ met15Δ ura3Δ) and sup-
plementation of the growth medium with the missing
nutrients at non-limiting but low levels [6]. In addition,
trace amounts of other essential compounds that are
present in the experimental growth medium including
4-aminobenzoate, biotin, inositol, nicotinate, panthothe-
nate and thiamin were added to the in silico media [6].
Consistent with Suthers et al [25] we chose 1% of the
maximum theoretical biomass yield as the viability
threshold for computational identification of lethal
knockouts. The upperbound for all reactions was set to
1000, whereas, the lowerbound was set to 0 for irreversi-
ble reactions and -1000 for reversible reactions. The
maximum rate of the glucose uptake was set to 10
mmol gDW-1h-1 and the aerobic condition was modeled
by limiting the oxygen uptake rate to 2 mmol gDW-1h-1

[6]. The uptake rate for all other source metabolites was
also set to 1000 mmol gDW-1h-1. The flux of non-
growth associated ATP maintenance was fixed at 1
mmol gDW-1h-1 [6]. We employed the GrowMatch pro-
cedure [18] to reconcile the growth phenotype discre-
pancies for the NGGs, and modified it to fix GNGs (in
addition to using its original form). All these algorithms
were adapted for resolving the inconsistencies associated
with double gene perturbations. In the following we
provide a brief overview of GrowMatch and describe in
detail its modified version.

The Modified GrowMatch procedure
The GrowMatch procedure relies on two separate pro-
cedures to resolve NGG and GNG growth prediction
inconsistencies. The NGGs are fixed one-by-one by
minimally perturbing the original metabolic model using
three mechanisms including (i) relaxation of the irrever-
sibility constraints on reactions in the model, (ii) addi-
tion of new reactions from external databases such as
KEGG [31] to the model and (iii) allowing for direct
import/export of metabolites into/out of the cell, and
for multi-compartment models [18], addition of trans-
port reactions between compartments and cytosol.
Alternatively, the GNG mismatches are corrected by
identifying the minimal set of suppression constraints
for reactions or transport mechanisms that lower the
maximum biomass yield of the network below a pre-
specified viability threshold. The suggested modifications
by GrowMatch are referred to as global if they do not
conflict with any correct model predictions, and they
are called conditional otherwise.
Here, we modified the GrowMatch procedure to iden-

tify the minimal number of suppressed genes, rather
than reactions, that negate the biomass formation below
the viability threshold. This can be done by defining two
sets of binary variables one for genes and one for reac-
tions and then relating these two binary variables in
such a way that it reflects the specific GPR associations
[25]. For the reactions with no gene associations a ficti-
tious gene coding for that reaction can be assumed. An
alternative way to avoid introducing a new set of binary
variables, and as a result reduce the computational bur-
den further, is to directly correlate the binary variables
for genes to the reaction fluxes. To this end, we first,
define the following sets:

I i i N

J j j M

= = =
= = =

{ | , ,..., }

{ | , ,..., }

1 2

1 2

set of metabolites

set oof reactions 

set of genesK k k G= = ={ | , ,..., }1 2

where, N, M and G denote the total number of meta-
bolites, reactions and genes in the network, respectively.
To simulate the gene knockouts, a binary variable wk,
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representing if a gene k should be deleted is defined as
following:

w
k

kk =
⎧
⎨
⎩

0,     if gene  is deleted

1,    if gene  is active
          ∀ ∈k K (1)

The impact of gene knockouts on reactions through
the GPR relationships can be mathematically described
by using appropriate constraints relating wk to the reac-
tion fluxes, vj. Let LBj and UBj represent the lower-
bound and upperbound on a reaction j, respectively.
Different cases for the GPR relationships can then be
considered:
(i) A single gene k codes for the enzyme catalyzing a

reaction j. This can be easily incorporated into our
mathematical framework by using the following con-
straint:

w LB v w UBk j j k j. .≤ ≤ (2)

(ii) Two genes k1 and k2 form a single multi-protein
enzyme to enable a reaction j. This case, which is recast
as a logic AND relationship between the genes k1 and
k2, can be enforced by the following set of constraints:

w LB v w UB

w LB v w UB

k j j k j

k j j k j

1 1
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⎧
⎨
⎪
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Note that based on these equations, if at least one of

wk1
or wk2

is zero, then the flux through reaction j is

forced to zero. This set of constraints can be easily gen-
eralized for multi-protein enzymes with more than two
genes involved.
(iii) The genes k1 and k2 provide isozymes catalyzing a

reaction j. This case, indicates a logic OR relationship
between the genes k1 and k2 to enable the reaction j,
and can be mathematically expressed by the following
constraints:

( ). ( ).

