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High-resolution computed tomography (HRCT) images in interstitial lung disease (ILD) screening can help improve healthcare
quality. However, most of the earlier ILD classification work involves time-consuming manual identification of the region of
interest (ROI) from the lung HRCT image before applying the deep learning classification algorithm. This paper has developed
a two-stage hybrid approach of deep learning networks for ILD classification. A conditional generative adversarial network
(c-GAN) has segmented the lung part from the HRCT images at the first stage. The c-GAN with multiscale feature extraction
module has been used for accurate lung segmentation from the HRCT images with lung abnormalities. At the second stage, a
pretrained ResNet50 has been used to extract the features from the segmented lung image for classification into six ILD classes
using the support vector machine classifier. The proposed two-stage algorithm takes a whole HRCT as input eliminating the
need for extracting the ROI and classifies the given HRCT image into an ILD class. The performance of the proposed two-stage
deep learning network-based ILD classifier has improved considerably due to the stage-wise improvement of deep learning
algorithm performance.

1. Introduction

As the risk of lung cancer incidences among patients with
interstitial lung disease (ILD) is high [1], identifying the spe-
cific type of ILD becomes essential to develop appropriate
therapy plans. In the healthcare industry, data-driven
decision-making [2] is becoming popular due to its ability
to quickly gather and analyze complete and accurate data.
It makes the decision-makers choose an appropriate treat-
ment, predict future events, and plan long-term action.
ILD classification problems can be linked with diagnosing
a particular type of ILD, forecasting the spread of ILD and
further implementing preventive measures.

The HRCT image-based processes are the preliminary
screening approach for the quick visualization of normal
and abnormal cases of any disease. In addition, the data-
driven decision-making approach for ILD classification can
become effective for the early detection of ILD. The image-
based classification approach involves feature extraction

and labeling the ILD class to train the classifier. Feature
extraction involves efficient shape, texture, and colour
extraction for spatial and frequency-based image analysis.
These methods include gray level values [3], texture feature
extraction, statistic filters such as gray level cooccurrence
matrix and run length [4], edge features such as Gaussian
and Wavelet filters [5], and spatial and shape features [6].
However, these features will not capture the features of deep
learning proposed by deep learning algorithms.

With the advancement in deep learning algorithms, fea-
ture extraction in medical image analysis has become more
reliable. These algorithms are used for solving various appli-
cations in the domain of detection [7], segmentation [8], and
classification [9]. Deep learning algorithms such as AlexNet
[10], VGG [11], and GoogLeNet [12] help to obtain deep
feature vectors. However, this architecture needs a massive
amount of data for training and testing, which becomes
difficult in medical fields and is sometimes tedious and
time-consuming. This data scarcity issue, which may result
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in overfitting, is resolved by transfer learning [13], which
inherits or preserves the knowledge learned from a data-
rich source domain. These features are labeled after appro-
priate feature extraction to implement the machine learning
algorithms. The most frequently used supervised classifica-
tion algorithms are support vector machine [4], K-nearest
neighbor [14], Bayesian classifiers [15], linear discriminant
analysis [16], and artificial neural network [3]. The most
promising classifier for giving the great value of true positive
rates and accuracy is SVM. A detailed review of deep learn-
ing approaches for solving various medical imaging prob-
lems has been covered by Santosh et al. [17].

Most ILD classification works are based on the regions of
interest (ROI) patch-based image representation. Li et al.
[18] designed a CNN with a shallow convolution layer to
classify ILD automatically and efficiently to learn the intrin-
sic image features from lung image patches that are most
suitable for the classification purpose. Song et al. [19] pro-
posed a new locality-constrained subcluster representation
ensemble model to classify HRCT images of ILDs. It helps
in the separation between different classes for improving
classification performance. Anthimopoulos et al. [20] pro-
posed and evaluated Leaky ReLU activation function-
based CNN for classification of ILD. The ILD of seven
patterns shows a classification performance of about 85.5%.
Doddavarapu et al. [21] proposed architecture for automatic
ILD classification using CNN with three convolution layers,
Leaky ReLU activation followed by maximum pooling layer
and dense layer. The last fully connected layer has five out-
puts equivalent to five ILDs, which gives an accuracy of about
94%. Guo et al. [22] developed an improved DenseNet called
small kernel DenseNet to improve ILD classification perfor-
mance and show the significant performance improvement
compared to earlier CNNs AlexNet, VGGNet, and ResNet.

