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INTRODUCTION

Viruses circulating in wildlife reservoirs can spil-
lover into susceptible human populations and con-
tribute significantly to the global burden of human
infectious diseases, which cause approximately 2.5
billion infections and 2.7 million deaths each year
[1,2]. Before emerging as zoonotic human patho-
gens, wildlife-adapted viruses must first overcome a
series of epidemiological barriers, such as behav-
ioral barriers (level of human exposure to zoonotic
viruses), interspecies barrier, and immunological
barriers [3].

Livestock are able to facilitate viral spillover
from wildlife to humans by acting as “epidemiologi-
cal bridges” or intermediate hosts in the transmis-
sion chain [4,5]. Unsurprisingly, through thousands
of years of close contact animal husbandry and
intensive farming in recent decades, domesticated
animals harbor eight times more zoonotic viruses
than predicted in other non-domesticated

mammalian species [6]. Opportunities for viral
zoonosis accompany the expansion of human agri-
cultural activities, which provoked over 50% of
zoonotic emerging infectious disease (EID) events
during the past 70 years [7]. Wildlife, however, is
not the only threat to livestock; close contact
humans can also be a source of viral zoonosis
(hereafter referred to as reverse zoonosis and also
known as zooanthroponosis and anthroponosis),
which is somewhat understudied [8].

A recent study estimated that humans exchange
the highest number of viruses with domesticated
pigs (Sus scrofa domesticus) (n � 31 viruses), cattle
(n � 31 viruses), horses (n � 31 viruses), and dogs
(n � 27 viruses), surpassing both domestic cats
(n � 16 viruses) and goats (n � 22 viruses) [6]. Pigs
have served as intermediate, amplification, and
“mixing” hosts in past human epidemics and pan-
demics (e.g., Japanese encephalitis [9], Nipah [10],
and influenza A viruses [11]), and humans have
spread viruses to pigs in return (e.g., influenza A
virus [12]). Global demand for pork continues to
rise and, although pig farming practices differReceived 12 April 2021. Accepted 28 August 2021
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worldwide, the movement of swine and multiple
contact points with humans, i.e., at farms, breeding
facilities, slaughterhouses, wet markets, and trade
shows, intensifies the opportunities for viral trans-
mission [13–15]. Furthermore, pigs are increasingly
used for xenotransplantation and as animal models
for human diseases and conditions due to their
physiological, genetic, and immunological similari-
ties to humans [16–19]. Therefore, understanding
the viral exchange at the swine–human interface
can help prevent zoonotic and reverse zoonotic
viral outbreaks, leading to disease, deaths, culling
of swine herds, and economic losses [20].

Predicting EIDs in humans and pigs is challenging.
Viral zoonoses are considered rare in humans relative
to the extensive viral diversity in the animal kingdom,
and viral dynamics are strongly amenable to selection
mechanisms resulting in rapid changes to viral land-
scapes [21–24]. Spillover events can occur incidentally
into “dead-end” hosts, or viral outbreaks can ensue
with sustained onward transmission within the novel
host population, and can even become a persistent
endemic threat [23,25]. Determining the natural reser-
voir species and intermediate hosts of EIDs after a
spillover event is also demanding when routine
surveillance is not in place [26]. Furthermore, the
novel host of an EID can become a newfound viral
reservoir and spillover into the next susceptible spe-
cies, e.g., SARS-CoV-2 transmission chain from
horseshoe bats-to-unknown mammalian
intermediate-to-humans-to-mink-to-humans [26–28].

In this review, we collect genetic-, pathogenic-,
and immunological-based evidence to determine the
likely direction of viral transmission between
humans and pigs with the purpose of identifying
viral threats to human and pig health, and the roles
humans and pigs play as direct viral reservoirs for
each other.

MATERIALS AND METHODS

A framework of factors (Table S1) was designed and
applied in scientific literature surveys to assess the infectiv-
ity and transmissibility of 27 viruses naturally found in
humans and pigs within the past 70 years. The focus is
largely on the detection of human or pig-associated viruses

in the secondary host, genetic variation between viral
strains isolated from the two hosts, viral entry into target
host cells, detection of viral shedding that indicates viral
replication in the host and transmission potential, viral
dissemination in the host, and the ability for the host’s
immune system to suppress infection. This information is
highlighted in Table S2 with distinctions drawn between
humans and pigs where appropriate. The viruses were then
determined to demonstrate zoonotic, reverse zoonotic, or
bidirectional viral transmission according to the definitions
in Box 1, and the results are summarized in Table 1.

The list of viruses shared by humans and pigs was
taken from a recent study by Johnson et al., 2020 [6].
However, we were unable to find documentation of natu-
ral infection (either detection of viral genetic material or
serological evidence of an antibody response against viral
infection) in pigs for Ilheus, Ljungan, Monkeypox (experi-
mental inoculation in pig skin only [29]), and Wesselsbron
viruses (one study indicated serological evidence of infec-
tion in pigs but was inaccessible [30]). Tioman virus was
included, despite undetected natural infection in pigs, due
to evidence from an in vivo experimental infection study
[31].

