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Abstract
Objectives: Circadian	rhythm	controls	complicated	physiological	activities	in	organ-
isms.	Circadian	clock	genes	have	been	related	to	tumour	progression,	but	its	role	in	
glioma	is	unknown.	Therefore,	we	explored	the	relationship	between	dysregulated	
circadian clock genes and glioma progression.
Materials and Methods: Samples	were	divided	into	different	groups	based	on	circa-
dian	clock	gene	expression	in	training	dataset	(n	=	672)	and	we	verified	the	results	
in	other	 four	validating	datasets	 (n	=	1570).	The	GO	and	GSEA	enrichment	analy-
sis	were	 conducted	 to	 explore	 potential	mechanism	of	 how	 circadian	 clock	 genes	
affected	 glioma	 progression.	 The	 single-cell	 RNA-Seq	 analysis	 was	 conducted	 to	
verified	previous	results.	The	immune	landscape	was	evaluated	by	the	ssGSEA	and	
CIBERSORT	algorithm.	Cell	proliferation	and	viability	were	confirmed	by	the	CCK8	
assay,	colony-forming	assay	and	flow	cytometry.
Results: The	cluster	 and	 risk	model	based	on	circadian	 clock	gene	expression	can	
predict	 survival	 outcome.	 Samples	 were	 scoring	 by	 the	 least	 absolute	 shrinkage	
and	 selection	 operator	 regression	 analysis,	 and	 high	 scoring	 tumour	 was	 associ-
ated	with	worse	survival	outcome.	Samples	in	high-risk	group	manifested	higher	ac-
tivation	 of	 immune	 pathway	 and	 cell	 cycle.	 Tumour	 immune	 landscape	 suggested	
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1  | INTRODUC TION

Glioma	is	the	most	common	primary	intracranial	tumour,	accounting	
for	28%	of	all	and	80%	of	malignant	brain	tumours,	according	to	the	
Central	 Brain	 Tumor	 Registry	 of	 the	United	 States.1	 Glioblastoma	
(GBM,	WHO	grade	IV)	is	the	most	malignant	glioma	with	an	overall	
5-year	survival	 rate	 less	 than	5%.2	Clinically,	apart	 from	the	histo-
logic	subtype,	other	biomarkers	including	IDH	status,	1p19q	status	
and	MGMT	methylation	status	are	used	to	predict	patient	survival	
and	personalize	therapy.	Lower	grade	glioma	(LGG),	 IDH	mutation,	
MGMT	methylation	and	1p19q	codeletion	are	associated	with	bet-
ter	survival.	Current	standard	 treatments	 include	maximal	 surgical	
resection	along	with	postoperative	radiation	and	temozolomide	con-
current chemotherapy.3-5	However,	the	prediction	of	patients’	sur-
vival	outcome	is	still	imprecise	and	the	development	of	an	effective	
prognostic model is in urgency.

Circadian	 rhythm	 is	 an	 endogenous	 oscillation	 of	 numerous	
physiological	activities	in	our	bodies	corresponding	to	24-hour	pe-
riodicity.6,7	Genes	involved	in	circadian	rhythm	can	be	divided	into	
two	groups,	the	core	clock	genes	and	the	clock	control	genes.	The	
former	 governs	 circadian	 rhythm	 and	 consists	 of	ARNTL,	CLOCK,	
PERs	(including	PER1,	PER2,	PER3)	and	CRYs	(including	CRY1,	CRY2,	
CRY3).	 The	 clock	 control	 genes,	 including	 RORs	 (including	 RORA,	
RORB,	RORC)	and	NR1Ds	(including	NR1D1,	NR1D2),	modulate	the	
expression	of	 core	 clock	genes.	The	CLOCK-ARNTL	complex	 con-
trols	 transcription	of	PERs	and	CRYs	while	 accumulated	PERs	and	
CRYs	 in	 turn	repress	CLOCK-ARNTL	complex	activity	with	 the	as-
sistance	 of	 TIMELESS.	 This	 negative	 feedback	 contributes	 to	 the	
formation	of	circadian	rhythm.	We	collected	circadian	clock	genes	
(CCGs),	including	core	clock	genes	and	clock	control	genes	identified	
in	previous	studies	for	further	analysis.6,8,9

Disrupted	circadian	rhythms	are	common	in	several	cancers	in-
cluding	lung	cancer,	breast	cancer	and	colorectal	cancer,10-13 where 
they	influence	tumour	angiogenesis,	apoptosis	and	proliferation.14-16 
For	instance,	ARNTL	induces	cell	cycle	arrest	in	tumour	cells	by	af-
fecting	p53	function17 and represses tumour cell invasion through 
PI3K	signalling	pathway.18	CLOCK	promotes	high-grade	glioma	pro-
liferation	 and	migration	 19 and modulates the cellular response to 
DNA	damage	in	colorectal	cancer.20	Nevertheless,	the	role	of	CCGs	
in glioma is still largely unknown.

In	this	study,	we	proved	the	prognostic	model	based	on	CCGs	can	
be	applied	to	predict	patient	survival	in	the	TCGA	dataset	(Figure	S1A).	
The	results	were	also	validated	in	four	independent	datasets,	including	

three	CGGA	datasets	 and	 one	GSE10	8474	 dataset.	 Two	prognostic	
model	we	built	both	 indicated	CCG	expression	can	predict	patients’	
survival	outcome.	We	scored	samples	with	the	LASSO	regression	anal-
ysis,	 and	 high	 scoring	 tumours	manifested	worse	 survival	 outcome.	
The	scoring	system	can	also	be	applied	to	other	tumours	indicating	the	
importance	of	CCGs	in	tumour	progression.	To	qualified	the	role	of	our	
scoring	system,	a	nomogram	was	established	for	clinical	application.

As	 for	how	CCG	expression	affects	glioma	progression,	higher	
scoring	 tumour	usually	 along	with	higher	 immune	 infiltration	 ratio	
and	more	 sensitivity	 to	 immunotherapy.	Notably,	 CGG	expression	
can	 affect	 tumour	 progression	 by	 inhibiting	 tumour	 cell	 prolifera-
tion.	TIMELESS	is	a	critical	gene	in	regulating	the	expression	of	core	
CCGs.	By	silencing	TIMELESS	not	only	dysregulated	CCG	expression	
but	also	arrested	cell	cycle	at	 the	G0/G1	phase.	Therefore,	abnor-
mal	CCGs	expression	suppressed	tumour	cell	proliferation	according	
to	CCK8	assay	and	colony-forming	assay.	In	general,	abnormal	CCG	
expression	affects	tumour	prognosis	through	influencing	tumour	im-
mune	landscape	and	tumour	cell	proliferation.