A different approach based on whole X-ray images was
demonstrated by Poap et al. [23] and Sahlol et al. [24] to detect
lung diseases and TB diagnostics. Further, Khan et al. [25]
proposed a framework to support automated segmentation
and classification of lung nodules with improved accuracy
using VGG-SegNet for nodule mining and pretrained DL-
based classification to help automatic lung nodule detection.
Finally, the approach of using whole HRCT images for ILD
classification was proposed by Gao et al. [26], which brought
out drawbacks of image patch-based methods. Though the
technique had advantages for handling large-scale image
processing and analysis, the success rate was comparatively
low. The low success rate was due to unwanted noise intro-
duced by the background of HRCT images. The present study
explores a multistage deep learning network to improve the
ILD classification performance. Earlier, this approach was
demonstrated by Elsayed et al. [27] for emotion recognition
in Arabic news headlines and by Zhong and Gu [28] for cap-
turing complex malware data distribution.

The literature survey shows the following significant gaps
that can be addressed through the proposed two-stage hybrid
approach-based classifier: (a) use of ROI patch, which is time-
consuming and needs manual expert intervention, (b) the small
HRCT patches may not fully capture the visual details and
spatial context, (c) the use of traditional image processing algo-

rithms for lung nodule segmentation, and (d) most of the clas-
sifiers developed in the literature use directly ROI patches
instead of developing the classifier right from theHRCT images.
The highlights of the proposed two-stage hybrid approach for
ILD classification have been given below:

(i) The proposed algorithm uses whole HRCT images
to eliminate human expertise requirement for
manual extraction of ROI of ILD-infected part of
the lung

(ii) In the two-stage hybrid approach, at the first stage, a
conditional generative adversarial network (c-GAN)
with a multiscale feature extraction module has
been used for accurate lung segmentation from the
HRCT images with lung abnormalities. The lung
segmentation removes the unwanted background
from HRCT images, helping the next stage deep
learning algorithm focus on the lung’s ILD features

(iii) The ResNet50 has been used to extract the deep fea-
tures from the segmented lung images in the second
stage. In addition, the pretrained ResNet50 has been
fine-tuned based on the transfer learning approach
using the segmented lung images of different ILD
classes

(iv) Finally, the support vector machine (SVM) utilized
the deep features from ResNet50 to classify the six
ILD classes, viz., normal, emphysema, fibrosis,
ground glass, micronodules, and consolidation

(v) Overall, ILD classification performance gets
improved due to selection c-GAN, which is suitable
for lung segmentation and ResNet50, which is ideal
for deep feature extraction. Also, improving the
accuracy of deep learning algorithms at each stage
will improve the overall performance

(vi) The performance of the proposed algorithm has
been compared with earlier patch-based image
input and whole image input algorithms

The paper has been organized in the following sections. The
significance of the proposed two-stage hybrid approach for ILD
classification is brought out through the literature survey in
Section 1. Section 2 describes a two-stage hybrid approach of
deep learning networks for ILD classification giving the details
of deep learning algorithms used at each stage. The experiments
that demonstrate the proposed two-stage hybrid approach and
its performance analysis have been discussed in Section 3. The
advantages and limitations of the proposed approach are dis-
cussed in Section 4. Finally, the conclusions of the proposed
work have been given in Section 5.

2. Architecture of Two-Stage Hybrid
Approach of Deep Learning Networks

Most of the existing ILD classifiers involve manual identifi-
cation of regions of interest (ROI) as a prerequisite to screen
potential disease. Further, the patches of ROIs have been
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given as input to the deep learning algorithms for mapping
the ILD classes. In this study, the two-stage architecture of
a deep learning algorithm has been proposed, which con-
nects two separate deep learning algorithms utilized for deep
feature extraction and ILD classification. Figure 1 shows the
two-stage hybrid approach of deep learning networks for
ILD classification, which takes the whole HRCT images as
input and gives the ILD class label as output. The first stage
deep learning algorithm segments the lung part from given
HRCT images by removing background noise. Therefore,
the segmented lung HRCT images from the first stage have
been given as input to the second stage, where the features
have been extracted using another deep learning algorithm.
Further, in the second stage, the memory-efficient classifier
support vector machine (SVM) has been used to classify
ILDs based on the features obtained by the second stage
deep learning algorithm. The following paragraphs have
given brief descriptions of the deep learning networks used
in the proposed algorithm.