RESULTS AND DISCUSSION

Pigs as reservoirs for zoonotic viruses

The majority of the reviewed zoonotic viruses origi-
nate from wildlife reservoirs (Table 1). Pigs are sig-
nificant intermediate and amplification hosts for the
transmission of at least seven wildlife viruses to
humans: Nipah (NiV), Japanese encephalitis (JEV),
Eastern equine encephalitis (EEEV), Vesicular
stomatitis (VSV), Reston ebola (RESTV), Menan-
gle (MenPV), and potentially Tioman (TioV)
(Table 1). Transmission routes of these zoonotic
viruses from pigs to humans are illustrated in
Fig. 1, which are generally linked to occupational
exposure.

Global livestock abundance and destruction of
wildlife habitats have been associated with
increased zoonotic spillover risk [6]. Following a
rapid increase in the past few decades, approxi-
mately 800 million to 1 billion pigs are produced
globally each year in often dense and genetically
homogenous populations [32,33], owing to 95% of
genetic resources being exported from Europe and
the USA to developing countries between 1990 and
2005 [34]. Although increased homogeneity in a

BOX 1. Definitions of viral transmission and reservoirs used in this review.

Zoonotic viruses amplify in pigs and shed sufficient amounts to infect close contact humans, but viruses infecting humans
are unable to infect pigs, thereby, pigs are viral reservoirs for humans (pig-to-human transmission), or zoonotic viruses
infect humans directly from another reservoir species without significant involvement of pigs.
Reverse zoonotic viruses amplify in humans and transmit to pigs, but pigs are unable to infect humans in return, in which
case, humans are viral reservoirs for pigs (human-to-pig transmission).
Bi-directional zoonotic viruses are exchanged between humans and pigs, whereby, both hosts are reservoirs for the other
(both zoonotic and reverse zoonotic).
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Table 1. Summary of transmission routes and sources of the 27 reviewed viruses.

Virus and taxonomy Transmission route
(? denotes direction)

Significant viral reservoir

Zoonotic viruses (1): Pigs as major sources of viruses
Eastern equine encephalitis
(EEEV); Alphavirus; Togaviridae.

Mosquito (Aedes, Coquillettidia, and
Uranotaenia species) ? human/pig [143]:
vector-borne. Pig ? mosquito: vector-
borne [43].
Pig ? pig/human: oronasal contact with
infected oropharyngeal secretions or
fecal-oral [43].

Birds are natural hosts (e.g.,
wading birds, passerine songbirds,
and starlings) [143]. Pigs are
potential amplification hosts [43].

Japanese encephalitis (JEV);
Flavivirus; Flaviviridae.

Mosquito (Culex and Aedes species) ?
human/pig: vector-borne [143].
Pig ? mosquito: viremia, vector-borne
[44,45].
Pig ? human: oronasal contact with
infected oronasal secretions oronasal
secretions [47].
Mosquito ? mosquito: transovarial [9].

Aquatic birds are natural hosts.
Pigs are amplification hosts [9].

Menangle (MenPV); Rubulavirus;
Paramyxoviridae.

Fruit bat (Pteropus species) ? pig:
oronasal contact with environmental
contamination [59,62].
Pig ? pig: fecal-oral or urinary-oral or
transplacental [144,145].
Pig ? human: possibly infected bodily
fluid in cuts [60].

Fruit bats (Pteropus species) are
natural hosts [59,62]. Pigs are
possible intermediate hosts [60,61].

Nipah (NiV); Henipavirus;
Paramyxoviridae.

NiV-Malaysia:
Fruit bat (Pteropus species) ? pig:
oronasal contact with environmental
contamination [146].
Pig ? pig: airborne or oronasal contact
with infected oronasal secretions [147].
Pig ? human: airborne or oronasal
contact with infected oronasal secretions
[148].
NiV-Bangladesh:
Fruit bat (Pteropus species) ? human:
food-borne consumption of
contaminated date palm sap [149].
Human ? human: oronasal contact with
infected human bodily fluids, limited
transmission chain but caused ˜50% of
cases [149].
Pig ? human: undocumented but
possible [150].

Fruit bats (Pteropus species)
[151,152]. Pigs are amplifications
hosts for NiV-Malaysia and
potentially for NiV-Bangladesh
[10,150].

Reston ebola (RESTV); Ebolavirus;
Filoviridae.

Fruit bat (likely Miniopterus species) ?
pig: oronasal contact with environmental
contamination [153].
Pig ? pig: oronasal contact with infected
nasopharyngeal secretions [58].
Pig ? human: oronasal contact with
infected nasopharyngeal secretions
[58,154].

Fruit bats (likely Miniopterus
species) are natural hosts [153].
Pigs are intermediate hosts [154].

Tioman (TioV); Rubulavirus;
Paramyxoviridae.

Fruit bat (Pteropus species) ? pig/
humans: oronasal contact with
environmental contamination [64].
Pig ? pig/human: possible airborne or
oronasal contact with oronasal
secretions [31].

