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A B S T R A C T

Purpose: The production/excretion rate of Amyloid-β (Aβ) is the basis of the plaque burden in alzheimer’s disease
(AD), which depends on both central and peripheral clearance. In this study, the effect of silymarin and rosu-
vastatin on serum markers and clinical outcomes in dyslipidemic AD patients was investigated.
Methods: Participants (n=36) were randomized to silymarin (140 mg), placebo, and rosuvastatin 10 mg orally
three times a day for 6 months. Serum collection and clinical outcome tests were performed at baseline and after
completion of treatment. Lipid profile markers, oxidative stress markers, Aβ1–42/Aβ1–40 ratio, and Soluble Low-
density lipoprotein receptor-Related Protein-1 (sLRP1)/Soluble Receptor for Advanced Glycation End Products
(sRAGE) ratio were measured.
Results: There was a statistically significant increase in Δ-high density lipoprotein (ΔHDL) between silymarin and
placebo (P<0.000) and also between rosuvastatin and placebo (p=0.044). The level of Δ-triglycerides (ΔTG) in
the silymarin group has a significant decrease compared to both the placebo and the rosuvastatin group
(p<0.000 and p=0.036, respectively). The Δ-superoxide dismutase (ΔSOD) level in the silymarin group
compared to placebo and rosuvastatin had a significant increase (p<0.000 and p=0.008, respectively). The
ΔAβ1–42/Aβ1–40 in the silymarin group compared to both the placebo and rosuvastatin groups had a significant
increase (p<0.05). There was an inverse relationship between ΔTG and ΔAβ1–42/Aβ1–40 (p=-0.493 and
p=0.004). ΔAβ1–42/Aβ1–40 has a direct statistical relationship with ΔSOD marker (p=0.388 and p=0.031). Also,
there was a direct correlation between the level of ΔAβ1–42/Aβ1–40 and ΔsLRP1/sRAGE (p=0.491 and p=0.005).
Conclusion: Our study showed the relationship between plasma lipids, especially ΔTG and ΔHDL, with ΔAβ1–42/
Aβ1–40 in dyslipidemic AD patients, and modulation of these lipid factors can be used to monitor the response to
treatments.

1. Background

Alzheimer’s disease (AD) is a neurodegenerative disorder involving
the central nervous system (CNS) with a prominent symptom of pro-
gressive decline in cognitive function (Waldemar et al., 2007). AD pa-
thology is mostly illustrated by extracellular accumulations of

amyloid-beta (Aβ) peptides in senile plaques and neurofibrillary tan-
gles as a result of intracellular deposits of hyperphosphorylated tau
(hp-tau) protein (Long and Holtzman, 2019; Mohammadi et al., 2024).
In late-onset AD (LOAD) the disease progressed with the symptom onset
of over 60 years of age, whereas early-onset AD (EOAD) appears earlier
approximately between 30 and 60 years of age (Bali et al., 2012). Aβ1–42
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deposition in the brain is the prominent sign of the late-onset AD (LOAD)
(Calabrò et al., 2021). Nearly 50 million people worldwide are living
with dementia and it is predicted to reach about 152 million people in
2050. This fact imposes an additional socio-economic and cultural
burden on patients, families, and health organizations (Selkoe and
Hardy, 2016; Wu et al., 2017). Despite the physiological character of
Aβ1–42 production, an imbalance in the Aβ1–42 production/excretion rate
is the basis of its increased level in AD. Aβ1–42 accumulation is the
causative factor of AD leading to synaptic loss, hp-tau protein, inflam-
mation, oxidative stress (OS), and apoptosis (Sanabria-Castro et al.,
2017). One of the major characteristics of LOAD is the comprehensive
defect in peripheral Aβ1–42 clearance (Mawuenyega et al., 2010) that is
carried out independently from neurons and microglia (Zolezzi et al.,
2014). The distribution and transfer of this physiologic process in the
peripheral blood accounts for 50 % of the total brain Aβ1–42 clearance
(central clearance) in humans, indicating that the physiological clear-
ance of Aβ1–42 from peripheral organs is an important mechanism to
prevent the accumulation of this peptide in the brain (Roberts et al.,
2014). In blood, Low density lipoprotein receptor-related protein 1
(LRP1) is the key factor in peripheral Aβ1–42 transport (Sagare et al.,
2012). In contrast, the RAGE is the main receptor responsible for Aβ
transfer from blood to brain parenchyma that in AD increases (Ullah and
Lee, 2023). Increasing the binding affinity of Aβ1–42 to LRP1 accelerates
its clearance, which illustrates that this binding prevents Aβ1–42 re-entry
into the brain (Sagare et al., 2013). Approximately 70 % of Aβ1–42 in
plasma is directly bound to LRP1 forming an important part of the
endogenous "sink effect apparatus" whose main function is to clear pe-
ripheral Aβ1–42. LRP reduces the amount of free Aβ1–42 in circulation and
enhances the clearance mediated by cell-surface LRP across the
blood-brain barrier (BBB) to the outside of the brain (Sagare et al.,
2007). In AD patients, despite the reduction in expression of LRP1 in the
vessels and total brain parenchyma (Osgood et al., 2017) it was found to
be upregulated in neurons and active astrocytes around senile plaques
(Arélin et al., 2002). Dyslipidemia can induce signaling cascades
resulting in neuroinflammation, neurodegeneration, oxidative stress,
hp-tau, and Aβ1–42 accumulation as the key characteristics of AD pa-
thology (Wanamaker et al., 2015). An increase in cholesterol concen-
tration remarkably leads to an increase in the production of Aβ1–42
resulting in amyloid deposits and neurotoxicity (Wolozin, 2002).
Memory impairment as a consequence of hypercholesterolemia has been
reported to be associated with loss of dendritic integrity, cholinergic
dysfunction, inflammation, increased Aβ1–42, and hp-tau in the cerebral
cortex (Granholm et al., 2008; Ullrich et al., 2010). In the study of
Murata et al. (2010), AD mice that received a 0.1 % silymarin diet for 6
months, the Aβ oligomerization and deposition in the brain were
reduced and improvement in behavioral disorders was observed
(Murata et al., 2010). Guo et al. (2019) revealed that silymarin can
reduce the production of Aβ by inhibiting the β-amyloid precursor
protein and can inhibit the Aβ polymerization into fibrils. Silymarin can
not only increase the content of acetylcholine in the nervous system by
inhibiting the activity of cholinesterase but also has antioxidant effects
and modulates inflammatory responses (Guo et al., 2019). The admin-
istration of 200 mg/kg silibinin causes the conversion of Aβ1–42 and
acetylcholinesterase (AChE) into stable complexes in vitro, reduction of
the Aβ1–42 accumulation as well as mitigating the AChE activity. Since
silymarin can cross the BBB and acts as a dual inhibitor of Aβ1–42 peptide
aggregation and AChE, it is proposed as a potential therapeutic
approach in AD (Duan et al., 2015). Furthermore, long-term treatment
with statins can alleviate AD symptoms, suggesting that alterations in
lipid metabolism have a key role in its pathogenesis (Shepardson et al.,
2011a, 2011b). Neuroinflammation is a trigger of the pathophysiolog-
ical signaling in AD, in which NF-κB and reactive oxygen species (ROS)
are actively involved (Husain et al., 2017). Molecular docking studies
demonstrated that rosuvastatin has a high affinity for binding to proteins
such as NF-ĸB, AChE, and Aβ1–42 (Husain et al., 2017, 2018). A recent
study illustrated that the risk of AD is reduced by 28.1 % in patients

