
Article
A critical period for develo
ping face recognition
Highlights
d Deep artificial neural networks exhibit critical periods

d Face learning can only be restored within but not outside of

the critical period

d A computational account by learning rate explains the

properties of critical period

d Knowledge distillation and attention transfer partially recover

face learning
Wang et al., 2024, Patterns 5, 100895
February 9, 2024 ª 2023 The Author(s).
https://doi.org/10.1016/j.patter.2023.100895
Authors

Jinge Wang, Runnan Cao,

Puneeth N. Chakravarthula, Xin Li,

Shuo Wang

Correspondence
xli48@albany.edu (X.L.),
shuowang@wustl.edu (S.W.)

In brief

Face learning has important critical

periods during development, but the

underlying computational mechanisms

remain unknown. Wang et al. provide a

full computational account for face-

learning behaviors by using deep artificial

neural networks and show that face

learning can only be restored when

providing information within the critical

period.
ll

mailto:xli48@albany.�edu
mailto:shuowang@wustl.�edu
https://doi.org/10.1016/j.patter.2023.100895
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patter.2023.100895&domain=pdf


OPEN ACCESS

ll
Article

A critical period for developing face recognition
Jinge Wang,1 Runnan Cao,1,2 Puneeth N. Chakravarthula,2 Xin Li,1,3,* and Shuo Wang1,2,4,*
1Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA
2Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110, USA
3Department of Computer Science, University at Albany, Albany, NY 12222, USA
4Lead contact
*Correspondence: xli48@albany.edu (X.L.), shuowang@wustl.edu (S.W.)

https://doi.org/10.1016/j.patter.2023.100895
THE BIGGER PICTURE Just as humans have critical development phases for facial recognition, deep arti-
ficial neural networks exhibit similar periods. These critical phases determine the network’s ability to ac-
quire and process facial information, and like in humans, impaired face learning can occur when information
is lacking during these critical periods. Fortunately, we found that restoration is possible if the necessary
input is provided within this critical window. Beyond this time frame, the model’s capacity to absorb new
information wanes. Our work not only uncovers the computational foundations of face learning but also of-
fers insights into its behavior and strategies for recovering impaired face learning.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
Face learning has important critical periods during development. However, the computational mechanisms
of critical periods remain unknown. Here, we conducted a series of in silico experiments and showed that,
similar to humans, deep artificial neural networks exhibited critical periods during which a stimulus deficit
could impair the development of face learning. Face learning could only be restored when providing informa-
tionwithin the critical period, whereas, outside of the critical period, the model could not incorporate new in-
formation anymore. We further provided a full computational account by learning rate and demonstrated an
alternative approach by knowledge distillation and attention transfer to partially recover the model outside of
the critical period. We finally showed that model performance and recovery were associated with identity-se-
lective units and the correspondence with the primate visual systems. Our present study not only reveals
computational mechanisms underlying face learning but also points to strategies to restore impaired face
learning.
INTRODUCTION

A critical period is a time window during development when

some particular experience must be undergone for the com-

plete development of language and sensory systems to occur.1

The critical period hypothesis was originally proposed for the

acquisition of a second language2 and visual perception.3 In

children born with opacity or deviation of the eyes, the deprived

eye will suffer from lack of a cortical response despite a healthy

retina. The consequences of such sensory deprivation can lead

to lifelong amblyopia (due to ocular dominance plasticity).4,5

Similarly, it has been hypothesized that there is a critical period

for the development of the fusiform face area (FFA), which has

an intriguing connection (e.g., atypical fixation patterns in

autism) with the difference in face processing by individuals
This is an open access article under the CC BY-N
with autism spectrum disorder (ASD).6–13 People with ASD

have an increased tendency to saccade away from the eye re-

gion of faces when information is present in those regions14 and

instead have an increased preference to fixate on the location

of the mouth.15 However, it has remained an open question

whether there are critical periods in the development of face

processing,10 what the computational mechanisms of critical

periods are, and what the developmental trajectory of facial

feature selection is.

It has been argued that the neural coding of visual stimuli can

change over development.16 A study using functional MRI to

examine the development of several functionally defined re-

gions, including object, face, and place-selective cortices in

different age groups (children, adolescents, and adults), has

shown that development that occurred through the expansion
Patterns 5, 100895, February 9, 2024 ª 2023 The Author(s). 1
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Figure 1. Image processing pipeline

(A) Image processing pipeline. MTCNN was applied

to the original face images to detect a tight bounding

box outlining the face area and facial landmarks

(centers of the eyes, nose tip, and corners of the

mouth). Foveation imaging was applied to the orig-

inal face images to derive two sets of foveated im-

ages (eye-foveated and mouth-foveated). We finally

cropped the images based on the bounding box

derived using the MTCNN.

(B) An example showing the image processing

pipeline. For copyright reasons, we replaced the

original stimulus image in this and subsequent fig-

ures with a similar picture.
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of the FFA and parahippocampal place area (PPA) into the sur-

rounding cortex is correlated with improved recognition memory

for faces and places, respectively.17 Furthermore, microstruc-

tural proliferation in the human cortex is coupled with the devel-

opment of face processing.18 In addition to the developmental

trajectory, critical periods play an important role in the computa-

tional mechanisms of face learning. Our recent study has pro-

vided a neuronal mechanism for face learning: neuronal distance

between face identities increases as a function of exposure, sug-

gesting that faces becomemore neurally distinct after learning.19

Notably, the core components of face processing and their neu-

romaturational time course in typical development (TD) may

facilitate our understanding of face processing deficits in autism

as well as development of clinical tools for early diagnosis and

remediation.20

Given the challenges of creating a critical period in the physical

world, developing computational surrogatemodels21 has become

an appealing alternative. Deep neural networks (DNN) such as

VGG-Face22 and FaceNet23 have achieved comparable or even

superior face recognition performance compared with human ob-

servers. These DNN-based surrogate models have made it

convenient to conduct experiments with deprived stimuli or

perturbation of network architectures.24,25 For example, the exis-

tence of a ‘‘critical period’’ (usually the first few epochs) in theDNN

has been shown experimentally,21 suggesting that critical periods

are not restricted to biological systems but can emerge naturally in

learning systems, whether biological or artificial, due to funda-

mental constraints arising from learning dynamics and information

processing. It has been shown that the use of unsupervised
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learning in DNNs can provide a quantitative

model of the ventral visual processing sys-

tem and serve as a biologically plausible

computational model of primate sensory

learning.26 More broadly, DNNs provide an

important approach to testing the computa-

tional benefits of fundamental organiza-

tional features of the visual system.27

DNNs create a highly organized face simi-

larity structure where natural image varia-

tion is organized hierarchically, offering an

important theoretical framework to under-

stand identity coding.28 Furthermore, it has

been shown that brain-like functional

specialization emerges spontaneously in
DNNs and reflects a computational optimization for face recogni-

tion.29 In sum, in silico experiments with DNNs have provided un-

precedented opportunities to understand face coding and

learning, especially when artificial models show correspondence

with brain models.25,30–33

In this study, we hypothesize that, similar to humans and ani-

mals, deep artificial neural networks exhibit critical periods dur-

ing which a stimulus deficit can impair the development of face

learning. We further hypothesize that face learning can only be

restored when providing information within the critical period

but not outside of the critical period. We seek a computational

account for critical periods and explore possible ways to restore

face learning. We hypothesize that the learning rate is a key fac-

tor for critical periods. We finally explore the correspondence

with primate visual systems, which, in turn, may explain the re-

covery mechanism from the critical periods.