Fruit bats (Pteropus species) are
natural hosts [31,63]. Pigs are
potentially intermediate hosts [64].
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Table 1 (continued)

Virus and taxonomy Transmission route
(? denotes direction)

Significant viral reservoir

Vesicular stomatitis (VSV);
Vesiculovirus; Rhabdoviridae.

Vertebrate reservoir ? biting insect:
vector (biological and mechanical
[50,155]).
Biting insect ? pig/human: vector.
Pig ? pig/human: possible vector [46,50],
airborne, oronasal contact with infected
oronasal secretions, or contact with
infected vesicular lesions [48–50].

Unknown vertebrate reservoir host
but likely multiple livestock
(including pigs) and wildlife
species [156].

Zoonotic viruses (2): Pigs as minor sources of viruses
Banna (BAV); Seadornavirus;
Reoviridae.

Mosquito (Culex and Aedes species) ?
human/pig: vector-borne [157,158].

Potentially mosquito as replication
has been demonstrated in
mosquito cell line (C6/36) and
replication in mammalian cell
lines is not possible (BHK-21 and
Vero) [159]. Although replication
in mice has been demonstrated
(develop viremia), re-infection was
not possible [160].

Cache Valley (CVV);
Orthobunyavirus; Bunyaviridae.

Mosquito (Aedes, Coquillettidia, Culex,
Culiseta, Orthopodomyia, Psorophora,
and Uranotaenia species) ? human/pig:
vector-borne [161,162].
Mosquito ? mosquito: transovarial
demonstrated experimentally [163].

Deer [164,165].

Chandipura (CHPV); Vesiculovirus;
Rhabdoviridae.

Sandfly (Phlebotomine) ? human/pig:
vector-borne (demonstrated in mice
[166]).
Sandfly ? sandfly: transovarial and
venereal [167].

Potentially sandfly (Phlebotomine)
species as replication has been
demonstrated in vector [166].

Encephalomyocarditis (EMCV);
Cardiovirus; Picornaviridae.

Rodent ? human/pig: fecal/urinal-oral
[168].
Pig ? pig: fecal-oral or oronasal contact
with infected nasal secretions [169].

Rodents [169].

Foot-and-mouth disease (FMDV);
Aphthovirus; Picornaviridae.

Pig ? pig: airborne, oronasal contact
with infected oronasal secretions,
physical contact with secretions in cuts,
environmental contamination
(equipment, clothing, animal feed) [170].
Pig ? human: potentially by direct
contact with secretions through damaged
skin [171,172].

African Cape buffalo (Syncerus
caffer) (serotypes SAT-1, 2, and 3)
[173].

Getah (GETV); Alphavirus;
Togaviridae.

Mosquito (Culex, Anopheles, Aedes,
Armigeres, and Mansonia species) ?
human/pig: vector-borne [174].
Pig ? pig: vertically to fetus during early
stage of pregnancy [175].

Potentially cattle (strong
serological evidence) [174].

Louping ill (LIV); Flavivirus;
Flaviviridae.

Tick (Ixodes ricinus) ? human/pig:
vector-borne [176,177].
Sheep ? human: contact with infected
sheep, sheep tissues, or raw milk [176–
178].

Ticks (Ixodes ricinus), sheep, and
red grouse [176,177].

Rabies (RABV); Lyssavirus;
Rhabdoviridae.

Canine (Carnivora) or bat (Chiroptera) ?
pig/human: bite with infected saliva [71].
Pig ? pig: uncommon unless infected
with “furious” form and bite [73].
Pig ? human: undocumented but
possible [73].
Human ? pig: unlikely due to behavioral
factors.
Human ? human: only through organ/
tissue transplant [72].

Canine (Carnivora) and bat
(Chiroptera) species are natural
hosts [71].
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Table 1 (continued)

Virus and taxonomy Transmission route
(? denotes direction)

Significant viral reservoir

Toscana (TOSV); Phlebovirus;
Bunyaviridae.

Vertebrate ? sandfly (Phlebotomus):
vector-borne ? pig/human [68,179,180].

Vector reservoir is sandfly
(Phlebotomus species).
Unknown vertebrate reservoir host
but likely multiple livestock and
wildlife species. Unclear
contribution of pigs in
epidemiology [179,180].

Venezuelan equine encephalitis
(VEEV); Alphavirus; Togaviridae.

Horse or rodent ? mosquito
(Ochlerotatus or Culex species): vector-
borne [70].
Mosquito ? pig/human: vector-borne
[69,70]
Mosquito ? human ? mosquito:
possible humans can develop sufficient
viremia to infect mosquito [181].
Human ? human: airborne or oronasal
contact possible but unproven [182].

Horses are amplification host for
epidemic subtypes, and rodents
are reservoirs for endemic
subtypes [70].

Reverse zoonotic viruses
Norovirus (NoV); Norovirus;
Caliciviridae.