2  | MATERIAL S AND METHODS

2.1 | Data processing

RNA-seq	data	and	corresponding	clinical	information	were	obtained	
from	the	TCGA	(https://cance	rgeno	me.nih.gov/),	CGGA	(referred	to	
as	mRNAseq_325	 (CGGA1)	dataset,	mRNA-array	 (CGGA2)	dataset	
and	mRNAseq_693	 (CGGA3);	 http://www.cgga.org.cn/)	 and	 NCBI	
GEO	 (GSE10	8474;	 https://www.ncbi.nlm.nih.gov/gds)	 (Table	 S1).	
TCGA	data	were	used	as	a	training	set	and	others	were	used	for	vali-
dation.	Among	these,	TCGA,	CGGA1	and	CGGA3	are	RNA	sequenc-
ing	 data	 and	 CGGA2	 and	 GSE10	8474	 are	 RNA	 microarray	 data.	
Heatmaps	were	used	to	illustrate	the	expression	profile	of	CCGs.

Single-cell	 RNA-Seq	 data	 from	 GSE13	9448	 were	 downloaded	
and	 processed	 using	 R	 package	 ‘Seurat’.21	 ‘NormalizeData’	 and	
‘FindVariableGenes’	were	conducted	 to	normalized	data	and	 iden-
tified	2000	highly	variable	genes,	 respectively.	Three	glioma	 sam-
ples	(GBM27,	GBM28	and	GBM29)	from	GSE13	9448	were	merged	
for	 further	 analysis.	 Perform	 principal	 component	 analysis	 was	
conducted	 using	 the	 ‘FindNeighbors’	 and	 ‘FindClusters’	 function.	
Expression	profiling	of	the	genes	composing	the	riskScore	were	de-
picted	by	 violin	 plot	 using	 the	 function	 ‘vlnplot’.	Differentially	 ex-
pressed	genes	were	filtered	between	high-	and	low-risk	groups	and	

high-risk	tumour	infiltrated	more	immunocytes	and	more	sensitivity	to	immunother-
apy.	Interfering	TIMELESS	expression	affected	circadian	clock	gene	expression,	inhib-
ited	tumour	cell	proliferation	and	arrested	cell	cycle	at	the	G0/G1	phase.
Conclusions: Dysregulated	 circadian	 clock	 gene	 expression	 can	 affect	 glioma	 pro-
gression	by	affecting	tumour	 immune	 landscape	and	cell	cycle.	The	risk	model	can	
predict	glioma	survival	outcome,	and	this	model	can	also	be	applied	to	pan-cancer.

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE108474
https://cancergenome.nih.gov/
http://www.cgga.org.cn/
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE108474
https://www.ncbi.nlm.nih.gov/gds
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE108474
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE139448
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE139448
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defined	as	significant	when	|logFC|	> 1 and P-value	<	.01.	Pseudo-
cell analysis was introduced to increase the correlation between 
gene	number	and	gene	expression.22,23

2.2 | Least absolute shrinkage and selection 
operator (LASSO) Cox regression

Genes	 filtered	 by	 univariate	 Cox	 analysis	 were	 further	 applied	 to	
the	 LASSO	 Cox	 regression	 and	 their	 coefficients	 were	 calculated	
in accordance with the highest lambda value.24	The	scoring	system	
was	established	on	the	coefficients	of	genes,	the	result	of	which	we	
termed	 the	 ‘riskScore’.	 Patients	were	 characterized	 into	 high-	 and	
low-risk	groups	according	to	the	median	value	of	the	riskScore.	The	
formula	for	riskScore	calculation	is	as	follows:

2.3 | Consensus clustering analysis

Samples	were	divided	into	different	groups	by	consensus	Clustering	
analysis	with	the	R	package	 ‘Consensus	Cluster	Plus’	to	create	the	
Cluster	model.25,26	The	optimum	amount	of	Clusters	was	decided	in	
line	with	the	cumulative	distribution	function	plots	and	consensus	
matrices.27

2.4 | Biological function prediction

Gene	Ontology	(GO)	analysis	and	Kyoto	Encyclopedia	of	Genes	and	
Genomes	(KEGG)	analysis	on	high-	or	low-risk	group	were	conducted	
by	 GSVA	 analysis,	 and	 relevant	 information	 was	 download	 from	
Molecular	Signature	Database	(MSigDB).28,29	Results	from	the	GSVA	
analysis	with	a	false	discovery	rate	<	0.05	were	considered	significant.	
Additionally,	relationships	between	high-	or	low-risk	group	and	multi-
ple	gene	sets	from	the	MSigDB	were	calculated	using	GSEA	analysis.

Genes	 related	 to	 T	 cell–mediated	 immunity	 (http://www.gsea-
msigdb.org/gsea/msigd	b/cards/	GO_REGUL	ATION_OF_T_CELL_
MEDIA	TEDIM	MUNITY)	and	cell	cycle	DNA	replication	(http://www.
gsea-msigdb.org/gsea/msigd	b/cards/	GO_CELL_CYCLE_DNARE	
PLICA	TION)	were	 selected	 from	MSigDB.	The	 immune	 infiltration	
landscape	was	investigated	by	the	ssGSEA	algorithm	as	previous	de-
picted.30,31	The	ESTIMATE	algorithm	was	used	to	assess	the	compo-
sition	of	tumour	microenvironment.32

2.5 | Treatment prediction

Candidate	 drugs	 target	 to	 glioma	 were	 selected	 by	 using	 the	
CMap	 (https://porta	ls.broad	insti	tute.org/cmap/).33	 DEGs	 between	

high-	and	low-risk	group	were	identified	by	the	limma	package	with	
setting	 |logFC|	 >1 and P-value	 <	 .05.	 Then,	 correlation	 between	
DEGs	and	riskScore	was	 illustrated	by	Spearman's	correlation,	and	
DEGs	with	correlation	coefficient	>	0.5	were	filtered	for	analysis	in	
CMap.	The	enrichment	score	of	candidate	drugs	was	calculated	by	
CMap.	 Positive	 score	 suggests	 drug	 promotes	 the	 input	 signature	
while	 negative	 score	 inhibits.	 Therefore,	 we	 selected	 drugs	 with	
negative score <−0.9	and	P-value	< .05 as candidate.