taking statins (Chu et al., 2018). Considering the rising number of AD
patients in the world and the demand to investigate the effectiveness of
novel medications, the present study was conducted to investigate the
effect of silymarin (compared to rosuvastatin) on blood markers and
cognitive status of mild AD patients with secondary dyslipidemia.

2. Patients and methods

2.1. Participants and eligibility criteria

A total number of 36 participants were enrolled in this study from AD
patients referred to the neurology and geriatric center of Roozbeh Psy-
chiatry Hospital, Rasoul Akram Hospital, Ziaeian Hospital, Jam`s
Memory Clinic, and Noor Neurology Clinic in Tehran, between October
2021 and March 2022. Standard neuropsychological tests, including
Montreal Cognitive Assessment (MoCA) or Mini-mental state examina-
tion (MMSE), was taken from all participants. In addition, patients take a
blood sample to evaluate their lipid profiles, including triglyceride (TG),
low-density lipoprotein (LDL), total cholesterol (TC), and high-density
lipoprotein (HDL), to assess whether there is a sign of dyslipidemia to
be included in the study. The list of inclusion criteria is as follows: 1-
Confirmation of mild sporadic Alzheimer’s disease based on neurolo-
gist’s diagnosis and neuropsychological clinical questionnaire, including
MoCA and MMSE with a total score of 19–24; 2-Justification of sec-
ondary dyslipidemia based on biochemical tests and demographic
questionnaire; and 3-Confirmation of routine MRI imaging based on
atrophy of the hippocampus and enlargement of cerebral ventricles. The
following conditions were specified as exclusions in the study: no brain
tumors; no active rheumatological disorders; no active epilepsy; dia-
betes; uncontrolled hypertension; no brain surgery; heart failure;
chronic kidney failure; thyroid disorders; and no use of alcohol, opioid
drugs, or cigarettes. Using additional therapeutic interventions, failing
to follow medication instructions in the protocol, claustrophobia during
magnetic resonance imaging (MRI), COVID-19 infection, and traumatic
injury sustained during the study are among the exclusion criteria.

2.2. Grouping, intervention, and allocation

This study was implemented through block randomization and the
patients was placed in the following three groups containing 12 patients
(Fig. 1):

1- The silymarin group: The first intervention group: In addition to
taking routine medications (donepezil or Rivastigmine), patients
received 140 mg silymarin tablets (Livergol 140 mg manufactured by
GolDaro Pharmaceutical Company; Isfahan, Iran) three times a day for 6
months.

2- The placebo group: In addition to taking routine medications
(Donepezil or Rivastigmine), patients received a 140 mg placebo tablet
(manufactured by GolDaro Pharmaceutical Company; Isfahan, Iran)
three times a day for 6 months. From the perspective of blinding the
study, placebo tablets were used for silymarin but the treatment with
rosuvastatin was open-label.

3- The rosuvastatin group: In addition to taking routine medications
(donepezil or Rivastigmine), patients received 10 mg of rosuvastatin
(Ropixon, Abidi Pharmaceutical Company; Tehran, Iran) three times a
day for 6 months.

The questionnaire list of demographic information of the patients
was completed with the aid of the patient’s companion. Through the
interview, information, including education level, marital status, brand
and number of coronavirus vaccine injected, occupation, blood glucose
level, history of cardiovascular diseases, smoking, list of prescribed
medication, and family history of obesity were obtained. It should be
noted that the accuracy of this information was reconfirmed by evalu-
ating their medical records. Moreover, after the medication prescription,
at the end of the intervention, the participants were reinterviewed to fill
in their demographic information along with the serious adverse event
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(SAE) related to the assigned treatment.

2.3. Clinical outcome tests

All patients were included in the study based on medical evidence
and the diagnostic decision made by the neurologist by considering the
guidelines of the International Alzheimer’s Institute (Neugroschl and
Wang, 2011): a) the presence of a new complaint of the individual’s
memory, which should preferably be confirmed by a normal person, b)
objective evidence in short-term memory disorder, c) defects in general
cognitive function, and d) poor cooperation in performing usual social
activities or other activities of daily life (Sperling et al., 2011). Two
neuropsychological tools were used in the clinical evaluation of AD,
including MMSE and Clinical Dementia Rating (CDR).