Human ? human: depending on strain
fecal-oral, vomit-oral, food-/water-borne
(dependent on strain) (reviewed in 86).
Human ? pig: possibly fecal-oral, but
not directly detected [84,183,184].
Pig ? pig: fecal-oral [83].

Unknown source of novel strains
emerging in human populations
but immunocompromised patients
in nosomical settings are
significant reservoirs [86].

Severe acute respiratory syndrome
related-coronavirus (SARSr-
CoV);
Betacoronavirus; Coronaviridae.

Horseshoe bat (Rhinolophus species) ?
(unknown mammalian intermediary,
possible recombination with pangolin-
CoV) ? human: oronasal contact with
infected secretions or excretions
[26,75,185,186].
Human ? human: airborne [187].
Human ? pig: foodborne via
contaminated animal feed (restaurant
leftovers) [76], possibly airborne/
oronasal contact [78].

Horseshoe bat (Rhinolophus
species) are natural hosts [185].
Humans are reservoir hosts [75].

Swine vesicular disease (SVDV);
Enterovirus; Picornaviridae.

Human ? pig: possibly fecal-oral or
oronasal contact with infected oronasal
secretions or contaminated environment
containing recombinant coxsackievirus B
(CV-B) and CV-A9 [79–81].
Pig ? pig: oronasal contact with
environmental contamination during
transportation [188].

Humans are reservoir hosts for
ancestral strain [80]. Virulence
decreased through subsequent
passages in pigs [81,189].

Bidirectionally transmitted viruses
Hepatitis E (HEV); Orthohepevirus;
Hepeviridae.

Pig ? human: foodborne, consumption
of raw or undercooked pig products, or
direct contact [102,103].
Human ? human: fecal-oral via
consumption of feces-contaminated
water (type 1 and 2 in developing
countries), or blood transfusion
[102,103].
Pig ? pig: fecal-oral [103].
Human ? pig: undetected but possible
[104,105].

Pigs [102].
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swine herd is unlikely to increase their susceptibility
to epidemics, the severity of epidemics is likely to
be enhanced [35]. Furthermore, the frequency of
animal turnover with immunologically na€ıve litters
of piglets in swine herds can stunt the development
of herd immunity against viral infections and
enable viral persistence [36].

Deforestation and encroachment of pig farms
into Pteropus fruit bat species habitats have been
implicated in causing the zoonotic NiV epidemic in
pigs and human pig farm workers in Malaysia and

Singapore in 1999 [37]. The spillover of NiV-
Malaysia (NiV-M) into pig herds was traced back
to two introductions from fruit bats, with isolates
from local bats, pigs, and humans sharing >99%
nucleotide homology [10,38,39], indicating transmis-
sion between hosts required limited viral adapta-
tion. However, humans developed more severe
disease with 40% case fatality rate compared to 1-
5% in pigs [40]. This difference in disease severity
could be linked to higher expression of the receptor
ephrin-B2 on human tracheal and bronchial airway

Table 1 (continued)

Virus and taxonomy Transmission route
(? denotes direction)

Significant viral reservoir

Influenza A (IAV);
Alphainfluenzavirus;
Orthomyxoviridae.

Human ↔ pig: airborne or oronasal
contact with infectious oronasal
secretions [190].
Human ? human: airborne or oronasal
contact with infectious oronasal
secretions [190].
Pig ? pig: airborne or oronasal contact
with infectious oronasal secretions [190].

Wild aquatic birds are natural
hosts [191]. IAV subtypes
circulate in human and pig
populations [12].

Influenza C (ICV);
Gammainfluenzavirus;
Orthomyxoviridae.

Human ↔ pig: possible but unknown if
ICV transmitted from pigs to humans or
from humans to pigs [111,192].
Human ? human: airborne or oronasal
contact with infectious oronasal
secretions [192].
Pig ? pig: airborne or oronasal contact
with infectious oronasal secretions,
demonstrated in contact pigs
experimentally infected with human and
pig-derived ICV [113].

Humans [192].

Picobirnavirus (PBV);
Picobirnavirus; Picobirnaviridae.

Human ↔ pig: fecal-oral or oronasal
contact with infected respiratory
secretions [193,194].

Prokaryotes in host microbiome
are likely hosts [98].

Ross River (RRV); Alphavirus;
Togaviridae.

Marsupial or horse ? mosquito (Ades
and Culex species): vector-borne.
Mosquito ? human/pig: vector-borne
[195].
Human ? mosquito ? human: vector-
borne, occurs during urban epidemics
[115,117].
Human/pig ? mosquito ? human/pig:
possibly vector-borne [116,117,196].

Marsupials in Australia [197] or
horses in South Pacific islands
[196].

Rotavirus genogroup A (RVA);
Rotavirus; Reoviridae.

Human ↔ pig: fecal-oral, respiratory,
food/water-borne [108,198–200].

Diverse animal reservoirs including
humans, porcine, bovine, ovine,
pteropine, rodent, avian, and
insectivore species [198,200].

Torque teno (TTV);
Alphatorquevirus (huTTV),
Iotatorquevirus (TTSuV1),
Kappatorquevirus (TTSuVK2);
Anelloviridae.