RESULTS

A surrogate model for developing face recognition
We first used full-face images to train a DNN based on the

ResNet50 architecture (Figures 1 and 2A). We observed a rapid

increase in performance in early training epochs (Figure 2B),

which reached a plateau after 30 epochs. We next quantified in-

formation utilization in the images using gradient-weighted class

activation mapping (Grad-CAM; methods). The heatmaps re-

flected the regions in the face that contributed to the correct

classification of face identities (Figure 2E). In the full-face model,

we found that the network utilized information from both the
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Figure 2. Face recognition models with different training stimuli

(A) ResNet50 architecture. ResNet50 has 4 stages. It performs the initial convolution and max-pooling using 73 7 and 33 3 kernels, respectively. Subsequently,

the inputs go through the 4 stages. All stages contain the basic residual blocks. For ResNet50, there are 3, 4, 6, and 3 residual blocks in stages 1, 2, 3, and 4,

respectively. In each residual block, 3 convolution layers (13 1, 33 3, and 13 1) are stacked. The 13 1 convolution layers are responsible for reducing and then

restoring the dimensions. The 3 3 3 layer is left as a bottleneck with smaller input/output dimensions. The curved arrows are skip connections or ‘‘shortcuts.’’

Solid connections refer to the identity connection. The dashed connection denotes that the convolution operation in the residual block is performed with stride 2.

As feature maps progress from one stage to another, the channel width is doubled, and the size of the input is reduced to half. Finally, the network has an average

pooling layer followed by a fully connected layer having 50 neurons (number of different identities).

(B) Network learning curve. The validation accuracy of face identity recognition is plotted as a function of the model training epoch. The shaded area denotes the

critical period.

(C, G, and I) Average Grad-CAM intensity for each region of interest (ROI).

(D, H, and J) The proportion of Grad-CAM intensity for each ROI. On each box, the central mark is the median, the edges of the box are the 25th and 75th

percentiles, and the whiskers extend to the most extreme data points the algorithm considers to not be outliers. Asterisks indicate a significant difference using a

two-tailed paired t test. ***p < 0.001.

(legend continued on next page)
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eyes and mouth (see Figure 2E for an example; see Figure 2F for

group average), although the network utilized more information

from the eye region than the mouth region (Figure 2C; average

Grad-CAM intensity: eyes: 124.47 ± 39.97, mouth: 114.10 ±

37.51; two-tailed two-sample t test: t(7536) = 11.62, p < 10�30;

Figure 2D; proportion of Grad-CAM intensity: eyes: 0.34 ±

0.11, mouth: 0.31 ± 0.14; t(7536) = 8.79, p < 10�17).

To study the impact of facial information, we employed

foveated imaging and created eye-foveated and mouth-

foveated images (Figure 1; methods). As expected, with reduced

information, the models reached a lower performance (Fig-

ure 2B). Interestingly, the eye-foveated model had a better per-

formance compared with the mouth-foveated model, indicating

that the eyes containedmore information than themouth for face

recognition. Notably, we observed a similar ‘‘critical period’’ (the

first 30 epochs; see formal definitions below) compared with the

full-face model, suggesting that the foveated models had a

similar learning process.

We also quantified information utilization in the images in these

models (Figures 2E and 2F). Indeed, the eye-foveated model uti-

lized more information in the eyes than the mouth (Figure 2G;

average Grad-CAM intensity: eyes: 132.08 ± 37.71, mouth:

61.59 ± 35.62; t(7536) = 83.42, p < 10�30; Figure 2H; proportion

of Grad-CAM intensity: eyes: 0.43 ± 0.14, mouth: 0.20 ± 0.13;

t(7536) = 73.61, p < 10�30), whereas the mouth-foveated model

utilized more information in the mouth than the eyes (Figure 2I;

average Grad-CAM intensity: eyes: 71.25 ± 37.65, mouth:

133.14 ± 40.25; t(7536) = 68.95, p < 10�30; Figure 2J; proportion

of Grad-CAM intensity: eyes: 0.22 ± 0.11, mouth: 0.42 ± 0.18;

t(7536) = 58.55, p < 10�30). This result confirmed that reducing

certain visual inputs into training would lead to reduced utilization

of the corresponding visual information. On the other hand, the

eye-foveated model had a higher average Grad-CAM intensity

in the eyes than the full-face model (Figure 2G vs. Figure 2C;

two-tailed paired t test: t(3768) = 12.03, p < 10�30), and the

mouth-foveatedmodel had a higher average Grad-CAM intensity

in the mouth than the full-face model (Figure 2I vs. Figure 2C;

t(3768) = 30.39, p < 10�30), suggesting that the network could

adjust to focus on available information.

Last, we showed that another popular DNN model for face

recognition (i.e., VGG-Face) had a similar learning curve and crit-

ical period and that full-face models outperformed eye-foveated

models and mouth-foveated models (Figures S2A and S2B).

Therefore, we confirmed that our results were not idiosyncratic

to the DNN model used in the present study.
Recovery with full-face images within vs. outside of the
critical period
Above, we have revealed a critical period during DNN training

(i.e., learning face identities) and illustrated the information utili-

zation during this process. We next investigated whether training
(E) The Grad-CAM intensity maps for an example face.

(F) The Grad-CAM intensity maps for group average across faces. The intensity va

contours in the example face delineate the eyes and mouth ROIs for this face.

(C and D) Full-face model.

(G and H) Eye-foveated model.

(I and J) Mouth-foveated model.

4 Patterns 5, 100895, February 9, 2024
with restricted stimuli (eye-foveated faces or mouth-foveated

faces) could be recovered with additional visual information.

We first used full-face images to recover impaired models. We

found that providing full-face information to the network within

the critical period led to better performance, and this was the

case for both the eye-foveated model (Figure 3A) and mouth-

foveated model (Figure 3B). However, providing full-face infor-

mation to the network outside of the critical period did not

improve the performance (Figures 3A and 3B), and it could

even deteriorate the accuracy for the mouth-foveated model

(Figure 3B). This result was confirmed with different starting

points of recovery within or outside of the critical period

(Figures S1B and S1C).

Importantly, the change in performance with recovery was

associated with different utilization of facial information. For the

eye-foveated model, recovering within the critical period led to

an increased utilization of mouth information compared with

recovering outside the critical period (see Figure 3C for an

example and Figure 3D for group average; Figure 3E; average

Grad-CAM intensity: within: 90.03 ± 37.21, outside: 67.27 ±

32.00; t(3768) = 53.68, p < 10�30; Figure 3F; proportion of

Grad-CAM intensity: within: 0.25 ± 0.13, outside: 0.21 ± 0.12;

t(3768) = 45.65, p < 10�30). For both recovery conditions, the

eyes still contributedmore information than themouth (Figure 3E;

average Grad-CAM intensity: within: t(7536) = 53.82, p < 10�30,

outside: t(7536) = 89.85, p < 10�30; Figure 3F; proportion of

Grad-CAM intensity: within: t(7536) = 43.84, p < 10�30, outside:

t(7536) = 72.29, p < 10�30).