2.4. Blood sampling and measuring lipid profile

From each patient, 6 mL of venous blood was taken before and after
medication intervention, and transferred to tubes with clot-activating
gel (VacuLab® SSGT model, Liuyang SANLI Medical Technology
Development Co., China). Subsequently, the tubes were centrifuged at
4000 rpm for 8 minutes. Soon after they were aliquoted in a microtube

under the hood and in a clean room to prepare to be transferred to the
− 80 ◦C freezer (Gorgich et al., 2024). The levels of HDL, TG and TC, and
liver enzymes, including aspartate transaminase (AST) and Alanine
transaminase (ALT) were measured using the lipid kits (Delta Darman
Part Co,; Tehran, Iran) based on enzymatic principles using an auto-
analyzer (model Pictus 700, company Diatron). Furthermore, the level
of LDL cholesterol was calculated using the Friedewald equation:

LDL = TC - HDL - 0.2 × TG

2.5. Malondialdehyde (MDA) measurement

The MDA/thiobarbituric acid reactive substance (TBARS) assay kit
(ZellBio GmbH, Hamburg, Germany) is a simple, reliable, and stan-
dardized tool for the assessment of lipid peroxidation in serum. The basis
of the MDA test uses the MDA-TBA combination, which consists of the
reaction of MDA and thiobarbituric acid (TBA) at high temperatures
(Heidari et al., 2021). Malondialdehyde is measured colorimetrically at
535 nm in an acidic environment and at a temperature of 90 ◦C. The
sensitivity of the kit for MDA measurement was 0.1 μM.

Fig. 1. Study flowdiagram according to international CONSORT guidelines.
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2.6. Measurement of superoxide dismutase (SOD)

The SOD assay kit (ZellBio GmbH, Hamburg, Germany) uses super-
oxide anion to convert to hydrogen peroxide and oxygen under enzy-
matic reaction for the quantitative measurement of samples. Afterward,
the chromogenic product is measured by the colorimetric method
(calorimetry) at 420 nm. The sensitivity of the ZellBio kit for SOD level
was 1 U/mL.

2.7. Measurement of catalase activity (CAT)

The CAT kit (ZellBio GmbH, Hamburg, Germany) is a simple and
standardized tool to evaluate lipid peroxidation in serum samples by
calorimetric method at 405 nm. In this method, hydrogen peroxide is
decomposed into water and oxygen by catalase enzyme. A unit of
enzyme activity is the amount of enzyme that causes the production of
one millimol of H2O2 per minute at an initial concentration of 10 mmol/
liter at pH=7.4 and 37 ◦C temperature. The sensitivity of the kit for
measuring SOD in serum was equal to 0.5 U/mL.

2.8. Measurement of Aβ1–42/Aβ1–40 peptide serum level

The kit used in the study was an enzyme-linked immunosorbent
assay (ELISA) of double biotin antibody sandwich type for the quanti-
tative measurement of Aβ1–42 and Aβ1–40 (Human Aβ1–42 and Aβ1–40
peptide ELISA Kit- ZellBio GmbH, Hamburg, Germany). The assay is
based on adding the Aβ1–42 protein to the wells that were already coated
with the Aβ1–42 monoclonal antibody. Aβ1–42 antibodies labeled with
biotin were added, which caused a streptavidin-HRP combination and
the formation of an immune complex. The unbound enzymes after in-
cubation and washing were removed. After adding substrate, A and B,
the solution first turned blue and turned yellow under the influence of
acid. The absorbance (OD) of each well was measured at a wavelength of
450 nm. According to the concentration of the standards and the cor-
responding OD values, the standard curve was drawn using the point-by-
point calculation mode. The sensitivity of this kit was 1 ng/L to measure
the serum level of the Aβ1–42 peptide. These steps were also performed
for Aβ1–40 peptide according to the relevant kit.

2.9. Measurement of LRP/sRAGE peptide

In this study, the double biotin antibody sandwich ELISAmethod was
used for quantitative measurement of LRP1 peptide and the sensitivity of
the kit (Human LRP1 ELISA kit- ZellBio GmbH, Hamburg, Germany) was
0.09 mg/L. The frozen serum samples were transmitted from − 80◦C to
6◦C place until the samples reached their melting point. Subsequently,
they were kept at room temperature for 10 minutes to be prepared for
the assessment. Before starting the experiment, all the solutions were
transferred from the temperature of 4◦C to room temperature. Then the
necessary materials and buffers were prepared according to the in-
structions mentioned in the kit immediately before the start of the
experiment. The intensity of the color produced in the wells was
measured at a wavelength of 450 nm. The final concentration was
calculated by the standard curve obtained using the absorbance ob-
tained from different defined dilutions. sRAGE measured based on a
sandwich ELISA kit (Human sRAGE ELISA kit- ZellBio GmbH, Hamburg,
Germany). The samples were centrifuged at 1000xg for 20 minutes. The
detection antibody was the biotin-conjugated anti-sRAGE antibody.
Then, the pilot samples and standards were added to the wells. The
coated antibody was then exposed to a biotinylated detection antibody,
which bound to the sRAGE conjugated on it. HRP-Streptavidin was
added after unbound conjugates were washed off. TMB substrates were
added to observe the HRP enzymatic reaction following a third washing.
TMB was catalyzed by HRP to produce a blue product, which changed to
yellow upon the addition of a stop solution. After that, a standard curve
was created by reading the O.D. absorbance in a microplate reader at

450 nm.

2.10. Data analysis

Statistical analyses were performed using SPSS software (V26; IBM
Corp., Armonk, NY, United States). Therefore, to facilitate data analysis
codes A, B, and C were given to the statistics consultant by the clinical
supervisor. The value of each variable corresponding to the before and
after the intervention was subtracted from each other to obtain the
difference (Delta- Δ) for each variable. Moreover, mean±standard de-
viation was utilized for the descriptive report of quantitative values. In
addition, qualitative data were reported as a frequency in percentage
scale. Kruskal-Wallis and one-way ANOVA tests were used to compare
the averages in three groups. Subsequently, to compare the two groups,
the least significant difference (LSD) and Bonferroni post hoc tests were
implemented. Accordingly, the Chi-square test was used to check the
relationship between qualitative variables. In all analyses a p-value less
than 0.05 was considered to be a significant difference. Pearson’s cor-
relation coefficient (r) and Spearman’s rank correlation coefficient (ρ)
were used to measuring the correlation between lipid profile, MMSE and
CDR scores, ΔAβ1–42/Aβ1–40, and ΔsLRP1/sRAGE ratio. GraphPad Prism
software (GraphPad Software; V9, San Diego, CA, USA) was used to
draw the graphs and plots. In this study, the change in the ΔAβ1–42/
Aβ1–40 level was considered as the primary outcome (Nakamura et al.,
2018; Risacher et al., 2019; Turner et al., 2015) and MMSE and CDR
scores as secondary outcomes (Turner et al., 2015). Also, adverse drug
effects were recorded as another secondary outcome. The clinical
effectiveness of the medication was determined to be 1.05 points of
increase in the MMSE score between the groups, which is clinically
significant (Birks and Harvey, 2018). CDR is reported in two forms,
including the global score (G-CDR) (0–3 points) and the sum of boxes
score (CDR-SB) (0–18 points), both of which represent the results of the
six domains of the neurological clinical test (Andrews et al., 2019). A
change of − 1.63 point in the CDR-SB score, equivalent to − 0.27 in the
G-CDR score (Birks and Harvey, 2018; Andrews et al., 2019; Liu et al.,
2021).