Human ↔ pig: contact with
environmental contamination, e.g.,
contamination of TTSuV detected in
veterinary vaccines, human drugs and
pork products [92,93], and TTV found
ubiquitously in the environment
including water sources and hospitals
[91,94].

Unknown sources of emergent
strains.

680 © 2021 The Authors. APMIS published by John Wiley & Sons Ltd on behalf of Scandinavian Societies for Medical

Microbiology and Pathology

GLUD et al.



epithelial cells than in pigs, leading to more efficient
infection [41]. NiV-M did not transmit between
humans and viral RNA was isolated from 30% of
infected throat swabs [42]; therefore, it seems unli-
kely that infected humans posed a risk to pigs.

Pigs contribute to the epidemiology of three zoo-
notic arthropod vector-transmitted viruses: EEEV,
JEV, and VSV. In addition to causing viremia in
pigs [43–45], EEEV can be recovered from oropha-
ryngeal, rectal, and tonsil swabs, JEV can shed in
oronasal secretions, and VSV can exude from rup-
tured vesicular fluids, providing further transmis-
sion routes to close contact humans (Fig. 1) [43,47–
50]. However, VSV has infrequently infected farm
and laboratory workers [51], likely due to the capa-
bility of human myxovirus resistance protein
dynamin-like GTPase 1 (M9A) in reducing VSV
replication by 90% compared to the porcine

homolog Mx1, which inhibits only 25% of VSV
replication [52–54].

Antibodies against RESTV were detected in
6.3% of exposed pig farm workers in the Philip-
pines [55]. Unlike other ebolavirus species, which
cause severe hemorrhagic fever in humans [56],
RESTV is unable to suppress interferon (IFN) sig-
naling immune response in humans [57]. However,
pigs develop gross abnormalities in the lymphatic
and respiratory systems after experimental infection
and shed RESTV in nasopharyngeal secretions,
which transmit RESTV to neighboring pigs [58].

An outbreak of MenPV occurred in an Aus-
tralian piggery farm in 1997 with symptoms of
reproductive disease in pigs, which included
increased fetal death and abnormalities, and still-
born piglets [59]. Additionally, neutralizing anti-
bodies were detected in adult pigs and two farm

Fig. 1. Transmission routes for seven zoonotic viruses. Solid arrows indicate transmission route, while dashed arrows indi-
cate potential transmission route. The figure was created with BioRender.com.
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workers who developed an unexplained febrile ill-
ness [59,60]. MenPV isolated from a stillborn piglet
replicated in secondary lymphoid organs and
intestines in experimentally infected pigs and shed
in oronasal secretions, feces, and urine for under a
week [61]. The source of MenPV was assumed to
be local Pteropus fruit bat species based on serolog-
ical evidence and later confirmed following the iso-
lation of MenPV from fruit bat urine samples,
which shared 94% nucleotide homology to the pig
isolates [59,62].

TioV was also discovered in Pteropus fruit bat
species in Tioman Island, Malaysia [63]. Outbreaks
of TioV have not been reported in either humans
or pigs, but due to fruit bats harboring other zoo-
notic viruses, a serological survey of the Tioman
Island population found 1.8% of islanders were
seropositive for antibodies against TioV [64]. TioV
is unable to inhibit IFN-a/b signaling in human
kidney cells, but can interfere with proinflammatory
cytokine interleukin 6 (IL-6) and IFN-b promoter
induction to cause infection [65]. Following experi-
mental infection in pigs, TioV was isolated from
oral swabs and neutralizing antibodies developed
without inducing clinical signs [31]. This implicates
pigs as potential amplification hosts if TioV spills
over from bats.

Other reservoir host species for zoonotic viruses

Pigs appear to be minor, incidental hosts in the
transmission chain for eleven zoonotic viruses.
Although, more research is required to substantiate
the insignificant contribution from pigs in the main-
tenance of many of these viruses. The majority are
vector-borne viruses: Toscana (TOSV), Venezuelan
equine encephalitis (VEEV), Banna, Cache Valley,
Chandipura, Getah, and Louping ill, and three are
non-vector-borne viruses: rabies (RABV),
encephalomyocarditis, and foot-and-mouth disease
virus (Table 1).

Despite causing acute meningitis in humans
[66,67], the reservoir host species maintaining
TOSV remains unknown, but likely involves a cyc-
lic combination of arthropod, wildlife, and domesti-
cated animals, akin to most other arbovirus
maintenance cycles (Table 1). One serological sur-
vey detected IgG antibodies against TOSV in 22%
of tested pigs in Spain [68], but further research
efforts in pigs are lacking. Serological surveys for
VEEV infection in pigs have also received limited
attention since the last survey conducted in 1971
[69]. However, horses and rodents have been identi-
fied as the main amplifying hosts for epidemic and
endemic strains of VEEV [70].