Similarly, for the mouth-foveated model, recovering within the

critical period led to increased utilization of eye information

compared with recovering outside of the critical period (see Fig-

ure 3C for an example and Figure 3D for group average; Fig-

ure 3G; average Grad-CAM intensity: within: 109.18 ± 40.77,

outside: 76.03 ± 35.50; t(3768) = 63.39, p < 10�30; Figure 3H;

proportion of Grad-CAM intensity: within: 0.29 ± 0.11, outside:

0.23 ± 0.10; t(3768) = 56.29, p < 10�30). For both recovery con-

ditions, the mouth still contributed more information than the

eyes (Figure 3G; average Grad-CAM intensity: within: t(7536) =

19.15, p < 10�30, outside: t(7536) = 67.13, p < 10�30; Figure 3H;

proportion of Grad-CAM intensity: within: t(7536) = 16.34,

p < 10�30, outside: t(7536) = 54.58, p < 10�30).

We next investigated the extent to which the foveated

models recovered by comparing them with the full-face model.

Although the eye-foveated model recovered with full-face im-

ages within the critical period improved performance, it did

not fully reach the level of the full-face model in model perfor-

mance (85.67% vs. 87.32%; Figure 3A vs. Figure 2B) and utili-

zation of facial information (Figure 3E vs. Figure 2C; average

Grad-CAM intensity: eyes: t(3768) = 22.72, p < 10�30, mouth:

t(3768) = 42.73, p < 10�30; Figure 3F vs. Figure 2D; proportion

of Grad-CAM intensity: eyes: t(3768) = 42.60, p < 10�30, mouth:

t(3768) = 45.06, p < 10�30), suggesting that the impaired
lues indicate the contribution/importance of pixels for face recognition. The red
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Figure 3. Recovery with full-face images

(A) The learning curve for the eye-foveated model.

(B) The learning curve for the mouth-foveated model.

(C) The Grad-CAM intensity maps for an example face.

(D) The Grad-CAM intensity maps for group average across faces.

(E and G) Average Grad-CAM intensity for each ROI.

(F and H) The proportion of Grad-CAM intensity for each ROI.

(E and F) Eye-foveated model.

(G and H) Mouth-foveated model.

Legend conventions are as in Figure 2.
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eye-foveated model could be partially recovered within the crit-

ical period. Similarly for the mouth-foveated model, when re-

covery with full-face images happened within the critical

period, the resultant model improved model performance

(84.66% vs. 87.32%; Figure 3B vs. Figure 2B) and utilization

of facial information (Figure 3G vs. Figure 2C; average Grad-

CAM intensity: eyes: t(3768) = 26.30, p < 10�30, mouth:

t(3768) = 22.56, p < 10�30; Figure 3H vs. Figure 2D; proportion

of Grad-CAM intensity: eyes: t(3768) = 34.66, p < 10�30, mouth:

t(3768) = 34.40, p < 10�30) toward the full-face model, although

the impaired mouth-foveated model was partially recovered.

Together, our results suggest that providing information in the

critical period can recover model performance and information

usage in the impaired models. However, providing information

outside of the critical period cannot recover impaired models

anymore, which justifies the importance of timing for the recov-

ery of impaired models.

Recovery with complementary information within vs.
outside of the critical period
Above, we have shown recovery with full-face images, which

contain full information of the faces. Can we recover impaired

models with complementary information (i.e., providing an eye-

foveated model with mouth-foveated images or a mouth-

foveated model with eye-foveated images)?

To answer these questions, we input mouth-foveated images

into the eye-foveated model within and outside of the critical

period. Recovering within the critical period using complemen-

tary stimuli led to a similar model performance (Figure 4A), but
interestingly, recovering outside of the critical period even dete-

riorated the model performance (Figure 4A). As expected, recov-

ering outside of the critical period did not change information

utilization; the eyes still contributed more information than

the mouth (see Figure 4C for an example and Figure 4D for

group summary; Figure 4E; average Grad-CAM intensity: eyes:

128.15 ± 38.63, mouth: 77.75 ± 37.45; t(7536) = 57.51,

p < 10�30; Figure 4F; proportion of Grad-CAM intensity: eyes:

0.38 ± 0.13, mouth: 0.24 ± 0.14; t(7536) = 49.23, p < 10�57). How-

ever, notably, recovering within the critical period led to an oppo-

site pattern of information utilization: the mouth contributed

more information than the eyes (see Figure 4C for an example

and Figure 4D for group summary; Figure 4E; average Grad-

CAM intensity: eyes: 97.56 ± 41.72, mouth: 120.46 ± 39.65;

t(7536) = 24.42, p < 10�30; Figure 4F; proportion of Grad-CAM in-

tensity: eyes: 0.28 ± 0.12, mouth: 0.36 ± 0.16; t(7536) = 21.95,

p < 10�30), a pattern of results that were more similar to the

mouth-foveated model. This result suggests that new comple-

mentary information provided during the critical period overrode

the original information utilization. In other words, it indicates that

the network mainly takes information provided later. It is worth

noting that the model performance seemed to switch as well

(Figures 4A and 4B): the eye-foveated model turned into the

mouth-foveated model.

Similarly, when we input eye-foveated images into the mouth-

foveated model, we found that recovering outside of the critical

period even deteriorated the model performance (Figure 4B),

and the critical period did not change information utilization: the

mouth still contributed more information than the eyes (see
Patterns 5, 100895, February 9, 2024 5
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Figure 4. Recovery with images with complementary information

(A) The learning curve for the eye-foveated model.

(B) The learning curve for the mouth-foveated model.

(C) The Grad-CAM intensity maps for an example face.

(D) The Grad-CAM intensity maps for group average across faces.

(E and G) Average Grad-CAM intensity for each ROI.

(F and H) The proportion of Grad-CAM intensity for each ROI.

(E and F) Eye-foveated model.

(G and H) Mouth-foveated model.

Legend conventions are as in Figure 2.
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Figure 4C for an example and Figure 4D for group summary; Fig-

ure 4G; average Grad-CAM intensity: eyes: 84.84 ± 38.36, mouth:

128.98 ± 41.65; t(7536) = 47.86, p < 10�30; Figure 4H; proportion

of Grad-CAM intensity: eyes: 0.24 ± 0.11, mouth: 0.38 ± 0.17;

t(7536) = 40.42, p < 10�30). However, again, recovering within

the critical period led to an opposite pattern of information utiliza-

tion: the eyes contributed more information than the mouth (see

Figure 4C for an example; Figure 4D for group summary; Fig-

ure 4G; average Grad-CAM intensity: eyes: 122.19 ± 10.42,

mouth: 91.48 ± 40.97; t(7536) = 32.76, p < 10�30; Figure 4H; pro-

portion of Grad-CAM intensity: eyes: 0.36 ± 0.13, mouth: 0.27 ±

0.15; t(7536) = 27.48, p < 10�30), a pattern of results that was

more similar to the eye-foveatedmodel. This result again suggests

that new complementary information provided during the critical

period overrode the original information utilization, and the

mouth-foveated model turned into the eye-foveated model. In

addition, the model performance seemed to switch as well

(Figures 4A and 4B; i.e., the mouth-foveated model turned into

the eye-foveated model), and this result could be further repli-

cated by a different DNN (Figures S2C and S2D).

Using complementary information for recovery, we not only

confirm that providing new information outside of the critical

period cannot alter the model anymore but also show that

providing new information within the critical period will override

the original model.

Computational mechanism underlying recovery from
the critical period
We next investigated why there was a critical period and why the

information provided in the critical period could override previ-

ous information. We hypothesize that the decrease in learning
6 Patterns 5, 100895, February 9, 2024
rate could explain the above results. This hypothesis is in line

with the developmental trajectory of the primate visual system,

where learning is decreased as a function of age.34 It is worth

noting that, during model training, the learning rate evolved

based on an adaptive rule (Methods) that is consistent with neu-

rodevelopment, and we did not preset the epoch-by-epoch

learning rates (see also Figure S1A for validation with different

initial learning rates).