2.6 | Genetic variation analysis in glioma

Genetic	variation	information	in	glioma,	including	single	nucleotide	
polymorphisms	 (SNPs)	 and	 copy	 number	 variations	 (CNVs),	 was	

downloaded	from	the	TCGA	database.	GISTIC	(version	2.0)	was	used	
to	explore	copy	number	information	of	alteration	peaks	in	the	high-	
or	low-risk	groups.34

2.7 | Survival analysis and nomogram

The	Kaplan-Meier	analysis	was	applied	to	generate	survival	curves,	
and	the	validity	was	assessed	by	the	log-rank	test.	Receiver	operat-
ing	characteristic	(ROC)	curve	and	the	area	under	the	curve	(AUC)	
were	introduced	to	contrast	the	predictive	ability	of	different	model.

Univariate	and	multivariate	Cox	regression	analysis	was	used	
to	filter	prognostic	variables	(P-value	<	.05).	Consequently,	these	
variables	were	verified	by	the	Schoenfeld	test	to	construct	a	no-
mogram with the r	package	‘RMS’.35,36	The	calibration	curve	and	
ROC	were	used	to	evaluate	the	accuracy	of	the	nomogram	for	OS	
prediction.

2.8 | Cell culture

Glioma	 cells,	 U251	 and	 T98G,	 were	 acquired	 from	 the	 Chinese	
Academy	of	Sciences.	Cells	were	cultured	in	the	DMEM	at	37℃ with 
5%	CO2.	Cells	were	divided	into	control	group,	siRNA-negative	con-
trol	group	and	siRNA	(siRNA-871,	siRNA-1032,	siRNA-2526)	group.

2.9 | Western blot assay

Proteins	were	extracted	using	RIPA,	and	the	concentration	of	pro-
teins	 was	 determined	 by	 BCA	 protocol.	 Antibody	 of	 TIMELESS	

riskScore=0.30145833∗ARNTL+0.08807400∗ARNTL2+0.14204612∗BHLHE40+

(−0.36049846∗CRY2)+(−0.06305725∗CSNK1E)+(−0.03387665∗HLF) +

(−0.04254696∗NR1D2)+(−0.08047881∗PER3)+0.01191781∗RORC+

0.17275780∗TIMELESS

http://www.gsea-msigdb.org/gsea/msigdb/cards/GO_REGULATION_OF_T_CELL_MEDIATEDIMMUNITY
http://www.gsea-msigdb.org/gsea/msigdb/cards/GO_REGULATION_OF_T_CELL_MEDIATEDIMMUNITY
http://www.gsea-msigdb.org/gsea/msigdb/cards/GO_REGULATION_OF_T_CELL_MEDIATEDIMMUNITY
http://www.gsea-msigdb.org/gsea/msigdb/cards/GO_CELL_CYCLE_DNAREPLICATION
http://www.gsea-msigdb.org/gsea/msigdb/cards/GO_CELL_CYCLE_DNAREPLICATION
http://www.gsea-msigdb.org/gsea/msigdb/cards/GO_CELL_CYCLE_DNAREPLICATION
https://portals.broadinstitute.org/cmap/
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(Proteintech	 Cat#	 14421-1-AP,	 RRID:	 AB_2201962)	 and	 β-actin	
(Proteintech	Cat#	66009-1-Ig,	 RRID:	AB_2687938)	was	 added	 for	
Western	 blot	 assay.	 HRP	 secondary	 antibody	 (Proteintech	 Cat#	
SA00001-1,	 RRID:	 AB_2722565;	 Proteintech	 Cat#	 SA00001-2,	
RRID:	AB_2722564)	was	added	at	the	second	day.	The	expression	of	
TIMELESS	 in	the	siRNA-1032	group	was	not	significantly	silenced;	
thereby,	siRNA-1032	was	not	used	in	the	following	experiment.

2.10 | RT-qPCR

RNA	 extraction	 was	 performed	 followed	 the	 Trizol	 protocol.	
Extracted	RNA	integrity	was	verified	before	PCR.	Former	primer	and	
reverse	primer	of	CCGs,	designed	by	primer	5,	were	added	to	a	PCR	
mix.	PCR	initiated	with	95℃	for	10	minutes,	followed	with	40	cycles	
(each	cycle	consists	of	95℃	for	15	seconds	and	60℃	for	30	seconds).

F I G U R E  1  Landscape	of	CCG	
expression	profile.	(A)	The	chromosomal	
locations	of	CCGs.	Heatmap	illustrating	
CGG	expression	differences	between	LGG	
and	GBM	in	the	TCGA	(B),	CGGA1	(C)	and	
CGGA2	(D)	datasets.	(E)	SNPs	present	
in	CGGs	of	all	samples	from	the	TCGA	
dataset.	CNVs	for,	CRY1	(F),	PER1	(G)	
and	TIMELESS	(H).	The	DNA	methylation	
status	of	CRY1	(I),	PER1	(J)	and	TIMELESS	
(K)	along	with	the	status	of	IDH.	The	core	
clock	genes	are	labelled	with	red.	NS:	not	
statistically	significant;	*P <	.05;	**P < .01; 
***P < .001