Other zoonotic viruses present a threat to the wider
human population, beyond immediate farm and labo-
ratory workers. Each year, RABV causes 59,000
deaths in humans usually bitten by rabid canines or
bats [71]. Although RABV has been isolated from
human secretions, the risk of human-to-human trans-
mission is almost exclusively through organ transplan-
tations [72]. RABV incidence in pigs is rare, and the
“furious” form causing aggression with biting has
only been recorded once in China [73]. As a generalist
virus capable of infecting a wide range of species,
RABV genetic diversity correlates with geographical
origin rather than specialization in different host spe-
cies, as RABV isolated from a pig shared 99.7%
nucleotide homology in the partial N gene to a circu-
lating “street” strain from a rabid canine isolated in
the previous year [73].

Humans as reservoirs for reverse zoonotic viruses

Humans have spread three viruses: severe acute res-
piratory syndrome-related coronaviruses (SARSr-
CoV), swine vesicular disease (SVDV), and noro-
viruses (NoV), to pigs through varied transmission
routes (Table 1) illustrated in Fig. 2 together with
bidirectionally transmitted viruses (addressed in the
next section).

Although SARSr-CoV originate from Rhinolo-
phus horseshoe bat species and spilled over into
humans through an intermediary species, humans
rapidly became an effective transmitting host and
viral reservoir for SARS-CoV in 2003 and SARS-
CoV-2 in 2019 [74,75]. SARS-CoV was transmitted
to pigs in China presumably via contaminated feed
from restaurant leftovers [76], but there has been
no evidence of natural infection in swine with
SARS-CoV-2. However, both SARSr-CoV appear
to replicate poorly in pigs [77,78], possibly due to
less efficient viral attachment to the porcine
angiotensin-converting enzyme 2 (ACE2) homolog
receptor, which shares 81% nucleotide identity with
the human ACE2 receptor [75,78].

During human meningitis epidemics between
1948 and 1964, SVDV emerged in pigs as a genetic
sublineage of human-infecting coxsackievirus B
(CV-B) [79–81]. Periodic outbreaks in pigs arose in
Europe and Asia until 2007 with SVDV becoming
progressively adapted to swine as later SVDV iso-
lates (post-1990s) lost the ability to bind human
decay-accelerating factor as a co-receptor and infect
humans [82].

Highly genetically diverse NoV infect a broad
range of species, but strains belonging to gen-
ogroup II (GII) exclusively infect humans and pigs
[83]. Human-associated NoV (huNoV) have been
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detected in pigs, but porcine-associated NoV (por-
NoV) have never been detected in humans [84–86].
porNoV were unable to bind histo-blood group
antigens (HBGA) as co-receptors on human cells,
whereas huNoV-GII.P4 was able to bind to duode-
nal and buccal tissues from either A+ or H+ pheno-
type HBGA pigs [84,87].

Bidirectional viral transmission

Theoretically, a virus with the ability to infect and
induce viral shedding in both humans and pigs can
transmit between the two species. Non-enveloped
viruses are typically stable in the environment, which
increases potential routes for transmission [88–90].
Seven viruses demonstrate bidirectional transmission
by this principal (Table 1 and Fig. 2), four of which
are non-enveloped: Torque teno (TTV), picobirnavirus

(PBV), hepatitis E (HEV), rotavirus A (RVA), and
three are enveloped: influenza A (IAV), influenza C
(ICV), and Ross River (RRV).

TTV and PBV are considered opportunistic
pathogens due to their ubiquitous detection in both
diseased and healthy human and pig populations
and in various environments [91–96]. Although
specific TTV species of varying genome sizes are
associated with human or pig infection, human-
associated Alphatorquevirus TTV species (huTTV)
have been detected in 80% of pig sera samples and
porcine-associated Iotatorquevirus and Kappatorque-
virus TTV species (TTSuV1 and TTSuVK2) have
been detected in 92.5% of human sera samples
[97], indicating viral exchange between the hosts.
Growing evidence indicates PBV infects prokary-
otes in the microbiome of humans and pigs [98].
Nevertheless, a genetic association between PBV

Fig. 2. Transmission routes for three reverse zoonotic and seven bidirectionally transmitted viruses. Solid arrows indicate
transmission route, while dashed arrows indicate potential transmission route. The figure was created with BioRender.com.
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isolated from humans and pigs has been suggested
[99–101].

Humans are typically infected with HEV follow-
ing the consumption of raw or undercooked pork
products in developed countries and through the
fecal-oral transmission route in developing coun-
tries via consumption of water contaminated with
human feces [102,103]. Viremia peaks during the
incubation period and the early symptomatic phase,
with viral shedding in feces [102, 103]. While pigs
are significant sources of HEV for humans, experi-
mental infection in pigs with HEV isolated from
humans has also been demonstrated [104,105].

Similar to NoV, RVA attaches to HBGAs as co-
receptors to infect host cells, the phenotype of
which depends on the VP8 domain of protease-
cleaved protein (P) types rather than the host spe-
cies [106]. Unlike NoV, however, reassortant viruses
with segments of human RVA origin have been
found in pigs and vice versa [107,108].