Indeed, we showed that the learning rate monotonically drop-

ped as a function of the training epoch (Figure 5A), suggesting

that the learning became more local in the later stage, which is

consistent with the idea of a critical period during development.

Specifically, at epoch 80, the learning rate dropped below 0.001

(Figure 5A), which prevented the model from learning using full-

face images (Figure 5B, illustrated using the mouth-foveated

model; note that there was also an initial drop in performance

due to a change in training stimuli from mouth-foveated images

to full-face images; cf. Figure 3B). However, notably, when we

restored a larger learning rate in later epochs, the learning pro-

cess was recovered (Figure 5B). Interestingly, a smaller change

in the learning rate (0.001) initially resulted in a smaller drop in

performance compared with a larger change in the learning

rate (0.01), although over time a larger change in the learning

rate ultimately led to higher performance. Therefore, a larger

learning rate could lead to a better recovery, and the same

learning rate as the initial training phase (0.01, the learning rate

in the critical period) could best recover the model (Figure 5B).

In sum, the inability to recover outside of the critical period could

be explained by the reduced learning rate: the network could not

get out of the local minima to restore the learning for new infor-

mation. This also explained why the network overrode the
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Figure 5. Improving model recovery by adjusting the learning rate

(A) Learning rate as a function of training epoch in the mouth-foveated model.

(B) The learning curve for each learning rate. Model recovery ability varied as a function of learning rate. The learning curves for the full-face model and themouth-

foveated model recovered by full-face images within and outside of the critical period are shown as a reference.

(C) Average Grad-CAM intensity for each learning rate.

(D) The proportion of Grad-CAM intensity for each learning rate (LR).

Legend conventions are as in Figure 2.
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previously learned information for recovery within the critical

period: the network presumably converged to another local min-

imum with the new information for learning.

Furthermore, we showed that, consistent with improved

model performance, utilization of eye information increased as

a function of learning rate toward the full-face model (Figure 5C;

average Grad-CAM intensity: recovery outside of the critical

period: 76.03 ± 35.50, learning rate = 0.001: 80.11 ± 35.13,

learning rate = 0.005: 89.02 ± 36.87, learning rate = 0.01:

96.50 ± 37.92, full-face model: 124.47 ± 39.97; one-way

repeated-measure ANOVA across learning rates: F(2,7536) =

1,220, p < 10�20; Figure 5D; proportion of Grad-CAM intensity:

recovery outside the critical period: 0.23 ± 0.10, learning rate =

0.001: 0.24 ± 0.10, learning rate = 0.005: 0.25 ± 0.10, learning

rate = 0.01: 0.27 ± 0.11, full-face model: 0.34 ± 0.11;

F(2,7536) = 1,086, p < 10�20). Moreover, we derived similar re-

sults with the eye-foveated model.

Together, our results suggest that the learning rate is a deter-

mining factor for the critical period and can explain the network

performance and information utilization concerning model

recovery.

Knowledge distillation and attention transfer for model
recovery
Can we achieve the same improvement in learning without modi-

fying the learning rate but by applying knowledge distillation and

attention transfer? Specifically, we used the full-face model as

the teacher model and applied attention transfer to improve the

mouth-foveated model outside of the critical period (i.e., the stu-

dent model, which is the same as the recovery outside of the crit-

ical period; Figure 6A; methods). Indeed, attention transfer

improved model performance outside of the critical period (Fig-

ure 6B) and increased information utilization in the eyes (see Fig-

ure 6C for an example and Figure 6D for group average; Figure 6E;

average Grad-CAM intensity: no attention transfer [i.e., recovery

outside of the critical period]: 76.03 ± 35.50, attention transferred:

89.49 ± 37.27; t(3768) = 45.52, p < 10�30; Figure 6F; proportion of

Grad-CAM intensity: no attention transfer: 0.23 ± 0.10, attention

transferred: 0.25 ± 0.10; t(3768) = 33.82, p < 10�30). However,

the model after attention transferred still did not reach the same

level of performance (Figure 6B; 80.76% vs. 87.32%; the perfor-

mance of the attention transferred model was similar to recovery
with a learning rate of 0.001 [80.53%]; Figure 5B) and utilization

of eye information (Figure 6E; average Grad-CAM intensity:

t(3768) = 47.91, p < 10�30; Figure 6F; proportion of Grad-CAM in-

tensity: t(3768) = 39.01, p < 10�30) as the full-face model (teacher

model). Furthermore, similar results were found for the eye-

foveated model.

Together, our results suggest that knowledge distillation and

attention transfer can partially recover an impaired model

outside of the critical period (i.e., when the learning rate is low),

although the extent of recovery is limited compared with directly

adjusting the learning rate.

Identity selectivity
We have shown before that those identity-selective units

(methods) are key building blocks of the DNN for face recogni-

tion.25 We next investigated the change of identity selectivity

during the development of face recognition by summarizing

the percentage of identity-selective units in each model. We

focused on the top DNN layer (Conv4), where identity selectivity

is most established and relevant.25,33 Indeed, we found that the

full-face model (Figure 7; 87.5%) had a higher percentage of

identity-selective units than the eye-foveated model (78.9%;

c2 test: p < 10�10) and a control forehead-foveated model

(72.8%; p < 10�10; note that the eye-foveated model also

had a higher percentage of identity-selective units than the

control forehead-foveated model: p < 10�10). Importantly, for

the eye-foveated model, recovery with full-face images within

the critical period increased the percentage of identity-selective

units (Figure 7; 84.2%; p < 10�10), but recovery outside of the

critical period did not increase the percentage of identity-selec-

tive units (79.1%; p = 0.33; within vs. outside: p < 10�10). Simi-

larly, for the forehead-foveated model, recovery with full-face

images within the critical period increased the percentage of

identity-selective units (Figure 7; 81.9%; p < 10�10), although

recovery outside of the critical period also increased the per-

centage of identity-selective units (76.3%; p < 10�10), albeit

to a lesser extent (within vs. outside: p < 10�10). Together,

our results further suggested a recovery mechanism using

identity-selective units: restricted visual information impaired

the formation of identity-selective units, and recovering within

the critical period could increase and recover identity-selective

units.
Patterns 5, 100895, February 9, 2024 7



A

B

C

E F

D

Figure 6. Improving model recovery by applying KD and AT

(A) A computational framework for KD and AT. We used the model trained by full-face images as the teacher model to improve the performance of the mouth-

foveated model (student model) outside of the critical period. Both the teacher model and the student model had the same ResNet50 architecture.

(B) The learning curves for the mouth-foveatedmodel with vs. without AT. The learning curves for the full-facemodel and themouth-foveatedmodel recovered by

full-face images within and outside the critical period are shown as a reference.

(C) The Grad-CAM intensity maps for an example face.

(D) The Grad-CAM intensity maps for group average across faces.

(E) Average Grad-CAM intensity for each ROI.

(F) The proportion of Grad-CAM intensity for each ROI.

Legend conventions are as in Figure 2.
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Figure 7. Percentage of identity-selective units for each model
Eyes within, eye-foveated model recovered by full-face images within the

critical period; eyes outside, eye-foveated model recovered by full-face im-

ages outside of the critical period; forehead within, forehead-foveated model

recovered by full-face images within the critical period; forehead outside,

forehead-foveated model recovered by full-face images outside of the critical

period. Asterisks indicate a significant difference between models using c2

test. ***p < 0.001; n.s., not significant.
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Establishing the relationship between artificial DNN
units and real primate neurons
The DNN performs face recognition tasks similarly to humans,

and it has been suggested that DNNs share similarities with

the primate visual system and can therefore help us better un-

derstand the neural mechanisms of face recognition26,31,35

(see more under introduction). We finally investigated whether

the development of face recognition in DNNs had a similar bio-

logical basis.