F I G U R E  2  Survival	analysis	based	on	the	cluster	model	and	riskScore	model.	Survival	analysis	of	the	LGGGBM	cohort	based	on	the	
cluster	model	in	the	TCGA	(A,	P-value	<	.0001),	CGGA1	(B	P-value	<	.0001),	CGGA2	(C,	P-value	<	.0001)	datasets.	Survival	outcomes	for	
high-	and	low-risk	groups	in	the	LGGGBM	cohort	from	the	TCGA	(D,	P-value	<	.0001),	CGGA1	(E,	P-value	<	.0001)	and	CGGA2	(F,	P-
value <	.0001)	datasets.	Survival	analysis	for	high-	and	low-risk	groups	based	on	subgroups	characterized	by	IDH	status	and	1p19q	status	
from	the	TCGA	(G:	mutant_high	vs	mutant_low	<	0.0001,	WT_high	vs	WT_low	<	0.0001;	H:	noncodel_high	vs	noncodel_low	<	0.0001,	
codel_high	vs	codel_low	=	0.0079),	CGGA1	(I:	mutant_high	vs	mutant_low	<	0.0001,	WT_high	vs	WT_low	=	0.0108;	J:	noncodel_high	
vs	noncodel_low	<	0.0001,	codel_high	vs	codel_low	=	0.1657)	and	CGGA2	(K:	mutant_high	vs	mutant_low	=	0.0045,	WT_high	vs	WT_
low <	0.0001;	L:	noncodel_high	vs	noncodel_low	<	0.0001,	codel_high	vs	codel_low	=	0.1175)	datasets

info:x-wiley/rrid/RRID:%20AB_2201962
info:x-wiley/rrid/RRID:%20AB_2201962
info:x-wiley/rrid/RRID:%20AB_2201962
info:x-wiley/rrid/RRID:%20AB_2687938
info:x-wiley/rrid/RRID:%20AB_2687938
info:x-wiley/rrid/RRID:%20AB_2687938
info:x-wiley/rrid/RRID:%20AB_2722565
info:x-wiley/rrid/RRID:%20AB_2722565
info:x-wiley/rrid/RRID:%20AB_2722565
info:x-wiley/rrid/RRID:%20AB_2722564
info:x-wiley/rrid/RRID:%20AB_2722564
info:x-wiley/rrid/RRID:%20AB_2722564
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2.11 | Cell proliferation and cell cycle

Colony-forming	assay	was	performed	to	show	the	relationship	be-
tween	 TIMELESS	 and	 cell	 viability.	 Cells	 were	 plated	 into	 6-well	
plates	 and	 fixed	 after	 culturing	 for	 two	 weeks.	 The	 OD	 value	 at	
550	nm	was	measured	after	staining	and	decolouring	cells.

To	detecting	cell	cycle	alternation,	single-cell	suspension	(1*106 
cells	 per	 millilitre)	 was	 fixed	 and	 harvested	 on	 the	 second	 day.	
Then,	cells	were	loaded	on	flow	cytometer	and	the	proportion	of	
cells	with	different	cell	cycle	was	calculated	using	ModFit	LT	(ver-
sion	5.0).

For	CCK8	assay,	cells	(1*103)	were	seeded	on	96-well	plates,	and	
the	OD	value	at	450	nm	was	measured	at	different	time.

2.12 | Drug sensitivity

Cells	were	also	divided	into	different	groups	with	different	drug	con-
centration	(10,	20	and	30	μmol/L).	Agonists	of	NR1D1	and	NR1D2,	
SR9009	 (Cat#	HY-16988)	and	SR9011	 (Cat#	HY-16989),	were	pur-
chased	from	MedChemExpress	(Shanghai,	China).37	Cells	(2*103 per 
well)	were	 seeded	 on	 the	 96-well	 plate,	 and	 agonists	were	 added	
with	10,	20	and	30	μmol/L	at	final	concentration.	Cell	sensitivity	to	
drugs	was	also	evaluated	by	the	CCK8	assay.

2.13 | Statistical analysis

Statistical	 analysis	 was	 carried	 out	 using	 r	 (version	 3.6.2)	 and	
Graphpad prism	 (version	8.0).	Wilcoxon	 rank-sum	test	was	used	 to	
compare	two	groups.	One-way	ANOVA	was	used	to	compare	mul-
tiple	groups.	Pearson's	correlation	analysis	was	conducted	to	calcu-
late	correlation	coefficient.	NS:	not	statistically	significant;	*P < .05; 
**P <	.01;	***P < .001. And P-value	< .05 was considered statistically 
significant.

3  | RESULTS

3.1 | Expression profile of circadian clock genes and 
clinical features of glioma

We	selected	24	CCGs	that	contribute	to	circadian	rhythm	and	sum-
marized	 their	 location	 on	 chromosomal38-40	 (Figure	 1A).	 A	 pro-
tein-protein	 interaction	 network	 of	 these	 24	 genes	 indicates	 the	
complicated	 regulation	 of	 circadian	 rhythm.	 The	 core	 clock	 genes	
TIMELESS,	CLOCK,	ARNTL,	PERs	and	CRYs	are	located	at	the	hub	
of	 the	 network	 (Figure	 S1B).	 Expression	 profile	 of	CCGs	 between	
normal brain tissue and gliomas was introduced the heatmap. 
Expression	difference	was	noticed	such	as	ANRTLs,	PERs,	CLOCK,	
TIMELESS,	BHLHEs	implying	disordered	circadian	rhythm	in	gliomas	
(Figure	S1C).

Then,	 the	 expression	 profile	 of	 CCGs	 in	 glioma	was	 also	 de-
picted.	 Higher	 expression	 of	 ARNTL,	 ARNTL2,	 CRY1,	 NFIL3,	
NPAS2	 and	 TIMELESS	 and	 lower	 expression	 of	 CLOCK,	 CRY2,	
PER1,	PER2,	PER3,	CSNK1E,	HLF,	NR1D1	and	TEF	were	observed	
in	GBM	compared	to	LGG	tissues	from	TCGA	(Figure	1B).	However,	
expression	of	some	core	clock	genes	like	CLOCK,	PER1	and	CRY2	
showed	 no	 significant	 difference	 in	 the	 CGGA1	 (Figure	 1C)	 or	
CGGA2	dataset	(Figure	1D).	Most	of	CCGs	did	not	show	significant	
expression	difference	between	Grade	II	and	Grade	III	glioma	such	
as	 BHLHEs	 in	 the	 TCGA	 (Figure	 S2A)	 and	 CGGA1	 (Figure	 S2B)	
dataset	or	ARNTLs,	CRYs	in	the	CGGA2	dataset	(Figure	S2C).	IDH	
status	 is	 another	 critical	 clinical	 feature	 to	 predict	 patient's	 sur-
vival	 outcome.	 As	 illustrated,	 less	 no	 significant	 expression	 dif-
ference	genes	were	noticed	than	the	comparison	of	grade	 II	and	
grade	 III	 glioma.	 (Figure	 S2D-F).	 Therefore,	 disordered	 circadian	
rhythm may be highly associated with glioma prognosis and tu-
mour progression.