The exchange of IAV between humans and pigs
is well known. Reassortant IAV generated with seg-
ments originating from human and swine IAV have
been found in both host populations [12]. One high
profile example was the novel genotype of H1N1
virus, which caused a human pandemic in 2009
after a quadruple reassortant IAV containing seg-
ments from avian IAV, human H3N2 subtype, Eur-
asian avian-like swine IAV, and classical swine
H1N1 subtype jumped from pigs into humans and
back into pigs [109,110].

Although humans were the only known natural
host for ICV [111,112], ICV has also been isolated
from naturally infected pigs [109]. ICV strains iso-
lated from humans during 1988-1990 were highly
related to the swine isolates obtained in China dur-
ing 1981–1982 [111,113], strongly suggesting inter-
species transmission between humans and pigs;
although, it is unknown whether the virus had
transmitted from pigs to humans or from humans
to pigs [111]. There is increasing evidence that other
influenza species (influenza B and influenza D) are
able to infect both humans and pigs and transmit
between the two hosts [114].

Unlike all other zoonotic arboviruses in Table 1,
RRV can potentially transmit between humans and
pigs via mosquitoes. Human-to-mosquito-to-human
transmission has been demonstrated during urban
epidemics and pigs can also develop viremia, albeit
at lower viral titers than humans [115–117].

Viral emergence, molecular evolution, and generation

of diversity

To spill over into human or pig populations, either
viruses possess intrinsic ability to pass through

epidemiological barriers when the permitting factors
align (without significant alteration to the viral gen-
ome) or viruses must first undergo substantial
genetic changes to infect new host cells and evade
host immune responses. Genetic divergence is dri-
ven by mutation, recombination, and reassortment
and the resulting variants, haplotypes, or reassor-
tants either propagate or diminish by various selec-
tive processes as the virus adapts to the new host
[118,119].

RNA viruses are exceedingly more likely to be
zoonotic than DNA viruses [120], given their high
nucleotide substitution rates of approximately
1 9 10 �3 nucleotide substitutions per site per year
(ns/s/y) on average and rapid ability to adapt [121].
This is reflected in our review as all except one
virus encode an RNA genome (Table S2). Nucleo-
tide substitutions in most viruses with RNA gen-
omes occur during replication by error-prone, viral-
encoded RNA polymerases, while viruses with
DNA genomes employ the host cell DNA poly-
merase with exonuclease activity to correct errors
and are additionally subjected to post-replication
repair systems [119,122]. However, TTV has a
DNA genome with a comparable mutation rate to
RNA viruses (0.53-0.55 9 10-3 ns/s/y [123]) and is
highly genetically diverse, which could be attributed
to the persistent nature of TTV infections in the
host [124].

Nucleotide substitution rates and the number of
susceptible host species are uncorrelated across the
reviewed viruses (Table S2). Vector-borne RNA
viruses generally exhibit significantly lower muta-
tion rates than non-vector-borne RNA viruses, with
highly genetically similar strains infecting wide
ranges of hosts (Table S2). For non-vector-borne
RNA viruses, it is plausible that maintaining high
mutation rates is necessary to adapt to a wide
range of hosts. Encephalomyocarditis and foot-and-
mouth disease viruses infect a broad range of hosts
(30 and 72 documented hosts, respectively) and
exhibit significantly higher mutation rates (1.61 and
1.45 9 10 �3 ns/s/y, respectively) than vector-borne
viruses [6,121,125]. However, the number of
infected hosts is not a reliable proxy for mutation
rate; Chandipura virus (CHPV) has a host range of
6 and the highest mutation rate at 6.577 9 10
�3 ns/s/y, RABV has the widest host range (126
known hosts) but a lower mutational rate
(0.09 9 10 �3 ns/s/y), and SVDV rapidly adapted
to swine after introduction from humans
(3.84 9 10-3 ns/s/y) (Table S2). Instead, mutation
rates are more likely influenced by the efficiency of
virus–host cell interactions, host immune evasion,
and viral reproductive strategies, among many
other biotic and abiotic factors.
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Major genetic changes in viruses can occur by
recombination and reassortment events when host
cells are co-infected with at least two viral strains
(variants or distant relatives), which interact dur-
ing replication to form progeny with genetic
material from both strains [118,119]. In general,
recombination is prevalent in single-stranded,
positive-sense RNA viruses with the exception of
Flaviviruses where recombination is rarely
observed [118]. Novel SVDV emerged in pigs
because of a probable recombination event
between human-infecting coxsackievirus B (CV-B)
and CV-A9; although, it is unknown whether the
recombination event occurred in pigs or humans
[80]. Polymerase (P) types of human- and pig-
associated NoV frequently recombine with com-
mon breakpoints between open reading frame
junctions [126–130], but such recombinants have
only been detected in pigs [85]. Even though
single-stranded, negative sense RNA viruses in
general show lower rates of recombination, reas-
sortment is frequently observed in Orthomyxoviri-
dae, such as influenza A virus, which belong to
the single-stranded, negative sense RNA viruses.
Reassortment is restricted to segmented RNA
viruses and can result in rapid genetic change by
formation of reassortants with novel genome
combinations [118]. Twenty-five percent of the
assessed viruses in this review have a segmented
genome, potentially making these viruses more
disposed to fast adaptation to a new host/inter-
species transmission.