First, we analyzed whether the ensemble of DNN units shared

representational similarity with the ensemble of monkey infero-

temporal (IT) neurons (Figures 8A–8D). We used an independent

set of stimuli from the CelebA dataset (500 natural face images of

50 celebrities)36 to compare artificial DNN units and real IT neu-

rons. We recorded neuronal activity using two Utah arrays in the

anterior and central IT cortex (methods) while the monkey per-

formed a passive viewing task (Figure 8A).We identified 53multi-

unit activity (MUA) channels that showed sufficient internal con-

sistency, and we focused on these channels for further analysis.

We found that, for all models, the pairwise distance from the

DNN (methods) significantly correlated with the neuronal pair-

wise distance from the monkey IT cortex (Figure 8C; see Fig-

ure 8D for temporal dynamics of each model), and for the full-

face model, there was an increase of correlation toward the

top DNN layer (Figure 8C). Notably, we found that the full-face
model had a better correspondence with IT neurons than the

eye-foveated model and mouth-foveated model (Figure 8C).

We also found that the eye-foveated model recovered with full-

face images (Figure 3A) within the critical period increased cor-

respondence with IT neurons compared with the recovery

outside of the critical period (Conv4: permutation p < 0.001).

Therefore, the correspondence between DNN units and real IT

neurons could reflect model performance and recovery (cf.

Figure 3A).

Second, we analyzed whether the ensemble of DNN units

shares representational similarity with the ensemble of the hu-

man amygdala and hippocampal neurons (Figures 8B, 8E, and

8F). We used the same stimuli (500 natural face images of 50 ce-

lebrities) as for monkey recordings and recorded from 667 neu-

rons in the human amygdala and hippocampus (340 neurons

from the amygdala, 222 neurons from the anterior hippocampus,

and 105 neurons from the posterior hippocampus; firing

rate > 0.15 Hz) of 8 neurosurgical patients (23 sessions in total).33

Patients performed a one-back task (Figure 8B), and they could

well recognize the faces.33 The responses of 76 of 667 neurons

(11.39%) differed between different face identities in a window

of 250–1,250 ms following stimulus onset, and these neurons

were the real human identity-selective neurons. We grouped

amygdala and hippocampal neurons as a single neuronal popu-

lation (i.e., medial temporal lobe [MTL] neurons) for further anal-

ysis because they show very similar identity selectivity re-

sponses.33,38 We found that the pairwise distance from the top

DNN layer significantly correlated with the neuronal pairwise dis-

tance from the humanMTL, consistent with the processing stage

along the ventral visual pathway (Figure 8E; see Figure 8F for

temporal dynamics of the full-face model). We also found that

the full-face model had a better correspondence with MTL neu-

rons than the eye-foveated model and mouth-foveated model

(Figures 8E and 8F), and the mouth-foveated model recovered

with full-face images within the critical period increased corre-

spondence with MTL neurons compared with the recovery

outside of the critical period (Conv2: permutation p = 0.001).

By comparing artificial units and real primate neurons, we not

only revealed a systematic correspondence between the two

face recognition systems but also showed that such correspon-

dence was associated with DNN model performance and

recovery.

DISCUSSION

In this study, we systematically investigated face learning and

facial information utilization during a critical period. Specifically,

we revealed a critical period during development that has the

following properties. (1) Under the baseline condition, reduced

facial information resulted in reduced model performance and

subsequent inability to use information from the corresponding

facial parts. (2) When full-face information was provided within

the critical period, full recovery could be achieved, but recovery

did not happen when full-face information was provided outside

of the critical period. (3) When complementary information was

provided within the critical period, it could even override the orig-

inal model and become a model like that trained with new infor-

mation alone. We further provided a computational account with

a learning rate that could explain the properties of critical
Patterns 5, 100895, February 9, 2024 9



Figure 8. Match between the deep neural network (DNN) units and (real) primate neurons
(A, C, and D) Monkey inferotemporal (IT) cortical neurons.

(B, E, and F) Human amygdala and hippocampal neurons.

(A) Task used to acquire neural responses from amonkey. In each trial, 8 faces were presented for 100 ms each, followed by a fixed inter-stimulus-interval (ISI) of

100 ms. There was a central fixation point of 300 ms at the beginning of each trial, and there was an inter-trial-interval (ITI) of at least 500 ms following each trial.

The central fixation point persisted through the trial.

(B) Task used to acquire single-neuron responses from humans. We employed a one-back task in which patients responded whenever an identical famous face

was repeated. Each face was presented for 1 s, followed by a jittered ISI of 0.5–0.75 s. Face images are blurred for illustration purposes only.

(C and E) Correlation between pairwise distance in the primate neuronal face space and pairwise distance in the DNN face space.

(C) Here we used the mean firing rate in a time window of 70 ms–180 ms after stimulus onset as the response to each face, and we averaged the responses to 10

faces for each face identity.

(E) Here we used themean firing rate in a timewindowof 250ms–1000ms after stimulus onset as the response to each face, andwe averaged the responses to 10

faces for each face identity. Dashed lines denote ±SD across permutation runs (n = 1,000), and solid circles represent a significant correlation (permutation test:

p < 0.05, Bonferroni correction across layers). The shaded area denotes ±SEM across bootstrap runs (n = 1,000; each resample contained 35 identities), and

asterisks indicate a significant difference between models using one-tailed two-sample t test. ****p < 0.001.

(legend continued on next page)
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periods, and we showed that, by altering the learning rate,

learning could be recovered. We also demonstrated an alterna-

tive approach (i.e., knowledge distillation and attention transfer)

that can partially recover the model outside of the critical period.

Finally, we showed that model performance and recovery were

associated with identity-selective units as well as the correspon-

dence with the primate visual systems. Together, our results not

only highlight the importance of a critical period in face learning

but also elucidate its underlying computational mechanism and

restoration strategies.

Our present findings are consistent with the neurodevelop-

ment concepts. First, brains have developmental critical periods.

Classical studies have documented critical periods affecting a

range of species and systems, from visual acuity in kittens39,40

to song learning in birds.41 Uncorrected eye defects (e.g., stra-

bismus, cataracts) during the critical period for visual develop-

ment lead to amblyopia.4,5 Second, our results show that,

outside of the critical period, the learning process could not be

restored, which is likely accounted for by the restricted learning

rate. In analogy, brain rewiring is significantly reduced after the

critical period,3 which may cause a reduced learning rate. On

the other hand, pathways have been discovered in animal

models through which critical periods may be re-opened in

adults, making it possible to re-awaken a brain’s youth-like plas-

ticity and, thus, repair brain injury, recover sensory deficits, and

treat neurodevelopmental disorders.42 Third, network attention

transfer could partially improve model performance, which is

analogous to learning after development. Our recent study has

revealed a neural mechanism underlying face learning and

shown that the neuronal population geometry in the human

amygdala and hippocampus, quantified by the representational

distance, encodes face familiarity, similarity, and learning. Spe-

cifically, the neuronal separation between different face identi-

ties expands with increased exposure, suggesting that faces

become more distinctly represented in the neural network

following the learning process.19 Together, through a series of

experiments in an artificial neural network, our present results

implicate the importance of the critical period during model

training/learning, which is consistent with the neurobiology of

animal development.