SNPs	 and	 CNVs	 about	 CCGs	 were	 also	 explored.	 As	 illus-
trated,	samples	carried	with	mutated	RORB,	ARNTL,	PER1	and	
TIMELESS	only	on	account	of	1%	of	all	samples	from	the	TCGA	
dataset	(Figure	1E).	Meanwhile,	CNV	profile	of	core	CCGs	was	
able	to	explain	the	abnormal	expression	of	CCGs	(Figures	1F-H	
and	 S3A-F).	 For	 example,	 the	 expression	 of	 ARNTL,	 ARNTL2,	
TIMELESS,	 CRY1	 was	 increased	 in	 glioma	 relative	 to	 normal	
brain	 tissue,	 which	 is	 corresponding	 with	 the	 CNV	 profile	 of	
CCGs.	 However,	 PER2	 expression	 and	 PER3	 expression	 were	
lower	in	glioma	than	normal	brain	tissue,	which	is	conflict	with	
the	CNV	profile.	Then,	DNA	methylation	of	CCGs	was	analysed	
in	 all	 samples,	 IDH	 wild-type	 glioma,	 and	 IDH	 mutate	 glioma	
(Figures	 1I-K	 and	 S3G-L).	 Negative	 correlation	 between	 the	
methylation	status	of	core	CCGs	and	gene	expression	was	no-
ticed.	Besides,	the	methylation	ratio	of	core	CCGs	in	all	samples	
was	 positively	 correlated	 with	 IDH	 wild-type	 group	 and	 IDH	
mutate	group.	 In	summary,	 the	analysis	based	on	SNPs,	CNVs,	
and	DNA	methylation	indicated	that	abnormal	expressed	CCGs	
existed	in	glioma	implying	this	expression	alternation	related	to	
glioma progression.

3.2 | The Cluster model

Clustering	 consensus	 analysis	 was	 used	 to	 construct	 the	 Cluster	
model	 based	 on	 CCGs.	 In	 the	 TCGA	 database	 (Figure	 S4A),	 sam-
ples	 were	 divided	 into	 two	 clusters	 (Cluster1	 and	 Cluster2),	 and	
the	same	strategy	was	applied	to	the	CGGA1	(Figure	S4B),	CGGA2	
(Figure	 S4C),	 CGGA3	 (Figure	 S4D)	 and	 GSE10	4878	 (Figure	 S4E)	
datasets.	The	number	of	Clusters	(k	=	2)	was	determined	by	cumula-
tive	distribution	function	curves	and	consensus	matrixes.

Additionally,	 overall	 survival	 analysis	 was	 conducted	 to	 com-
pare	the	prognostic	characteristics	between	the	clusters.	Cluster2	
manifested	 longer	 overall	 survival	 relative	 to	 Cluster1	 in	 the	
LGGGBM	 cohort	 in	 TCGA	 (Figure	 2A),	 CGGA1	 (Figure	 2B)	 and	

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE104878
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CGGA2	(Figure	2C)	datasets.	However,	opposing	results	were	ob-
tained	from	the	CGGA3	and	GSE10	8474	datasets	 (Figure	S5A,B).	
Survival	analysis	was	also	performed	on	the	LGG	and	GBM	cohorts	

separately.	 Results	 from	 the	 LGG	 cohort	 were	 similar	 to	 the	
LGGGBM	cohort,	but	no	significant	difference	was	observed	in	the	
GBM	cohort	(Figure	S5C-G).

F I G U R E  3  CCG	expression	and	riskScore	profile	based	on	single-cell	sequencing	analysis.	(A)	Composition	and	distribution	of	single	cells	
from	GSE13	9448.	(B)	RiskScore	was	calculated	for	each	cell	and	their	distribution	was	illustrated.	Each	cell	type	is	ranked	by	their	average	
riskScore.	(C)	The	expression	profile	of	riskScore-related	genes	for	each	cell	is	also	presented.	Each	cell	type	is	ranked	by	their	average	
expression	value

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE108474
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE139448
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3.3 | Establishment of a prognostic riskScore model 
derived from CCG expression

Nineteen	of	twenty-four	CCGs	were	found	to	be	related	to	glioma	
prognosis	 (P-value	 <	 .05)	 by	 univariate	 Cox	 regression	 analysis	
(Table	S2).	Application	of	the	more	stringent	least	absolute	shrink-
age	 and	 selection	 operator	 (LASSO)	 Cox	 regression	 identified	

10	 prognosis-related	 genes.	 We	 used	 the	 coefficients	 from	 the	
LASSO	model	 to	calculate	a	prognostic	metric	which	we	 termed	
the	 ‘riskScore’	 (Figure	S6A-C).	 Samples	were	 then	 classified	 into	
high-	 and	 low-risk	 groups	 according	 to	 the	median	 value	 of	 the	
riskScore.

Patients	with	a	high	riskScore	showed	statistically	shorter	survival	
time	 than	 those	with	 low	 riskScores	 in	 the	TCGA	LGGGBM	cohort	

F I G U R E  4  CNV	and	SNP	difference	between	high-	and	low-risk	group.	Landscape	of	SNPs	for	high	(A)-	and	low-risk	groups	(B).	Overall	
CNVs	(C)	and	CNVs	in	high	(D)-	or	low-risk	groups	(E)	stratified	by	riskScore
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(Figure	2D).	Similar	conclusions	can	be	drawn	from	the	validation	co-
hort	(Figures	2E,F	and	S6D,E).	In	the	LGG	cohort,	high	riskScore	also	
indicated	worse	 survival,	while	no	 significant	overall	 survival	differ-
ence	was	observed	in	the	GBM	cohort	(Figure	S6F-J).	Subgroup	sur-
vival	analysis	based	on	IDH	status,	1p19q	status,	MGMT	status	and	

radiotherapy	was	also	conducted,	and	patients	with	a	higher	riskScore	
exhibited	worse	survival	outcomes	in	the	TCGA	and	validation	datasets	
(Figures	2G,L,	S6K,L,	and	S7).	Together,	these	findings	clearly	demon-
strate	the	prognostic	value	of	the	CCG-derived	riskScore	in	multiple	
glioma datasets and among clinically relevant patient subgroups.