3. Results

The average age of the patients was 72.03±5.70. Twenty-five
(69.4 %) women and eleven (30.6 %) men participated in this study.
66.7 % (n=24) lived with a partner and 33.3 % (n=12) lived alone. Most
of the participants were housewives (41.66 %) or retired teachers
(22.23 %). The duration of the disease was 3.03 ± 1.74 years and the
average fasting blood sugar (FBS) of the patients was 97.9± 9.30 mg/dl.
The average body mass index (BMI) of the patients was 26.64±2.73 and
the systolic and diastolic blood pressures were 126.39±8.24 and 80.56
±7.14 mm Hg, respectively.

3.1. Demographic characteristics in groups

At the baseline, no statistically significant difference was observed
between the average age, clinical score of cognitive tests, and lipid
profile level in the three groups. There was no statistically significant
difference in the values of the variables at the baseline by the inter-
vention groups. Likewise, the distribution of patients based on gender, a
clinical score of cognitive tests, level of education, type of memory
medication, or level of lipid profile did not have statistically significant
changes (Table 1). There was no significant change between the groups
in SBP, DBP, and FBS after the intervention (P>0.05). No significant
changes were observed in BMI, ALT, and AST between study groups
(P>0.05). The posthoc test showed a significant decrease in TC and LDL
levels between the rosuvastatin group (-72.7±44.26 and − 58.55±46,
respectively) compared to the placebo (-10.9±39.02 and 0.57±44.54,
respectively) (P=0.011 and P=0.026, respectively). Both the silymarin
group (4.97±3.54) and the rosuvastatin group (4.80±0.12) showed a
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statistically significant increase in HDL when compared to the placebo
group (-5.61±6.57) (P<0.000, P=0.044, respectively). The level of TG
in the silymarin group (-71.45±24.59) has a significant decrease
compared to both the placebo (-3.4±17.69) and the rosuvastatin group
(-42.2±81.56) (P<0.000 and P =0.036) (Table 1 and Fig. 2).

3.2. Clinical outcomes and oxidative markers

Although there was no statistically significant difference between the
groups in the MMSE score after the intervention (P>0.05), an increase of
1.73 points in the MMSE score of patients receiving silymarin compared
to the placebo was seen, which is higher than the cut-off point and is
considered clinically significant. Also, in the rosuvastatin group, the
clinical score incremented by 1.68 points compared to the placebo.
There is no statistically significant difference between the groups in the
CDR score after the intervention (P>0.05). Also, a 0.2-point decrease in
the CDR score of patients receiving silymarin compared to the placebo
was seen, which was below the cut-off point defined for CDR and had no
clinical significance. The level of MDA in the silymarin group (-2.11
±0.93) compared to the rosuvastatin group (-0.47±1.26) has a signifi-
cant decrease (P=0.005), but there is no statistically significant differ-
ence compared to the placebo (-4.11±0.82) (P= 0.171). Also, there is a
significant increase in CAT level between the silymarin (9.94±6.68) and
rosuvastatin (-4.13±7.53) group (P=0.0013). In addition, the SOD level
in the silymarin group (41.98±13.96) compared to placebo (2.94
±15.66) and rosuvastatin (12.38±15.54) had a significant increase
(p<0.000 and p=0.008, respectively) (Fig. 3).

3.2.1. Amyloid peptides and its carrier
The ΔsLRP1/sRAGE ratio in the silymarin group (1.240±0.94)

compared to the rosuvastatin (-0.348±0.584) group had a significant
increase (p<0.000). There is a significant increase in the level of
ΔAβ1–42/Aβ1–40 in the silymarin group (0.061±0.03) compared to the
placebo (-0.005±0.49) and rosuvastatin (-0.028±0.15) (P=0.001 and
P= 0.044, respectively) (Fig. 4). There is no significant relationship
between the quadruple lipid profile (TC, TG, HDL, and LDL) with MMSE
and CDR clinical tests (Table 2). Also, liver enzymes (ALT and AST) had
no statistically significant relationship with the MMSE and CDR, MDA,
and ΔAβ1–42/Aβ1–40. Furthermore, there was no statistically significant
relationship between TC and LDL lipid factors with oxidative stress
markers (MDA, CAT, and SOD), ΔAβ1–42/Aβ1–40, and ΔsLRP1/sRAGE.
There is no significant relationship between liver enzymes and CAT,

SOD, and ΔsLRP1/sRAGE (Table 2). Although there was a statistically
inverse relationship between SOD level and ALT (r=-0.367 and
P=0.042) (Fig. 5), there was no significant relationship with AST
(r=0.009 and P=0.959). Although HDL was not correlated with MDA
and CAT, it was statistically directly correlated with the SOD marker
(r=0.412 and P=0.021) (Fig. 5). Although HDL was directly associated
with the ΔAβ1–42/Aβ1–40 biomarker (ρ=0.379 and P=0.035), no asso-
ciation was observed between it and ΔsLRP1/sRAGE (Table 2 and
Fig. 5). There is a direct and inverse relationship between TG and
oxidative stress markers MDA and SOD, respectively (ρ=0.449 and
P=0.011; ρ=-0.554 and P=0.001, respectively). In addition, there was
an inverse relationship between TG and ΔAβ1–42/Aβ1–40 (ρ=-0.493 and
P=0.004). Although the relationship between TG and ΔsLRP1/sRAGE
was statistically significant (ρ=-0.392 and P=0.029) (Table 2 and
Fig. 6). The relationship between multiple factors in the heat map is
presented in Fig. 7. There is no significant relationship between oxida-
tive stress markers (MDA, CAT, and SOD) and clinical tests (MMSE and
CDR). On the other hand, ΔAβ1–42/Aβ1–40 has a direct statistical rela-
tionship with SODmarker (ρ=0.388 and p=0.031). Moreover, there was
a direct correlation between the level of ΔAβ1–42/Aβ1–40 and ΔsLRP1/
sRAGE (ρ=0.491 and P=0.005) (Fig. 7 and Table 3). Although there was
no statistically significant relationship between CAT and ΔAβ1–42/
Aβ1–40 (ρ=0.315 and P=0.083), ΔsLRP1/sRAGE had a direct relation-
ship with this antioxidant (r=0.396 and P=0.027). There was a direct
relationship between CAT and SOD (r=0.436 and P=0.014) but an in-
verse relationship between CAT and MDA (ρ=-0.409 and P=0.022)
(Table 3).