Developmental prosopagnosia (DP) is an impairment in recog-

nizing faces despite normal vision, intelligence, and socio-cogni-

tive abilities and no history of brain damage.43 The impaired

development of face processing during the critical period may

lead to prosopagnosia.44 In this study, we demonstrated that in-

formation provided during the critical period determines subse-

quent information utilization, which is also consistent with the

development of visual attention.45 Recent arguments suggest

that neural coding strategies during development may exhibit

high levels of dynamism.16 Additionally, research has shown

that early emotional processing in young children differs from

that observed in adolescents, who are more adultlike.46 One hy-

pothesis is that, in TD, the brain undergoes a process of special-

ization for face processing where specific regions such as the
(D and F) Temporal dynamics of correlation of pairwise distance between primat

(D) Monkey IT neurons (bin size = 40 ms, step size = 10 ms).

(F) Human MTL neurons (bin size = 500 ms, step size = 50 ms). Color coding ind

correlation in that bin (permutation test: *p < 0.05, false discovery rate [FDR]37 c
FFA become dedicated to face recognition. It is believed that,

during the critical period, particular experiences and interactions

with faces shape and refine the neural circuits involved in face

processing. In the case of DP, it is proposed that disruptions

or abnormalities may occur during this process of face speciali-

zation in the critical period. Consequently, this can lead to

impaired development of the neural circuits involved in face

recognition, resulting in persistent difficulties with recognizing

faces throughout an individual’s life.

Our present results are relevant to neurodevelopmental disor-

ders such as ASD. Many studies have documented abnormal

face processing in people with ASD,14,15,47–52 and such a deficit

has both a developmental53 and genetic54 root. In particular,

people with ASD demonstrate impaired utilization of facial infor-

mation. During viewing naturalistic social videos, people with

autism demonstrate abnormal patterns of social visual pursuit

that are consistent with reduced saliency of eyes and increased

saliency of mouths, bodies, and objects.49 When viewing static

faces, people with autism view non-feature areas of the faces

significantly more often but core feature areas of the faces

(e.g., eyes and mouth) significantly less often than controls,50

and they have piecemeal rather than configural strategies.55

Similarly, some research suggests that people with ASD demon-

strate active avoidance of fixating the eyes in faces, which, in

turn, influences the recognition performance of emotions,48

whereas other research suggests that children with ASD demon-

strate gaze indifference and passive insensitivity to social

signals in others’ eyes at the time of initial diagnosis.56 The atyp-

ical facial fixations are complemented by neuronal evidence of

abnormal processing of information from the eye region of faces

in blood-oxygen-level-dependent (BOLD) fMRI57 and single-

neuron responses in the amygdala.58

Our present study provided a possible computational account

for such a deficit in ASD: reduced access to eye information dur-

ing the critical period resulted in impaired utilization of eye infor-

mation and, thus, gaze to the eyes after development. Therefore,

our results point to a potential way to recover from such face pro-

cessing deficits by early training with guided fixation onto the

eyes. On the other hand, although our results suggest that recov-

ery outside of the critical period could not restore normal func-

tion, the network attention transfer has provided an important

alternative to recover learning, which is also consistent with the

behavioral training strategy currently being applied in ASD. It is

worth noting that, although our results highlight the importance

of critical periods, a future study is needed to understand

whether such deficits in ASD are the cause or consequence of

a critical period. In addition, using human single-neuron record-

ings, it has been shown that neurons in the human amygdala and

hippocampus encode facial features (e.g., the eyes and mouth)

and eye movement to these facial features,59 which, in turn,

may be related to abnormal facial feature representation in

ASD.58,60 A future study is needed to directly investigate the

neuronal mechanisms for face learning concerning critical

periods.
e neurons and DNN units.

icates the Spearman’s correlation coefficient. Asterisks indicate a significant

orrected across time bins for each layer).
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DNNs currently provide the most compelling quantitative

models of the response patterns of neurons throughout the pri-

mate ventral visual stream based on their predictive power, bio-

logical plausibility, generalization ability, and performance com-

parisons. In this study, we used DNNs as surrogate models that

can serve as accurate representations of many aspects of face

learning. It is worth noting that our current simulation approach

with surrogate computational models can be generalized to

other sensorimotor domains (e.g., auditory), and our findings

were not restricted to the model or visualization method used

but could be replicated with other models and visualization

methods. It has also been shown that DNNs trained with unsu-

pervised contrastive embedding canwell simulate infant learning

during development.26 Interestingly, such unsupervised learning

produces brain-like representations even when trained solely

with real human child developmental data collected from head-

mounted cameras. In addition, our recent study has developed

a computational model that illustrates an increase in the repre-

sentational distance of artificial units with training, aligning with

neuronal findings.19

On the other hand, artificial neural network models can have a

biological correspondence with both human and non-human pri-

mate neurons, which has been illustrated in face recognition.25,33

In this study, we compared typically developed primate neurons

with artificial units at various stages of face learning. The results

demonstrated that the full-face model showed a stronger corre-

spondence with IT and MTL neurons compared with the

foveated models. Additionally, we observed that foveated

models, when trained with full-face images during the critical

period, displayed increased correspondence with primate neu-

rons compared with models trained outside of the critical period.

Consequently, these results imply that our artificial DNN unit

modeling holds strong biological relevance and is well suited

for understanding real brain processes. The systematic corre-

spondence between the two face recognition systems allows

us to gain a deeper understanding of the computational mecha-

nisms involved in the development of face perception.

Conclusions
This study used DNNs as surrogate models to explore the critical

period in face processing development. DNNs, like humans and

animals, exhibit critical periods where temporary stimulus defi-

cits impair learning. Comparisons were made between DNN

computations and monkey/human single-neuron recordings.

Key findings include the following: (1) revealing the critical period

and its properties, such as reduced performance with limited

facial information and the importance of timing for recovery; (2)

providing a computational account with a learning rate explain-

ing critical period properties and demonstrating the role of iden-

tity-selective DNN units in recovery; (3) illustrating learning resto-

ration approaches, including adjusting the learning rate and

employing knowledge distillation and attention transfer; and (4)

establishing correspondence between artificial and human/

monkey neuron responses. This systematic investigation high-

lights the critical period’s importance, clarifies its computational

mechanism and restoration strategies, and sheds light on brain

development. It contributes to computational modeling of the

critical period in face processing, with implications for under-

standing ASD etiology.
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Resource availability

Lead contact

Further information and requests for resources should be directed to and will

be fulfilled by the lead contact, Shuo Wang (shuowang@wustl.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

All data and statistical analysis code are available on Zenodo (https://doi.org/

10.5281/zenodo.10014797).61

Methods

Training and testing data

We used a subset of images from the CASIA_WebFace dataset as the training

and testing data.62 The CASIA-WebFace dataset has been used for various

face verification and identification tasks. The dataset contains 494,414 face

images of 10,575 real identities collected from the internet. In this study, we

selected images from 50 identities that havemore than 400 images in the data-

set. The identities were diverse in race, sex, and age. Because the image qual-

ity varies, we manually removed the images that have a low resolution, major

facial occlusion, or extreme facial angles. As a result, our training and testing

dataset contained 37,000 images from 50 different identities, with each iden-

tity having more than 300 image samples.