2.1. Stage 1 c-GAN for Lung Segmentation. Conditional gen-
erative adversarial network (c-GAN) is advantageous to use
for the segmentation purpose due to its two main subcom-
ponents, viz., generator (G) and discriminator (D) [29].
The role of the generator is to generate fake images using
latent samples. At first, the generator generates the images
using random pixels. Further, the generator has been trained
to map these random variables to recognizable images,
which can fool the discriminator (D). The generator (G)
maps the input lung HRCT slice (x) with the reference lung
segmentation map (y) as G : fx, zg⟶ y, whereas the dis-
criminator (D) discriminates between the generator output
and the reference lung segmentation map. Figure 2 shows
the architecture of the proposed c-GAN, which consists of
encoder/decoder blocks and multiscale feature extraction
(MSFE) module. The encoder/decoder blocks have been
formed by convolution/deconvolution filters of size 3 × 3,
followed by the ReLU nonlinear action function. These

blocks encode the input lung HRCT slices into feature maps
that have been further normalized using the instance nor-
malization [30] approach. The feature maps have been fur-
ther downsampled in the encoder blocks for increasing the
receptive fields. The upsampling of these features has been
performed in the decoder blocks by the factor of 2 for main-
taining the symmetry of the network.

The role of MSFE is to extract features which take care of
dense abnormalities in the lung HRCT scans of different
sizes, shapes, and textures. Most of the existing lung segmen-
tation algorithms fail to include these dense abnormalities
present, especially at the lung border. The inclusion of MSFE
in the proposed algorithm captures the feature due to
variation in the appearance of abnormalities. The MSFE
includes inception blocks in which the input feature maps
pass through three convolution layers of the filter size, i.e.,
1 × 1, 3 × 3, and 5 × 5, followed by the ReLU and instance
normalization. As shown in Figure 2, the proposed c-GAN
segmentation architecture consists of six MSFE modules.
The first three MSFE modules process the multiscale fea-
tures through a simple convolution layer with a stride factor
of 2. The remaining three MSFE modules maintain symme-
try by processing these features through a simple deconvolu-
tion layer with the upsampling factor of 2. Thus, the MSFE
module architecture helps network uniform appearance
(i.e., size, shape, and texture) of the dense abnormalities on
lung CT slice by capturing the prominent edge information
in the output lung segmentation map.

The training of the proposed c-GAN network has been
performed by calculating the losses of the generator and dis-
criminator. The discriminator loss is the sum of losses of the
real and fake images. The generator and discriminator vari-
ables have been updated separately.

The proposed c-GAN network has been trained by solv-
ing the objective function:

G∗ = arg m
G
inm

D
axL G,Dð Þ, ð1Þ

Stage-2: Feature extractor and classifier

Stage-1: Lung segmentation

C-GAN ResNet50
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Figure 1: Architecture of the two-stage hybrid approach.
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using Adam’s stochastic optimization approach. The overall
loss function is given by

L G,Dð Þ = ℓcGAN G,Dð Þ + λ · ℓL1 Gð Þ: ð2Þ

The multiobjective probabilistic function of conditional
GAN ℓcGANðG,DÞ and the traditional loss ℓL1ðGÞ can be
expressed as [26]

ℓcGAN G,Dð Þ = Ex,y log D x, yð Þ½ � + Ex,z log 1 −D x, G x, zð Þð Þð Þ½ �,

ℓL1 Gð Þ =〠
i,j

G x, zð Þi,j − yi, j
���

���
2
:

ð3Þ

The training is aimed at training the discriminator to
maximize the probability of the training data and to mini-
mize the probability of the data sampled from the generator.
Simultaneously, the generator has been trained on the oppo-
site objectives as maximizing the probability that the dis-
criminator is assigning to its samples.

2.2. Stage 2 ResNet50 for Feature Extraction and SVM for
Classification. As shown in Figure 1, the segmented lung
image received from stage 1 has passed through ResNet50

for deep feature extraction. ResNet50 is a pertained CNN
based on feature transmission to prevent gradient vanishing,
such that a much deeper network than those used previously
could be effectively trained [31]. Based on the principle that
the deeper network is more powerful than a shallow net-
work, ResNet50 includes a 50-layer residual network archi-
tecture with 177 layers. The ResNet50 has been pretrained
on a subset of the ImageNet database (http://www.image-
net.org), and the architecture details are shown in Table 1.