3.3. Side effects reporting in groups

In the silymarin group, there were very few adverse events (AEs). A
patient did report headache and dizziness, and another patient reported
difficulty sleeping. Dizziness and appetite loss (30 %) was the most
significant side effect in the rosuvastatin group. Then, among the other
complaints made by patients in this group (20 %), were frequent uri-
nation, headaches, and irregular sleep patterns. In this group of patients,
half experienced an appetite loss due to the placebo. Urinary disorders
(40 %) characterized by burning sensation during frequent urination
and diffuse headaches (30 %) were among the other complications
associated with the placebo. No additional adverse effects, such as heart
failure or eye disorders, occurred in any of the groups. During the study,
one patient passed away after being admitted to the hospital with a
femur fracture and COVID-19. During the intervention period, labora-
tory values of markers related to the blood, liver, and kidneys (e.g., RBC,
WBC, Hgb, BUN, creatinine, and alkaline phosphatase) were recorded.
No particular disorders were observed in any of these markers.

4. Discussion

The present study was conducted to investigate the effect of sily-
marin (compared to rosuvastatin) on bloodmarkers and clinical status of
mild Alzheimer’s patients with secondary dyslipidemia. Our results
revealed that there is a statistically significant decrease in serum levels
of TC and LDL in the Rosuvastatin group compared to the placebo. The
increase of LDL in the cell reduces the synthesis of HMG-CoA reductase,
which decreases the intracellular synthesis of cholesterol. Because the
interaction of amyloid and cholesterol is synergistic, the increase in Aβ
leads to disruption in these regulatory mechanisms, and therefore, the
increase in plasma cholesterol causes an increase in cellular cholesterol
and amyloid deposition as well as disruption in the clearance of amyloid
from the brain tissue. Since Aβ degradation and clearance are linked to
cholesterol levels, these processes rely on lipid rafts rich in cholesterol
and proteins like ApoE and ABC pumps that transport cholesterol. So it
seems cholesterol has a dual impact on Aβ toxicity or clearance, as it can
both encourage and impede Aβ aggregation at the membrane. This, in
turn, affects the secondary structure of amyloid and its capacity to

Table 1
Comparison of baseline findings between patients after grouping.

Variables Silymarin
(n=12)
Mean (SD)

Placebo
(n=12)
Mean (SD)

Rosuvastatin
(n=12)
Mean (SD)

age (years) 71 (6.46) 72.5 (6.02) 72.58 (4.85)
gender
(percentage)

Female 66.7 66.7 75
Male 33.3 33.3 25

Marital status
(percentage)

with a
partner

58.3 66.7 75

alone 41.7 33.3 25
Duration of AD (years) 2.94 (2.48) 3.16 (1.17) 3 (1.45)
History of dyslipidemia (years) 5.34±0.72 4.94±1.38 5.72±1.09
Duration of medication (years) 1.29 (0.76) 1.3 (1.04) 1.68 (1.26)
MMSE score 20.5 (1.73) 20.67

(1.43)
21.17 (1.19)

ALT (U/L) 20.50 (8.33) 18.92
(6.99)

16.92 (7.20)

AST (U/L) 23.92 (6.05) 26.33
(9.57)

24.42 (5.23)

MDA (µM/L) 5.10 (1.16) 6.87 (3.41) 4.65 (1.83)
CAT (U/mL) 18.29 (3.33) 19.02

(5.85)
22.40 (7.24)

SOD (U/mL) 88.42
(10.68)

98.34
(13.38)

101.32 (17.80)
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Fig. 2. A, C, E, and G show mean±SD of TC, LDL, HDL, and TG levels at the beginning and end of the intervention within the groups, respectively. B, D, F, and H
show the delta (difference) after 6 months of intervention, between the groups, based on the mean with a 95 % confidence coefficient (CI 95 %). * P<0.01 and
*** P<0.0001.
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interact with the cell membrane (Rudajev and Novotny, 2022) which
our findings support this issue. Excess cholesterol is removed by HDL,
which is considered a cholesterol regulator (Feingold, 2022). Although a
robust association between hypercholesterolemia and AD has been
shown, cholesterol itself is unable to cross the BBB into the brain.
Cholesterol-lowering therapies have shown paradoxical results on
cognitive function in AD patients, raising the question of whether
cholesterol metabolism in the brain should be separate from peripheral
cholesterol metabolism. Hypercholesterolemia leads to increased levels
of 27-Hydroxycholesterol (27-HC) in the brain and circulation and af-
fects the metabolism and regulation of cholesterol, which is considered
one of the reasons for the rapid progression of AD. Because the plasma

levels of the main circulating oxysterols (24-HC and 27-HC) were
significantly higher in AD patients compared to healthy subjects
(Choroszyński et al., 2022). Studies show that oxidative stress, inflam-
mation, and altered cholesterol metabolism contribute to the develop-
ment of AD (Gamba et al., 2015). 27-HC is significantly absorbed from
the circulation into the brain (Gamba et al., 2012), which may be the
missing link between cholesterol disorders and AD (Merino-Serrais
et al., 2019). It has also been suggested that 27-HC is the main cause of
memory impairment caused by blood and dietary cholesterol (Jahn
et al., 2021). Moreover, 27-HC leads to increased production and
accumulation of Aβ and hp-tau and AD progression, which can be
modulated via the pleiotropic effects of lipid-lowering drugs