Image processing

We applied the face and facial landmark detection tool Multi-Task Cascaded

Convolutional Neural Networks (MTCNN)63 to crop the faces from the images

and label the facial landmarks. MTCNN is a framework developed as a solution

for both face detection and face alignment. It is one of the most popular and

accurate face-detection tools. The process consists of three stages of convo-

lutional neural networks (CNNs). It uses a shallow CNN as the first step to pro-

duce candidate windows quickly. Through a more intricate CNN, it improves

the suggested candidate windows in the second step. To further refine the

outcome and output face landmark positions, a third CNN that is more compli-

cated than the others is used in the third step. After applying the MTCNN, we

derived a tight bounding box outlining the face area as well as the coordinates

for the centers of the eyes, nose tip, and two corners of the mouth.

We next applied foveated imaging to generate images that mimic human fo-

veation/fixation (i.e., the spatial resolution is highest at the point of the fovea and

drops rapidly away from that point as a function of eccentricity, and thus the re-

gion around the point of fixation [or foveation point] is sampled with the highest

intensity and perceived with the highest sensitivity; Figure 1). Foveated imaging

is a method of digital image processing where the level of detail or resolution

varies across the image according to one or more fixation points. We utilized

the open-source Python implementation of image retina transformation for

foveated imaging (https://github.com/ouyangzhibo/Image_Foveation_Python)

and produced two groups of foveated images (eye-foveated and mouth-

foveated) based on the facial landmarks identified by the MTCNN (Figure 1).

Specifically, in eye-foveated images, only the eye region was clear, and the

rest of the image was blurry, whereas in mouth-foveated images, only the

mouth region was clear, and the rest of the image was blurry.

The locations of the eyes andmouthwere detected by theMTCNN, which, in

turn, determined the size of the eye and mouth regions. It is worth noting that

we did not set a region of interest for the eyes or mouth, and foveated imaging

was based on the center of the facial landmarks of the eyes or mouth. Because

different images had slightly different locations of the detected facial land-

marks, and we used the same parameters for foveated imaging across im-

ages, theremight be slight differences in the content of the eye ormouth region

under foveation. We used the default parameters from the foveated imaging

toolbox, which are suitable for the faces detected by theMTCNN. Additionally,

we manually verified each foveated image to ensure its quality.

We finally cropped the images based on the bounding box derived using the

MTCNN (Figure 1). All subsequent analyseswere based on the cropped images.

Model training and testing

We used the well-known DNN implementation based on the ResNet5064 CNN

architecture (see details in Figure 2A). Because the goal of the present study is

mailto:shuowang@wustl.edu
https://doi.org/10.5281/zenodo.10014797
https://doi.org/10.5281/zenodo.10014797
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to understandmodel performance during training, we trained the network from

scratch.

We first trained three base models, using full-face images, eye-foveated im-

ages, and mouth-foveated images. For each model, 80% of the images were

used as the training set, and the remaining 20%of the images were used as the

testing/validation set. We used the stochastic gradient descent (SGD) opti-

mizer with an initial learning rate of 10�2, and all models were trained for 150

epochs. An adaptive learning rate scheduler was applied, which halved the

current learning rate when the loss of validation did not drop for 5 epochs.

To update the weights, we computed the cross-entropy loss on random

batches of 32 images (scaled to 224 3 224 pixels) for back-propagation. We

derived similar results using different initial learning rates (Figure S1A).

We next trained recovery models based on base models by providing base

models with different information (i.e., same images with different foveation)

during their training. We implemented the recovery at different stages of model

training, and the model training only continued with the new set of images. It is

worth noting that, to facilitate a direct comparison between base models and

recoverymodels, we used the same parameters for the recoverymodels as the

corresponding base models, including the epoch-by-epoch learning rate. The

recovery models were trained with the new set of images until they reached

150 epochs. For instance, if the base model was recovered at epoch 15,

then the recovery model would continue the training using the learning rate

at epoch 15 and inherit all the subsequent learning rates from the base model.

The recovery model would continue the training for another 135 epochs to

have a total of 150 training epochs.

To compare different models, we always used the same set of original im-

ages (not foveated) to test all models.

Critical period

The critical period is a time window of early post-natal development during

which sensory deficits can lead to permanent skill impairment.1 Similar to hu-

mans and other animals, deep artificial neural networks exhibit critical periods

during which a temporary stimulus deficit can impair the model’s perfor-

mance.21 In this study, we defined the critical period of the DNN as the epochs

of the early fast learning phase (following the same definition as in Achille

et al.21). Specifically, based on the learning curves of the base models, the first

30 epochs were defined as the critical period. We thus chose epoch 15 and

epoch 80 to compare recovery models starting within vs. outside of the critical

period, and we derived similar results using other epochs (e.g., epoch 10 vs.

epoch 90) to compare recovery models (Figures S1B and S1C).

Model visualization and quantification

In our experiments, we adopted the Grad-CAM65 as our visualization tool.

Grad-CAM is a popular technique for visualizing which regions in the original

image contribute to the final output. It uses the gradients of the target category

flowing into a certain convolution layer, usually the last one, to produce a

coarse localization map highlighting the important pixels/regions in the image

for predicting the category. This approach reveals the implicit attention of the

model to make the real contributor of features in the input image distinguish-

able. Grad-CAM is an improvement from the previous approach, CAM,66 for

both versatility and accuracy.

We further quantified Grad-CAM intensity in the eye and mouth regions of

interest (ROIs) (Figure 2B). We defined the eye and mouth ROIs in the image

based on the facial landmarks for each image. It is worth noting that the eye

ROI and the mouth ROI were of similar size across images (eyes: 4,894.76 ±

1,668.83 pixels, mouth: 4,843.66 ± 2,110.94; two-tailed two-sample t test:

t(7536) = 1.17, p = 0.24). Because most of the nose region was covered by

both the eyes and mouth ROIs, we did not separately analyze the Grad-

CAM intensity for the nose region. In addition to the average Grad-CAM inten-

sity in each ROI, we also calculated the proportion of total intensity in each ROI

by dividing the total Grad-CAM intensity of an image.

Knowledge distillation and attention transfer

The basic idea behind knowledge distillation (KD) is to train a small, lightweight

model using supervised information from a larger model with superior perfor-

mance to improve its performance. It was first proposed by Hinton et al.67 in

2015. The large model is known as the teacher model, while the small model

is characterized as the student model. The supervised information from the

output of the teacher model is called ‘‘knowledge,’’ and the process of student
learning tomigrate the supervised information from the teacher is called ‘‘distil-

lation.’’ Our recovery experiment, in contrast to the original KD concept, is built

upon two identical architectures (Figure 6A). The gap in model performance

was mainly reflected in the different stimuli. One model was trained by the

full-face images, which were regarded as the teacher model (Figure 6A, top),

whereas the other model was trained by the mouth-foveated images, which

were regarded as the student model (Figure 6A, bottom). Our purpose here

was to guide the mouth-foveated model to learn new features with information

from the full-face model when the mouth-foveated model had already missed

the critical period (i.e., recovery started at epoch 80, which is outside of the

critical period; note that this is the same model for recovery outside of the crit-

ical period).

DNN models can barely learn new features when they have passed the crit-

ical period, especially when the learning rate becomes extremely low. To rein-

force the recovery effect, we used another technique, attention transfer (AT),68

which can work together with KD. We used the average feature map of each

group of convolutional layers as the attention and transferred the attention

from the teacher model to the student model. It is worth noting that only the

student model was updated during the process, while the teacher model acted

as a supervisor, enabling the student model to learn from its information, and,

as a result, all weights in the teacher model were frozen.