Like any other deep network, the ResNet50 network con-
sists of all the components like convolution, pooling, activa-
tion, and fully connected layers stacked one over the others.
The only differentiator that makes it a residual network is
that the identity connection between the layers. The identity
connections resolve the problem of vanishing gradient prob-
lem. The residual blocks get skipped at once, and gradients
will reach the initial layers, which will help to learn the cor-
rect weights. In ResNet50, the ReLU function is placed after
the addition operation, which helps in changing the gradient
values as they enter inside the residual block. As shown in
Table 1, the ResNet50 architecture has four levels which
can take input images of 224 × 224 × 3. The network per-
forms the initial convolution and max pooling with kernel
sizes of 7 × 7 and 3 × 3, respectively.

Further, level 1 has three residual blocks containing
three layers, each performing convolution operations at all

512x512 256x256

Conv layer
response

Inst normresponse

ReLuresponse

Inceptionblock
Dconv layer

response

128x128

64x64

32x32

32x32

64x64

128x128

256x256 512x512

Fibrosis
Fibrosis

Inception block

C
on

v_
5

C
on

v_
3

C
on

v_
1

C
on

v_
1

16x16

Figure 2: Conditional generative adversarial network (c-GAN) used for lung segmentation at stage 1.
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three layers. These three layers are 1 × 1, 3 × 3, and 1 × 1
convolutions to form bottleneck design. Thus, there are
three identity connections between the three blocks of level
1. The convolution operation between level 1 and level 2
has been performed with stride 2, which doubles the channel
width, whereas the size of inputs has been reduced to half.
Similarly, for the next two levels, while progressing from
one level to another level, the channel width has been dou-
bled, and sizes of inputs have reduced to half as height and
width.

The deep features obtained from a particular layer of the
ResNet50 are fed to SVM classifier for ILD classification.
The network extracts various classification-related deep fea-
tures in each layer and pass to the next layer. The activation
is in GPU with a minibatch size of 64, and GPU memory has
enough space to fit the image dataset. The output from the
activation function has been used to fit in SVM training.
The SVM [32] used here is based on the function “fit class
error-correcting output codes (fitcecoc),” which returns the
fully trained multiclass error-correcting output of the model.
The “fitcecoc” uses binary SVM models with One-Vs-All,
and error-correcting output coding design enhances the
performance of classification models. As the proposed algo-
rithm utilized several deep features obtained from ResNet50,
the SVM classifier is a suitable option due to its memory-
efficient approach of handling high-dimensional spaces.

3. Experiments

Performance analysis of the proposed ILD classifier has
been demonstrated using an ILD database prepared by

Depeursinge et al. [33]. This database includes the lung
HRCT slices with annotations that have been prepared
by a discussion with the radiologists, research physicians,
and computer scientists during the four years of the pro-
ject period. The selected ILD database provides a common
platform for evaluating automated ILD analysis systems,
which 108 HRCT scans with annotated lung field maps.
The images of six classes considered in the study have
been taken as normal, emphysema, ground glass, fibrosis,
micronodules, and consolidation for the analysis. The
training dataset has been prepared by taking the ILD data-
set out of 108 HRCT scans, whereas the remaining dataset
has been used to validate the proposed optimal lung seg-
mentation network. The network was trained using about
4000 HRCT slices created by the data augmentation
approach, which considers the flip left, flip right, flip up-
down, image transpose operators to increase the training
dataset size. Other parameters of the model are similar
to [21].

3.1. Lung Segmentation Performance. Lung segmentation
performance of stage 1 c-GAN network has been obtained
in the form of dice similarity coefficient (DSC) and Jaccard
index (J), which has been given as

DSC = 2 ∣G xð Þ ∩ y ∣
∣G xð Þ∣+∣y ∣ ,

J =
DSC

2 −DSC
:

ð4Þ

Usually, the lung segmentation performance deteriorates
in the presence of ILD due to the dense abnormalities pres-
ent in the lung HRCT images of different sizes, shapes, and
textures. Table 2 shows the average lung segmentation per-
formance analysis of the c-GAN carried out on 22 lung CT
scans from the ILD database, compared with the existing
state-of-the-art deep networks, viz., NMF [34], UNet [35],
ResNet [31], VGG16 [10], and MobileNet [36]. The tables
show that the performance of c-GAN and other existing net-
works depends on the ILD present in the HRCT image. The
c-GAN method used in this work outperforms other existing
methods for lung segmentation. The performance analysis
shows that the c-GAN network gives near-perfect lung seg-
mentation than the ground truth. In contrast, other methods
fail to include lung abnormalities accurately.