F I G U R E  5  Nomogram	based	on	riskScore	and	clinical	features.	ROC	curve	generated	to	predict	sensitivity	and	specificity	of	the	
riskScore	for	overall	survival	based	on	the	TCGA	(A),	CGGA1	(B)	and	CGGA2	(C)	datasets.	Survival	analysis	based	on	high	or	low	points	group	
according	to	nomogram	based	on	the	TCGA	D,	P-value	<	.0001),	CGGA1	(E,	P-value	<	.0001)	and	CGGA2	(F,	P-value	<	.0001)	datasets.	ROC	
curve	for	3-year	and	5-year	overall	survival	based	on	applying	the	nomogram	to	the	TCGA	(G,	AUC:	3-year:	0.924,	5-year:	0.896),	CGGA1	(H,	
AUC:	3-year:	0.84,	5-year:	0.884)	and	CGGA2	(I,	AUC:	3-year:	0.927,	5-year:	0.874)	datasets
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Then,	the	distribution	of	riskScore	was	further	analysed.	High	
riskScore	samples	were	high-grade	glioma,	IDH	wild-type	glioma,	
1p19q	 non-codel	 glioma,	 MGMT	 unmethylated	 glioma,	 aggres-
sive	 glioma	 (classical	 and	 mesenchymal)	 and	 worse	 treatment	
outcome	glioma	in	the	training	and	validation	cohort	(Figures	S8	
and	S9).

3.4 | Single-cell transcriptomic context of 
CCGs and the riskScore

To	 further	 verify	 the	 relationship	 between	CCGs	 and	 riskScore	 in	
glioma,	single-cell	RNA	sequencing	data	 from	GBM	was	employed	
(Figure	 3A).	We	 calculated	 riskScore	 for	 each	 cell,	 and	 they	were	

F I G U R E  6  Biofunction	prediction	according	to	riskScore.	(A)	Heatmap	of	GO	and	KEGG	analysis	based	on	riskScore	in	the	TCGA	dataset.	
(B)	GSEA	analysis	in	the	TCGA	dataset	according	to	riskScore.	(C)	GO	analysis	based	on	single-sequencing	analysis
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F I G U R E  7   Immune	landscape	based	on	the	riskScore	model	and	prediction	of	tumour	response	to	immunotherapy.	(A)	Correlation	
between	RiskScore-related	genes	and	genes	involved	in	T	cell–mediated	immunity	and	DNA	replication	during	cell	cycle,	respectively.	
ESTIMATE	score	(B,	r =	0.58,	P-value	<	.001),	immune	score	(C,	r =	0.54,	P-value	<	.001),	stromal	score	(D,	r =	0.61,	P-value	<	.001),	tumour	
purity	(E,	r =	−0.58,	P-value	<	.001)	and	their	correlation	with	riskScore.	(F)	Expression	profile	of	different	types	of	infiltrating	immunocytes	
based	on	riskScore.	Upregulated	(red	stripe)	and	downregulated	(blue	stripe)	immune	cells	are	presented	according	to	immunocyte	
infiltration	analysis.	NS:	not	statistically	significant;	*P <	.05;	**P <	.01;	***P < .001
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ranked	 by	 their	 average	 riskScore	 (Figure	 3B).	 Notably,	 memory	
CD4	T	cells	and	tumour	cells	showed	higher	riskScore	than	other	cell	
types.	The	distribution	of	riskScore	related	to	CCGs	was	visualized	
(Figure	3C).	RiskScore	of	tumour	cells	and	stromal	cells	like	oligoden-
drocyte precursors and astrocyte was higher than other cell types. 
Together,	 those	 results	 proved	 that	 disordered	 circadian	 rhythm	
widely	existed	in	tumour	cells	and	cells	in	tumour	microenvironment.	
Along	with	previous	results,	further	supported	disordered	circadian	
rhythm	influenced	glioma	progression.

3.5 | Epigenetic alternation in patients within the 
high or low riskScore groups

SNPs	and	CNVs	 in	high-	 and	 low-risk	groups	were	 investigated,	 re-
spectively.	In	general,	incidence	of	SNPs	was	more	common	in	the	low-
risk	group	relative	to	high-risk	group	 (Figure	4A,B).	A	higher	degree	
of	TP53	(46%	vs	39%),	 IDH1	(89%	vs	32%)	and	ATRX	(33%	vs	21%)	
mutations	was	observed	in	low-risk	compared	to	high-risk	groups.	In	
the	high-risk	group,	EGFR,	PTEN,	NF1	were	most	common	mutations.

For	CNVs,	chromosome	1	deletions	were	more	 likely	to	be	en-
riched	in	samples	with	lower	riskScore	while	the	ratio	of	chromosome	
7	amplification	and	chromosome	10	deletion	were	paralleled	by	an	
increased	riskScore	(Figure	4C).	Amplified	regions	including	7p11.2	
(EGFR)	and	12q14.1	(CDK4)	were	enriched	in	high-risk	groups,	while	
11q24.2	 (PARP11)	 and	 12p13.32	 (hsa-mir-3167)	were	 observed	 in	
the	low-risk	group.	Meanwhile,	deletion	of	regions	including	9p21.3	
(CDKN2A)	and	1p36.23	(ERRFI1)	was	detected	in	the	high-risk	group	
(Figure	4D),	and	2q37.3	(hsa-mir-3133)	and	11p15.5	(hsa-mir-4298)	
were	common	deletion	regions	in	the	low-risk	group	(Figure	4E).

3.6 | A riskScore-derived nomogram efficiently 
predicts glioma outcomes

Receiver	 operating	 characteristic	 curves	 (ROC	 curve)	 were	 con-
structed	 to	 compare	 the	 prognostic	 ability	 of	 the	 Cluster	 model,	
riskScore	model	and	tumour	pathological	grade.	Among	these	metrics,	
the	riskScore	was	the	best	predictor	of	OS	(Figure	5A,C)	while	Cluster	
was	the	worst.	Next,	we	selected	riskScore	along	with	relevant	clini-
cal	features,	including	age,	tumour	grade,	cancer,	1p19q,	IDH,	MGMT,	
glioma	subtype	(mesenchymal,	classical,	proneural,	neural)41 to con-
duct	univariate	and	multivariate	Cox	 regression	analysis	 (Table	S3).	
Factors	with	P-value	<	.001	were	considered	statistically	significant.	
Based	on	the	findings	of	this	analysis,	riskScore	(HR	=	2.331),	1p19q	
with	non-codel	status	(HR	=	1.810),	and	age	(HR	=	1.040)	were	inte-
grated	to	construct	the	nomogram	(Figure	S10A).