We made the learning rate of the student model identical to that of the

foveated model to determine whether the KD-AT method could effectively

aid in the recovery of the original foveated model under extremely low learning

rates. We computed the AT loss after each convolution group using the

following loss function:

LAT = LðWS; xÞ+
X

j˛ I

k Qj
S

k Qj
Sk2

� Qj
T

k Qj
Tk2

k2

where LðWS; xÞ denotes the standard cross-entropy loss, and I denotes the

indices of all teacher-student activation layer pairs. Qj
S = vecðAvgðAj

SÞÞ and

Qj
T = vecðAvgðAj

T ÞÞ are the j-th pair of student and teacher attention maps in

vectorized form, respectively, and the attention map is the cross-channel

average of the activation tensor A.

Finally, we added the KD loss between the output of the teacher model (yt )

and the student model (ys ) to the previous loss function. As a result, the final

total loss was obtained as follows:

LAT = LðWS; xÞ+
X

j˛ I

k Qj
S

k Qj
Sk2

� Qj
T

k Qj
Tk2

k2 + LKDðyt ; ysÞ

With this total loss function, we aimed to enable the student model to not only

make correct predictions but also to learn similar feature representations as

the teacher model.

Selection of identity-selective DNN units and primate neurons

To select identity-selective units,25 we used a one-way ANOVA to identify

identity-selective units that had a significantly unequal response to different

identities (p < 0.01). We further imposed an additional criterion to identify a

subset of identity-selective units with selective identities; the response of iden-

tity was 2 standard deviations (SDs) above the mean of responses from all

identities. These identified identities whose response stood out from the global

mean were the encoded identities.

We followed the same selection procedure as for primate neurons.25,33 We

used the mean firing rate in a time window of 250–1,000 ms after stimulus

onset as the response to each face for primate neurons. Note that we also

used this response to study the correlation between DNN units and primate

neurons.

Neural recordings from a monkey

The detailed procedure has been described in our previous study.25 Briefly, we

recorded from the anterior and central IT cortex in one male rhesus macaque

(Macaca mulatta) using two Utah arrays (Blackrock Microsystems) (see Kar

et al.32 and Kar and DiCarlo32,69 for details). We detected the multiunit spikes

after the raw data were zero-phase band-pass filtered between 300 and

6,000 Hz (MATLAB ellip function, fourth order with 0.1-dB pass-band ripple

and 40-dB stop-band attenuation), and we used MUA for analyses. To test

with an independent dataset, the monkey passively viewed 500 images from
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the CelebA dataset.36 In each trial, the monkey first viewed a white central fix-

ation point (0.2 degrees of visual angle [DVAs]) on a gray background for

300 ms to initiate a trial. Then, 8 faces were presented for 100 ms each,

each followed by a blank (gray) screen for an inter-stimulus interval (ISI) of

100 ms. The central fixation point persisted throughout the trial, and a fluid

reward was given when the monkey successfully fixated through the entire

trial. The inter-trial interval (ITI) of the blank gray screen was at least 500 ms.

We recorded 4,155 trials in total, and we rejected 666 trials where the monkey

broke the fixation (±2 DVAs). For each round of presentation, we generated a

random sequence for the 500 faces, and we used different sequences for

different rounds of presentation. All procedures conformed to local andUSNa-

tional Institutes of Health guidelines, including the US National Institutes of

Health Guide for the Care and Use of Laboratory Animals. All experiments

were performed with the approval of the MIT Institutional Animal Care and

Use Committee (IACUC).

Neural recordings from human neurosurgical patients

The detailed procedure has been described in our previous study.25,70 Briefly,

we recorded from implanted depth electrodes in the amygdala and hippocam-

pus from 8 neurosurgical patients (23 sessions in total) with pharmacologically

intractable epilepsy. Bipolar wide-band recordings (0.1–9,000 Hz), using one

of the eight microwires as a reference, were sampled at 32 kHz and stored

continuously for offline analysis with a Neuralynx system. The raw signal

was filtered with a zero-phase-lag 300- to 3,000-Hz band-pass filter, and

spikes were sorted using a semi-automatic template-matching algorithm as

described previously.71 Units were carefully isolated, and recording and spike

sorting quality were assessed quantitatively. Only units with an average firing

rate of at least 0.15 Hz (entire task) were considered. Only single units were

considered. Trials were aligned to stimulus onset, and we used the mean firing

rate in a time window of 250 ms–1000 ms after stimulus onset as the response

to each face. We employed a one-back task with the same 500 CelebA images

as for monkey recordings. In each trial, a single face was presented at the

center of the screen for a fixed duration of 1 s, with uniformly jittered ITI of

0.5–0.75 s. Patients pressed a button when the present face image was iden-

tical to the immediately previous image. All participants provided written

informed consent using procedures approved by the Institutional Review

Board of West Virginia University (WVU).

Match between DNN units and primate neurons

We employed a pairwise distance metric31 to compare the neural coding of

face identities between primate neurons and DNN units. For each pair of

identities, we used the dissimilarity value (1 – Pearson’s r)72 as a distance

metric. The primate neuronal distance metric was calculated between firing

rates of all recorded neurons, and the DNN distance metric was calculated

between activation of all DNN units. We then correlated the primate neuronal

distance metric and the DNN distance metric. To determine statistical signif-

icance, we used a non-parametric permutation test with 1,000 runs. In each

run, we randomly shuffled the face labels and calculated the correlation be-

tween the primate neuronal distance metric and the DNN distance metric.

The distribution of correlation coefficients computed with shuffling (i.e.,

null distribution) was eventually compared with the one without shuffling

(i.e., observed response). If the correlation coefficient of the observed

response was greater than 95% of the correlation coefficients from the null

distribution, then it was considered significant. A significant correlation indi-

cated that the DNN face space corresponded to the primate neuronal face

space.31 We computed the correlation for each DNN layer so that we could

determine the specific layer that the neuronal population encoded. For each

face identity, we averaged the response of all faces of that identity to get a

single mean firing rate.

To get temporal dynamics, for human neurons, we used a moving window

with a bin size of 500 ms and a step size of 50 ms (given the sparseness of hu-

man MTL neurons, this time window is commonly used33,60,73). The first bin

started at�300 ms relative to trial onset (the bin center was thus 50 ms before

trial onset), and we tested 19 consecutive bins (the last bin was thus from 600–

1,100 ms after trial onset). For monkey neurons, we used a moving window

with a bin size of 40 ms and a step size of 10 ms. The first bin started at

�70 ms relative to stimulus onset (the bin center was thus 50 ms before

stimulus onset), and we tested 26 consecutive bins (the last bin was thus

from 180–220 ms after stimulus onset). We used Bonferroni correction to cor-
14 Patterns 5, 100895, February 9, 2024
rect for multiple comparisons across DNN layers and false discovery rate

(FDR)37 to correct for multiple comparisons across time bins.

We used a bootstrap with 1,000 runs to compare between models (full-face

vs. eye-foveated and full-face vs.mouth-foveated). In each run, data from 70%

of the identities (i.e., 35 identities) were randomly selected to calculate the cor-

respondence between DNN units and primate neurons. We thus created a dis-

tribution of correspondence for each model.

We further used a permutation test with 1,000 runs to statistically compare

the correspondence for recovery within vs. outside of the critical period. In

each run, we shuffled the recovery labels (within vs. outside) and calculated

the difference in correspondence between recoveries. We then compared

the observed difference in correspondence between recoveries with the

permuted null distribution to derive statistical significance.
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