Fig. 3. A, C, and E, show mean±SD of MDA, CAT, and SOD levels at the beginning and end of the intervention within the groups, respectively. B, D, and F show the
delta (difference) after 6 months of intervention, between the groups, based on the mean with a 95 % confidence coefficient (CI 95 %). ** P<0.001 and ***
P<0.0001. Although the level of MDA and CAT in the silymarin group compared to only the rosuvastatin group has a significant decrease and increase, the SOD level
of the silymarin group has a significant increase compared to both the placebo and rosuvastatin groups.
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(Loera-Valencia et al., 2019).
The significant increase in HDL in the silymarin and rosuvastatin

group compared to placebo in our study was consistent with the results
of the study by Sobolova et al (Sobolová et al., 2006).. HDL prevents LDL
oxidation, regulates cholesterol circulation, alleviates atherosclerotic
plaques, and decreases the risk of AD (Liu et al., 2020). Nunes et al.
(2014) showed that plasma 27-HC was increased in low HDL than in
high HDL subjects (Nunes et al., 2014). Furthermore, cell cholesterol
efflux rate was reduced in subjects with low HDL compared to the group
with high HDL, which may be demonstrating an alternative pathway
(particularly involving the amyloid deposition complex (Michikawa
et al., 2001) to maintain appropriate cellular cholesterol levels (Nunes

et al., 2014). Our study showed that TG in the silymarin group was
significantly attenuated compared to the placebo and rosuvastatin
groups. High cholesterol levels directly affect the beta/gamma-secretase
cleavage, and lead to its accumulation and aggregation in the extracel-
lular space (Wingo et al., 2019). The study of Bowman et al. showed that
dyslipidemia leads to brain inflammation and changes in the integrity of
the BBB, and reducing TG and raising HDL can play an important role in
modulating the pathological changes of AD patients from mild to mod-
erate stage (Bowman et al., 2012). Therefore, it can be concluded that
dyslipidemia, especially the abnormal changes of HDL and TG, is an
important factor in the progression of AD and lack of response to
treatment in these patients, so we call it the peripheral lipidopathy

Fig. 4. A and C show mean Aβ42/Aβ40 and sLRP1/sRAGE levels at the beginning and end of the intervention within the groups, respectively. B and D show the delta
(difference) after 6 months of intervention, between the groups, based on the mean with a 95 % confidence coefficient (CI 95 %). * P<0.01, ** P<0.001 and
*** P<0.0001.

Table 2
Correlation results of the difference of lipid profile and liver enzymes with markers of oxidative stress, amyloid-beta, and its carrier with clinical results.

Variables ΔLDL ΔHDL ΔTG ΔTC

correlation
strength (r)

significance
(p)

correlation
strength (r)

significance
(p)

correlation
strength (r)

significance
(p)

correlation
strength (r)

significance
(p)

ΔMDA − 0.182 0.325 − 0.255 0.165 0.449 0.011 − 0.157 0.396
ΔCAT − 0.013 0.940 0.298 0.102 − 0.314 0.084 0.030 0.871
ΔSOD − 0.089 0.633 0.412 0.021 − 0.554 0.001 − 0.080 0.667
ΔAβ42/ΔAβ40 − 0.136 0.462 0.379 0.035 − 0.493 0.004 − 0.106 0.569
ΔsLRP1/
sRAGE

− 0.320 0.079 0.156 0.400 − 0.392 0.029 0.306 0.093
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hypothesis.
Moreover, several clinical studies show that donepezil, although it

reduces the activity of AChE, decreases the Aβ accumulation, and im-
proves the cognitive status and memory (Kume et al., 2005), it abnor-
mally alter lipid profile in AD patients (Cacabelos, 2007). It seems that
some fluctuations in serum/plasma biomolecule levels in abnormal
conditions can cause significant changes in brain structural and func-
tional plasticity, whichmay be caused by the activation of compensatory
mechanisms that have been reported in many brain disorders (Heidari
et al., 2023, 2020, 2017a, 2017b). In our study, patients receiving
silymarin had lower TG levels and higher HDL levels, and significant
reductions in TC and LDL were observed in the rosuvastatin group,
demonstrating the importance of combination therapy in AD patients.
This approach not only preserves donepezil’s beneficial properties
(anti-Aβ and AChE inhibitory effects), but also prevents its disruptive
effects on lipid metabolism. Pattanashetti et al. reported that combina-
tion therapy with quercetin and donepezil has a synergistic effect and
improves cognitive memory by reducing the AchE and Aβ1–42 and
increasing the activity of the antioxidant system in the rat brain
(Pattanashetti et al., 2017). Our findings showed that silymarin
enhanced the cognitive effect of donepezil by modulating the lipid
profile, increasing ΔAβ1–42/Aβ1–40 and antioxidant activities, which is
consistent with the study of Pattanashetti et al. (2017).

In the present study, MDA and CAT levels in the silymarin group
decreased and increased significantly compared to the rosuvastatin
group, respectively, but the SOD level in the silymarin group had a
statistically significant increase compared to both placebo and

rosuvastatin groups. SOD and CAT are enzymatic antioxidants that act as
free radical scavengers, thereby acting as the first line of defense against
ROS-induced damage (Varesi et al., 2023). Lipid peroxidation is an early
key event in AD, preceding amyloid deposition and NFT formation.