Challenges in determining viral transmission

Our assessment of viral transmission is based on
past strains of viruses. The viral landscape is under
constant selective pressures, and the rapid and con-
tinuous generation of extensive genetic diversity is
challenging to anticipate. Emergence of novel anti-
genic variants of viruses can undermine vaccination
efforts, and vaccine availability against the majority
of viruses is low (Table S2). Identifying the host
factors a virus would need to adapt to is one mod-
eling strategy to predict future variants, e.g., identi-
fying viral–host protein interactions between the
protein homologs in different hosts or the use of
alternative host cell receptors.

RESTV is currently non-pathogenic to humans,
but substitutions of three amino acids in RESTV
VP24 protein might enable binding to human
karyopherin alpha5, which block innate immunity
pathways in the same manner as other related
pathogenic ebolaviruses [57,131,132]. In addition, a
truncation in RESTV VP30 in a fraction of the
RESTV isolates from pigs is characteristic of the

Zaire ebolavirus adaptation to human cells during
several months of human-to-human transmission in
the 2013-2016 ebolavirus disease outbreak [133].

Alternatively, wildlife viruses may attenuate as
they passage through swine herds. NiV-M, which
was transmitted from bats-to-pigs-to-humans,
caused a 40% case fatality rate in humans, while
NiV-Bangladesh genotype was transmitted directly
from bats-to-humans via contaminated date palm
sap causing over 70% case fatalities and has even
transmitted onward to first contact humans [134].
The nucleotide difference between the two geno-
types (8.2% [39]) is the most likely explanation for
the difference in case fatality rates. Thus, viral
attenuation through nucleotide changes in an inter-
mediary host is a potential outcome.

Interactions between viruses and bacteria in the
host microbiome may be another hidden factor
facilitating viral transmission between humans and
pigs. Certain bacteria express HBGAs to facilitate
attachment of NoV to B cells, and CagA-positive
Helicobacter pylori induces HBGA expression in
the mucosa of individuals without a functional
FUT2 gene and HGBA phenotype [135,136]. This
can potentially increase the replication efficiency of
particular NoV and RVA genotypes infecting
humans and pigs.

Routine surveillance programs have been estab-
lished for only some viruses in pigs (e.g., IAV
[137]), and a few others are notifiable to interna-
tional health bodies upon detection [138]. Many
outbreaks lack real-time monitoring and sampling
in swine herds and humans, which can make retro-
spective analyses difficult and viral records incom-
plete (e.g., SARS-CoV-2 [26]). The choice of
screening assays may also exclude some viruses.
However, recent technical developments of next-
generation sequencing or probe-based techniques
with high-throughput capabilities allow characteriz-
ing entire viromes of large populations a viable
option. The overall aim of surveillance programs
for emerging pathogens and zoonosis should be to
act as early detection/warning systems because the
success of limiting the spread of, e.g., a new zoono-
tic virus to a great extent relies on the possibility to
contain it before it jumps to the first human. This
in turn calls for more basic research into identifica-
tion of reliable viral and host markers of species
specificity for the different types of viruses com-
bined with a One Health-oriented design of the mon-
itoring programs, i.e., by the inclusion of more
targeted sampling of people in close contact with ani-
mals, e.g., swine.

Experimental studies involving human volunteers
are rare. Only IAV, ICV, NoV, and RVA have
been administered in challenge studies, usually with
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human-derived isolates, common circulating geno-
types in the population, or attenuated viral strains
[139–142]. Therefore, experiments with viruses to
study human-related dynamics rely on cell culture,
explants, or animal models, which have some
restrictions for application in a human population.
Nevertheless, these experiments provide valuable
data, particularly concerning specific virus–cell
interactions.

CONCLUDING REMARKS

The list of 27 viruses shared by humans and pigs
are generally regarded as zoonotic [6]. Reverse
zoonosis or humans’ ability to transmit viruses to
other animals is overlooked in some cases [8]. This
review gathered evidence to assess the direction of
viral transmission in the context of humans and
pigs. Where direct detection was lacking, we theo-
rized whether the virus could infect and transmit to
the other host based on viral entry requirements,
ability to establish infection, activation of immune
responses, and shed in transmissible routes.

Transmission routes and viral sources are illus-
trated in Figs 1 and 2. Pigs are or have potential to
be significant reservoirs, intermediaries, and ampli-
fiers for at least seven zoonotic viruses; humans
have been the source of three reverse zoonotic
viruses in pigs; and humans and pigs possibly
exchange seven viruses back and forth (Table 1).
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Table S1. Framework of viral factors with associ-
ated relevance and assumptions considered in the
review.
Table S2. Highlights of collected data based on the
framework of factors in Table S1, which is used to
inform viral transmission direction in Table 1.
Distinctions are drawn between humans and pigs
where appropriate.
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