Calibration	 curves	 were	 used	 to	 validate	 the	 accuracy	 of	
the	 nomogram	 fabricated	 from	 the	 TCGA	 and	 CGGA1	 dataset	
(Figure	 S10B-D).	 Dividing	 patients	 into	 high	 or	 low	 points	 groups	
based	 on	 the	 nomogram	 indicated	 that	 high	 point	 samples	 from	
TCGA,	CGGA1	and	CGGA2	databases	have	worse	survival	outcomes	
(Figure	 5D-F).	 Corresponding	 ROC	 and	AUC	were	 also	 calculated	
(Figure	5G-I).	Notably,	 the	AUC	 index	 for	3-year	 and	5-year	over-
all	survival	was	0.924	and	0.896,	respectively,	in	the	TCGA	dataset.	
Moreover,	the	AUC	index	for	3-year	OS	and	5-year	overall	survival	in	
other datasets was also more than 0.80 indicating the high accuracy 
of	 this	 nomogram.	 Together	 these	 findings	 highlight	 the	 powerful	
prognostic	ability	of	the	riskScore-derived	nomogram	model	in	mul-
tiple glioma datasets.

3.7 | Association between tumour progression 
pathways and riskScore

In	the	TCGA	dataset,	GO	and	KEGG	enrichment	analysis	based	on	
GSVA	analysis	(Figures	6A,	and	S11A)	and	GSEA	analysis	(Figure	6B)	
suggested	 that	 CCGs	modulate	 cell	 cycle	 and	 immune	 infiltration.	
Besides,	GO	analysis	based	on	GSVA	analysis	(Figure	6C)	and	based	
on	 differential	 expression	 genes	 between	 high	 and	 low	 riskScore	
group	(Figure	S11B)	in	the	single-cell	sequencing	analysis	also	sup-
ported that conclusion.

Therefore,	 we	 investigated	 the	 correlation	 between	 riskS-
core-related	CCGs	and	genes	involved	in	T	cell–mediated	immunity	
and	DNA	 replication	 during	 cell	 cycle	 (Figure	 7A).	We	 found	 that	
CRY2,	CSNK1E,	HLF,	NR1D2	and	PER3	were	negatively	correlated	
to	T	cell–mediated	immunity	while	others	were	positively	correlated.	
Additionally,	 CRY2,	 HLF,	 NR1D2	 and	 PER3	 were	 negatively	 cor-
related	with	genes	controlling	cell	cycle	DNA	replication	while	oth-
ers	were	positive.	Similar	correlation	with	T	cell–mediated	immunity	
(Figure	S12A)	and	cell	cycle	DNA	replication	(Figure	S12B)	was	also	
verified	in	CGGA1	and	CGGA2	datasets.

We	also	predicted	drug	sensitivity	according	to	riskScore.	DEGs	
(n	=	545,	90	upregulated,	455	downregulated)	between	high-	and	
low-risk	group	were	identified	and	analysed	by	CMap	to	filter	poten-
tial	drug	targets.	Podophyllotoxin	and	nystatin	manifested	negative	
correlation	with	riskScore	indicating	their	role	as	potential	drugs	tar-
get	to	glioma	(Table	S4).

3.8 | Immune infiltration profile based on riskScore

We	next	 assessed	 the	association	between	 riskScore	and	 immune	
infiltration	in	the	TCGA	dataset.	The	ESTIMATE	algorithm	was	first	

F I G U R E  8  CCGs	affect	glioma	cells	proliferation.	(A)	The	colony-forming	assay	of	U251	and	T98G	supported	the	ability	of	cell	viability	
is	worse	in	the	TIMELESS-siRNA	group.	(B)	qRT-PCR	suggests	the	expression	of	CLOCK;	PER3	is	increased	after	silencing	TIMELESS	
expression.	In	the	meantime,	PER1	and	PER2	are	also	downregulated	in	the	TIMELESS-siRNA	group.	(C)	Flow	cytometry	indicated	cell	cycle	
was	arrested	at	the	G0/G1	phase.	(D)	CCK8	assay	suggests	the	ability	of	cell	proliferation	is	affected	in	the	siRNA	group	than	the	control	
group.	(E)	T98G	showed	sensitivity	to	SR9009	and	SR9011	by	comparing	to	the	DMSO	group.	Data	were	presented	as	mean	+	SD
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introduced,	and	results	suggested	that	higher	riskScore	was	associ-
ated with a higher immune score and stromal score and lower tu-
mour	purity	(Figure	7B-E).	These	findings	were	validated	in	the	other	
datasets	(Figure	S13A,B)	implying	the	immune	landscape	difference	
between	high	and	low	riskScore	samples.

Anti-tumour	immunocytes	including	T	cells,	cytotoxic	T	cells,	NK	
cells,	macrophages	and	immunosuppressive	cells	including	Th2	cells,	
apoptotic	 dendritic	 cells,	 immature	 dendritic	 cells	 were	 enriched	
in	 high	 riskScore	 group	 (Figures	 7F	 and	 S13C,D).	 The	 distribution	
(Figure	S14A)	and	correlation	(Figure	S14B)	of	riskScore	and	immu-
nocytes	 infiltration	 were	 also	 analysed.	 Together,	 more	 immuno-
cytes	were	infiltrated	in	high	riskScore	group.

3.9 | CCGs affect tumour cell proliferation

Based	 on	 the	 result	 from	 the	 LASSO	 regression	 analysis	 and	 pre-
vious	 researches,	 we	 selected	 TIMELESS	 for	 further	 analysis.	We	
first	 verified	 the	 expression	 of	 TIMELESS	 protein	 by	 performing	
the	Western	blot	assay,	and	siRNA-1032	was	discarded	 in	 the	 fol-
lowing	 experiment	 due	 to	 its	 low	 efficiency	 (Figure	 S14C).	 The	
colony-forming	assay	suggested	that	the	viability	of	tumour	cells	in	
the	TIMELESS-siRNA	group	was	inhibited	(Figure	8A).	By	silencing	
TIMELESS	expression	can	alter	the	expression	of	CLOCK	and	PERs	
implying	circadian	rhythm	was	interrupted	(Figure	8B).