Exposure of lipids to free radicals increases ROS levels, therefore,
leading to enhancing gamma-secretase activity (Pratico et al., 2001;
Gwon et al., 2012). In this regard, studies have revealed that Aβ accu-
mulation occurs more easily in membranes composed of oxidized lipids
and unsaturated lipids are more vulnerable to oxidative stress (Koppaka
and Axelsen, 2000). Increased expression of SOD leads to a reduction of
oxidative activity and amyloid plaque in the hippocampus and an
improvement of memory deficit in the Alzheimer’s model (Massaad
et al., 2009). Flavonoids activate the PI3K/Akt pathway, which results in
the reduction of amyloid plaque and lipid peroxidation, an increase of
Ach level, inhibition of hp-tau, enhancement of SOD, and CAT activity
(Varesi et al., 2023; Arslan et al., 2020). Silymarin has been shown to
have a modulating effect on this pathway, inhibiting AChE and reducing
the accumulation of Aβ peptide (Duan et al., 2015; Haddadi et al., 2020).
In addition, El-Marasy et al. (2018) demonstrated that in a rat model of
dementia, the administration of 400 mg/kg silymarin along with
10 mg/kg donepezil for 14 days diminished memory decline, as well as
activity of AChE and MDA, while increasing levels of Glutathione (GSH)
in the hippocampus. They reported that pretreatment with silymarin
restores GABA, acetylcholine, and dopamine contents similar to done-
pezil. This shows that the antioxidant effect of silymarin preserves
neurotransmitters and improves memory function in rats (El-Marasy
et al., 2018). Our findings are consistent with those of some of these

Fig. 5. ΔHDL factor has a direct relationship with ΔSOD (A) and ΔAβ1–42/Aβ1–40 (B) markers. Heat map showing the relationship between multiple serum factors
with HDL and with each other. The red color indicates an inverse relationship and the blue color indicates a direct relationship (C).
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studies such as modulating oxidative stress markers and increased pe-
ripheral clearance of Aβ. The non-significance of the effect of silymarin
on MMSE and CDR scores can probably be attributed to the small sample
size and the short duration of patient follow-up.

LRP1 has been shown to remove Aβ from the interstitial fluid (ISF) by
endocytosis or lysosomal degradation in or across BBB cells (Li et al.,
2001). Dysfunction of capillary endothelial cells leads to incomplete
clearance of Aβ at the BBB and results in Aβ deposition in the brain,
which is the basis of neurodegeneration and cognitive impairment
(Zhang et al., 2022). A study by Wang et al. showed that silybin, a
polyphenolic compound of silymarin, has a protective effect on endo-
thelial cells (Wang et al., 2005). Palomino et al. reported that 100 µg/mL
silymarin protects endothelial cells from oxidative damage by modu-
lating antioxidant enzyme activity (Palomino et al., 2017). In our study,
the increase in the level of ΔsLRP1/sRAGE ratio is probably due to the
effects of silymarin on the expression of LRP1 in endothelial cells, but
more gene expression and immunohistochemical studies are needed.

Dyslipidemia is associated with BBB disruption in AD patients, and
plasma TG and HDL cholesterol are the most important factors involved
in maintaining BBB integrity in these patients (Bowman et al., 2012;
Acharya et al., 2013). The study of Bowman et al. revealed that dysli-
pidemic AD patients have significantly high plasma levels of TG and low
HDL, and BBB disruption is common in them (Bowman et al., 2012).
Dyslipidemia impairs Aβ clearance by reducing LRP1 expression in

cerebrovascular endothelial cells, which results in decreased peripheral
clearance of amyloid and leads to Aβ accumulation in the form of senile
plaques (Prasanthi et al., 2008). In addition to causing neuro-
degeneration and reduced cognitive capacity, dyslipidemia also has
detrimental effects on the cardiovascular system, which could be an
overlapping mechanism in the amyloid hypothesis (Stakos et al., 2020;
Waigi et al., 2023). It has been reported that the reduction of LRP1 in
vascular smooth muscle cells leads to brain hypoperfusion and hypoxia,
which in feedback leads to further reduction of LRP1 serum level
(Nelson et al., 2016). Therefore, the increase in the serum level of
ΔsLRP1/sRAGE ratio in the silymarin group in our study shows that this
peptide probably mediates the uptake and degradation rate of Aβ in
vascular smooth muscle cells and plays an essential role in Aβ clearance
and improves the cognitive status of patients (Van Gool et al., 2019). The
low concentration of Aβ1–42 in blood circulation indicates the increase of
Aβ in the brain, the formation of amyloid plaques, and cognitive deficits
in AD patients (Risacher et al., 2019; Pérez-Grijalba et al., 2019; Cian-
flone et al., 2021). A prospective study by Lambert et al. (2009) in France
showed that individuals with high plasma Aβ1–42/Aβ1–40 levels had a
lower risk of developing dementia and concluded that plasma Aβ con-
centration may be a valuable marker for screening and diagnosis of these
patients (Lambert et al., 2009). Nakamura et al. showed that Aβ
biomarker levels in three sites including circulation, CSF, and PET im-
aging of the cortex were highly correlated with each other, clearly

Fig. 6. The direct and inverse correlation between ΔTG and the ΔMDA and ΔSOD markers (A and B), respectively. There was also an inverse correlation between
ΔTG and ΔAβ1–42/Aβ1–40 and ΔsLRP1/sRAGE (C and D).
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indicating that plasma Aβ level is strongly related to Aβ status in the
CNS. Since the plasma Aβ1–42 assay has an accuracy of 80.4 % in the
diagnosis and monitoring of AD patients, it can reduce the cost of un-
necessary PET-Aβ scans and be significantly useful in clinical program
decision-making (Nakamura et al., 2018). Andersson et al. revealed that
the Aβ42/Aβ40 ratio in CSF and serum significantly decreased with age
in an Alzheimer’s mouse model, which was associated with increased Aβ
plaque burden in the brain (Andersson et al., 2023).

Risacher et al. suggested that plasma Aβ measurement can be a useful

biomarker for predicting brain Aβ burden in AD patients, as lower
plasma Aβ42/40 levels are associated with high cortical Aβ deposits,
thus differentiating between healthy and MCI subjects (Risacher et al.,
2019). In our study, a significant increase in serum levels of Aβ1–42 was
observed in the silymarin group compared to the placebo and rosuvas-
tatin groups. Wei et al. revealed that 40 mg/day of simvastatin for 12
weeks could significantly increase the plasma level of Aβ1–42 in hyper-
lipidemic patients compared to placebo. They reported that the increase
in plasma Aβ1–42 was directly related to the decrease in TG levels and

Fig. 7. The ΔAβ1–42/Aβ1–40 marker has no statistically significant relationship with CAT marker (A). There is a statistical inverse, a direct and direct correlation
between ΔAβ1–42/Aβ1–40 and MDA, SOD, and ΔsLRP1/sRAGE markers, respectively (B, C, and D).

Table 3
Correlation results of differences of oxidative stress markers, amyloid-beta and its carrier with clinical results.