.

w w LB v w w UB

LB v UB

k k j j k k j

j j j

1 2 1 2
+ ≤ ≤ +
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⎧
⎨
⎪
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(4)

Note that according to these equations, vj is forced to
zero only if both genes are knocked out, i.e., wk1

=
wk2

= 0. For the case, where both genes are present
( wk1

= wk2
= 1), the second constraint is more bind-

ing and will restrict vj to fall within its defined lower
and upperbound. This approach can be readily general-
ized for GPRs containing more than two genes related
with OR.
(iv) More than two genes with a combination of AND

and OR relationships are required to enable a reaction j.

These cases can be mathematically enforced through an
appropriate combination of equations (3) and (4). As an
example, if three genes k1, k2 and k3 are correlated as
(k1 AND k2) OR (k1 AND k3) to code for the enzyme
catalyzing a reaction j, then the constraints simulating
this relationship can be written as following:

w LB v w UB
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k j j k j

k k j j k k j
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The modified GrowMatch formulation to resolve the
GNGs (or GSLs) can now be formulated as following:

Minimi ze

Maximize

j

jv

W
biomass

biomass

ij j

j

v

s t

v

s t

s v i I

A

. .

. .

∑ = ∀ ∈0

pppropriate GRP eqns j J

v v

v

glu e glu e

oxyg

  

cos cos

∀ ∈

≤ uptake limit

een oxygen

ATPM ATPM

j j j

v

v v

LB v UB j

≤

=
≤ ≤ ∀

uptake limit

maintenance

. ∈∈

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

−( ) ≤

∈{ } ∀ ∈

∑
J

w n

w k K

k

j

k

 

1

0 1,

where, sij, represents the stoichiometric coefficient of
the metabolite i, in reaction j, vbiomass denotes the bio-

mass flux while v glu ecos
uptake limit , voxygen

uptake limit and

v ATPM
maintenance denote the minimum required glucose and

oxygen uptake rates and the non-growth associated ATP
for maintenance, respectively. The parameter n, repre-
sents the allowable number of knock-outs. This bilevel
optimization problem can be solved similarly to Grow-
Match and SL Finder [18,25] through writing the dual
of the inner problem.

Test of the suggested hypotheses
All the model correction strategies provided by Grow-
Match serve as hypotheses that need to be tested to
confirm their applicability. Different methods were used
to test the validity of each type of modification. Similarly
to [18], relaxation of the irreversibility constraints on
existing reactions in the model can be checked by using
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three independent methods. In the first step we check
the reversibility of that reaction in iAF1260 model of E.
coli [9] or metabolic models of other organisms. We
then query other databases such as MetaCyc [64] about
the reversibility of the desired reaction to find out if it is
reversible in other organisms. Finally, we examine the
reversibility of reactions by computing the value of free
Gibbs energy change, ΔG [65].
The validity of the added transport reactions to the

model are examined by searching the literature to find
potential clues about the presence of the suggested
transport mechanisms or by querying the databases
such as MetaCyc for possibility of presence of those
mechanisms in other multi-cellular organisms. The
hypotheses for adding new reactions from external data-
bases such as KEGG to the model are tested by per-
forming the bi-directional BLAST between the enzymes
catalyzing those reactions and the yeast genome. Consis-
tent with [18,20] we assumed a BLAST expectation
value cutoff of 10-13 as the basis to define high sequence
similarity. Finally, the gene suppressions are validated by
analysis of the gene expression data as well as searching
the literature for available evidence. All the global modi-
fications for which we did not find any supporting evi-
dence using the methods mentioned above, were not
incorporated into the model and were just added to the
list of modifications with no corroborating evidence.

Additional material

Additional file 1: The list of model inconsistencies. The complete list
of different types of model inconsistencies for single and double gene
perturbations along with literature citations.

Additional file 2: The list of corrections to the model. The complete
list of suggested corrections for mismatches associated with single and
double gene perturbations along with supporting evidence. This file also
contains details of BLAST analysis for different cases as well as other
computations.

Additional file 3: The revised yeast model in SBML format.
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