Then,	 the	 flow	 cytometry	 supported	 cell	 cycle	 was	 arrested	
at	 the	 G0	 phase	 in	 the	 TIMELESS-siRNA	 group	 compare	 to	 the	
negative	control	group	(Figure	8C).	In	the	CCK8	assay,	glioma	cell	
proliferation	was	significantly	suppressed	in	the	TIMELESS-siRNA	
group	relative	to	the	negative	control	group	(Figure	8D).	Besides,	
agonist	of	NR1D1	and	NR1D2	was	proved	to	 influence	circadian	
rhythm in previous researches.42,43	 In	 this	 work,	 T98G	 showed	
sensitivity	to	SR9009	and	SR9011	implying	interrupted	circadian	
rhythm	affected	cells	proliferation;	in	the	meantime,	U251	prolif-
eration	was	also	inhibited	by	SR9009	and	SR9011	(Figure	8E	and	
S14D).	Therefore,	cell	proliferation	was	affected	by	interfering	cir-
cadian rhythm.

4  | DISCUSSION

Circadian	 rhythm	 affects	 physiological	 activities	 of	 human	 body.	
However,	 it	was	 interrupted	 in	 tumour	 such	 as	 breast	 cancer	 and	
colorectal cancer.10-13	 Dysregulated	 CCG	 expression	 was	 associ-
ated with glioma progression19,44,45 and glioma stem cells.46	 In	this	
work,	we	constructed	prognostic	model	and	proved	disordered	cir-
cadian rhythm is associated with glioma immune landscape and cell 
proliferation.

Two	 prognostic	 model,	 the	 cluster	 model	 and	 the	 riskScore	
model,	 both	 confirmed	 CCG	 expression	 is	 associated	 with	 gli-
oma	 prognosis	 in	 this	 work.	 The	 riskScore	 model	 is	 confirmed	
as the best method to predict glioma prognosis. A high accuracy 
clinical	 prognostic	model,	 nomogram,	was	 constructed	based	on	

riskScore,	age	and	1p19q	status.	Besides,	the	riskScore	model	can	
also	be	applied	 to	other	 tumours	 in	 the	TCGA	dataset,	 including	
adrenocortical	 carcinoma,	 oesophageal	 carcinoma,	 kidney	 chro-
mophobe,	 kidney	 renal	 clear	 cell	 carcinoma,	 liver	 hepatocellular	
carcinoma,	 lung	adenocarcinoma,	 lung	 squamous	cell	 carcinoma,	
ovarian	serous	cystadenocarcinoma,	pancreatic	adenocarcinoma,	
rectum	 adenocarcinoma,	 uterine	 corpus	 endometrial	 carcinoma	
and	uveal	melanoma	(Figure	S15).

We	also	predicted	podophyllotoxin	and	nystatin	may	be	sensitiv-
ity	drug	for	high	riskScore	glioma	patients.	Notably,	previous	study	
supported	nystatin	was	associated	with	the	ratio	of	immunosuppres-
sive myeloid cells47	 and	 deoxypodophyllotoxin	 can	 inhibit	 glioma	
progression.48,49	Therefore,	the	riskScore	model	can	also	be	applied	
to	predict	potential	drugs.	Together,	we	constructed	high	accuracy,	
high	confidence	and	widely	application	model	for	evaluating	the	as-
sociation between circadian rhythm and tumour.

The	maintenance	 of	 circadian	 rhythm	depends	 on	 the	 interac-
tion	between	TIMELESS	and	PERs	and	interrupting	the	expression	of	
them cause disordered circadian.50,51	In	the	TIMELESS-siRNA	group,	
CLOCK	and	PER3	expression	 increased	while	PER1	and	PER2	de-
creased	implying	interfered	circadian	rhythm.	In	the	meantime,	cell	
cycle	was	blocked	at	G0	phase	and	cell	proliferation	was	inhibited.	
Therefore,	TIMELESS	can	promote	glioma	progression	 through	af-
fecting	cell	cycle	and	cells	proliferation.	Previous	studies	also	men-
tioned	that	TIMELESS	can	affect	tumour	progression	by	influencing	
cells	 cycle	 including	 liver	 cancer,	 cervical	 cancer,	 nasopharyngeal	
carcinoma,	breast	cancer.52-55	Besides,	PERs	and	CLOCK	also	pro-
mote	cells	proliferation	by	modulating	cell	cycle.56-59	Furthermore,	
agonist	of	NR1D1	and	NR1D2	has	been	proved	can	be	interrupted	
circadian	rhythm	and	inhibited	glioma	proliferation.42,43	In	our	work,	
similar	conclusion	was	also	obtained.	Together,	disordered	CCGs	can	
promote	tumour	progression	by	interfering	normal	cell	cycle.

The	composition	of	immunocytes	in	tumour	microenvironment	is	
also	known	to	affect	glioma	prognosis.60-62	Previous	studies	termed	
tumour	as	‘hot’	and	‘cold’	according	to	the	tumour	response	to	immu-
notherapy.63	‘Hot’	tumours	have	high	immunocyte	infiltration	and	ac-
tivated	inflammation	while	‘cold’	tumours	show	the	opposite.64	In	this	
work,	higher	infiltration	ratio	of	T	cells,	NK	cells,	macrophage	and	den-
dritic	cell	was	identified	in	high	riskScore	samples	than	low	riskScore	
samples.	 It	 is	 apparent	 that	 high	 riskScore	 tumours	 tend	 towards	 a	
‘hot’	tumour	phenotype,	suggesting	likely	sensitivity	to	immunother-
apy.	Other	studies	have	also	proved	that	disordered	circadian	rhythm	
was	tightly	associated	with	the	components	of	tumour	microenviron-
ment,	immunocytes	activation	and	immunotherapy	reaction.65-67

In	summary,	we	proved	CCGs	expression	is	associated	with	gli-
oma	patient's	survival	outcome	by	influencing	tumour	immune	land-
scape	 and	 cell	 proliferation.	 The	 riskScore	model	 based	 on	 CCGs	
can	be	applied	to	predict	survival	outcome	and	drug	sensitivity	for	
tumour patients.
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