Variables ΔsLRP1/sRAGE ΔAβ42/ΔAβ40 ΔSOD ΔCAT ΔMDA

correlation
strength (r)

significance
(p)

correlation
strength (r)

significance
(p)

correlation
strength (r)

significance
(p)

correlation
strength (r)

significance
(p)

correlation
strength (r)

significance
(p)

ΔMDA − 0.345 0.056 − 0.369 0.041 − 0.290 0.113 − 0.409 0.022 1 -
ΔCAT 0.441 0.012 0.315 0.083 0.436 0.014 1 - − 0.409 0.022
ΔSOD 0.427 0.016 0.722 <0.000 1 - 0.436 0.014 − 0.290 0.113
ΔAβ42/

ΔAβ40
0.491 0.005 1 - 0.388 0.031 0.084 0.650 − 0.320 0.079

ΔsLRP1/
sRAGE

1 - 0.491 0.005 0.328 0.071 0.396 0.027 − 0.533 0.002
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RAGE (a peptide that acts opposite to LRP1 and promotes amyloid
transport from the circulation to the brain), which indicates that statins
play a role in the transfer of Aβ to plasma and its peripheral clearance
(Wei et al., 2022). The results of our study demonstrated that silymarin,
as a lipid-lowering compound, increases the serum level of
ΔsLRP1/sRAGE ratio and ΔAβ1–42/Aβ1–40, as well as decreases the level
of TG, which is in line with the study of Wei et al.. Although there was no
statistically significant difference in MMSE scores between groups, in
terms of clinical efficacy, a 1.73-point increase in MMSE score was
observed in patients receiving silymarin compared to placebo. Also, in
the rosuvastatin group, the MMSE score improved by 1.68 points
compared to the placebo.

Clinical trials have shown that AChE inhibitors, particularly done-
pezil, for 6 months in Alzheimer’s disease increases the MMSE score by
1.73 points (Perera et al., 2014) and it has been proven that silymarin is
an effective AChE inhibitor (Duan et al., 2015). A Cochrane study by
Birks showed that the once-daily administration of 10 mg/kg donepezil
over 26 weeks resulted in a 1.1-point change in the MMSE score of mild
AD patients compared to placebo, which is clinically considered to
improve cognitive function (Birks and Harvey, 2018). In our study,
although there was no statistical correlation between TC and LDL lipid
factors with MMSE and CDR tests, oxidative stress markers (MDA, CAT,
and SOD), ΔAβ1–42/Aβ1–40, and ΔsLRP1/sRAGE ratio, the clinical effi-
cacy of silymarin and rosuvastatin compared with placebo, it may have
the neurological outcome in the clinic and will be better understood in
the future by designing long-term studies with a larger sample size.
Studies show that although treatment may have no obvious clinical
benefit (because symptoms only stabilize), the patient’s condition
worsens if treatment is stopped (Knowles, 2006). Miyakawa et al. re-
ported that AD patients experienced an average yearly decline of 2.43
points in the MMSE score (Miyakawa-Liu et al., 2022). To conclude with
90 % confidence that an Alzheimer’s patient has experienced a "true"
clinical change, one should expect changes of 2–4 points in the MMSE
score to occur after 1.5 years because smaller changes are interpreted
with uncertainty. Sometimes patients may show a true change, but the
patient’s symptoms are interpreted with insufficient certainty (less than
90 %) (Hensel et al., 2007). Because the MMSE score at baseline is a
suitable predictor for assessing the response to AChE inhibitors (Lopez
et al., 2010), so considered a practical tool for assessing cognitive
improvement and evaluating the progress and severity of dementia
(Arevalo-Rodriguez et al., 2015) and has acceptable validity and reli-
ability in measuring the outcome (Knowles, 2006). Studies show that the
CDR-SB score (18 points) in mild AD patients who do not use
disease-specific drugs (donepezil, etc.) increases annually between 1.43
and 2.4 points (equivalent to 0.23–0.4 points in the G-CDR score)
(Samtani et al., 2014; Williams et al., 2013; Berg et al., 1992). In our
study, there was no statistically significant decrease in the CDR score. In
terms of minimal clinically important difference (MCID), the reduction
of CDR in the silymarin and rosuvastatin groups compared to the pla-
cebo was lower than the clinical efficacy endpoint, which was probably
due to the short duration of the study.

5. Conclusion

This study showed the relationship between plasma lipids, especially
TG and HDL, with amyloid clearance in dyslipidemic AD patients with
mild dementia and proved that the modulation of these lipid factors can
be used as easily accessible biomarkers to monitor the response to
treatments. Donepezil combined with silymarin was effective in
improving the serum characteristics of mild dyslipidemic AD patients,
especially improving the lipid profile, enhancing amyloid clearance,
ΔsLRP1/sRAGE ratio, and improving antioxidant enzymes after 6
months. Further studies are needed to find out the exact signaling
pathways. HDL, TG, and sLRP1may influence AD pathological processes
through multiple mechanisms such as Aβ processing, synaptic function,
hp-tau, and peripheral clearance dependent on transport across the BBB.

The physical interaction between sLRP1 and Aβ, TG and Aβ or HDL and
Aβ in the presence of silymarin and rosuvastatin may be a key project to
investigate the mechanisms of AD pathogenesis, better to use well-
controlled genetic animal models to get a clearer picture of what oc-
curs in the brain and blood circulation. In the end, considering the
complexity of AD and multiple factors in its occurrence and progression,
clinical trial studies in this field should be based on accessible and
sensitive diagnostic methods, such as the measurement of serum Aβ1–42
consensus biomarkers, MRI morphometric imaging, and neuropsycho-
logical tests so that their results can be used in the design of future
studies.

6. Limitations of the study

Among the problems, the COVID-19 pandemic and the imposed re-
strictions were one of the obstacles to the progress of the project, and
their coordination for screening was very time-consuming. Due to the
high cost of PET-Aβ, the presence of 5 PET machines in Iran, and long
admission times due to the coronavirus, we could not investigate the
effects of environmental Aβ clearance on brain Aβ accumulation. One of
the limitations of our study was the lack of applying multiplicity
adjustment to the multiple secondary outcome analyses because the
error variance of the dependent variable according to Levene’s test was
not equal across groups (homogeneity of variance). Therefore, we could
not perform ANCOVA statistical analysis.
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