3.2. ILD Classification Performance. In the second stage, the
segmented images labeled with six ILD classes as normal,
emphysema, fibrosis, ground glass, micronodules, and con-
solidation have been used to extract the deep features using
pretrained ResNet50 mapping to the ILD classes. Figure 3
shows representative images of original HRCT and seg-
mented form for all the six ILD classes. The overfitting on
image recognition training has been minimized by increas-
ing the number of images in the database by augmentation.
In addition, it has been ensured that the labels of the
augmented images are being preserved. During the augmen-
tation process, the CT images of 512 × 512 × 3 have been

Table 1: Details of the ResNet50 network for extracting deep
features at stage 2.

Layer name Optimal size Sublayer

CONV1 112 × 112 7 × 7, 64, stride 2

CONV2_x 56 × 56

3 × 3 max pool stride 2
1 × 1, 64

3 × 3, 64

1 × 1,128

2
664

3
775 × 3

CONV3_x 28 × 28

1 × 1,128

3 × 3,128

1 × 1,512

2
664

3
775 × 4

CONV4_x 14 × 14

1 × 1,256

3 × 3,256

1 × 1, 1024

2
664

3
775 × 6

CONV5_x 7 × 7

1 × 1,512

3 × 3,512

1 × 1, 2048

2
664

3
775 × 3

1 × 1 Average pool, 1000-d fc, softmax

FLOPs 3:8 × 109
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resized to 224 × 224 × 3. These images have been passed to
pretrained ResNet50 for extracting the deep features. At this
stage, appropriate feature layer selection becomes essential
for improving the performance of the classifier. In the pre-
trained network, the weights of earlier layers are frozen,
which were not updated during the fine-tuning stage. There-
fore, the transfer learning techniques used for ResNet50
become advantageous for such problems as it removes the
drawback of the shortage of radiological images required to
improve deep learning performance. The transfer learning
process effectively develops classification algorithms with
less training data of medical images.

Before the detailed performance analysis of the classifier,
the influence of feature layer selection on the classifier accu-
racy has been studied. Out of the trials conducted using the
selection of feature layers as fcc1000, res5c_branch2b, res5c_
branch2c, avg_pool, and bn5c_branch2a, SVM classifier
gives the best result for the deep features selected at bn5c_
branch2a.

The classification performance is measured using the
performance parameters recall, precision, F-score, and accu-
racy given below:

Recall = TP
TP + FN

,

Precision =
TP

TP + FP
,

Fscore =
2TP

2TP + FP + FN
,

Accuracy =
TP + TN

TP + TN + FP + FN
,

ð5Þ

where TP is the number of true positives for the classifica-
tion of ILD. Similarly, FP is the false positives, TN is the true
negatives, and FN is the false negatives.

Statistical consistency of the proposed algorithm has
been analyzed using 30 different cycles of randomly selected
groups of HRCT images. The confusion matrices of the
classifier obtained for the 30 cycles are presented in a 95%
confidence interval (CI) in Table 3. This table shows the
mean values and their variations for 95% confidence interval
for the six ILD classes considered in this study. The table
shows that the normal class, which is healthy, gives the

Table 2: Comparative performance assessment of average DSC and J for c-GAN and existing methods for lung segmentation.

Disease Performance Present study NMF [34] UNet [35] ResNet [31] VGG16 [10] MobileNet [36]

Fibrosis
DSC 0.9566 0.7681 0.9485 0.9126 0.9295 0.9040

J 0.9290 0.6600 0.9117 0.8681 0.8742 0.8330

Ground glass
DSC 0.9558 0.8335 0.9534 0.9351 0.9444 0.9291

J 0.9282 0.7473 0.9191 0.8987 0.8975 0.8706

Emphysema
DSC 0.9378 0.9214 0.9629 0.9261 0.9452 0.9380

J 0.9204 0.8917 0.9340 0.8975 0.8963 0.8841

Consolidation
DSC 0.9712 0.8775 0.9500 0.9440 0.9479 0.9436

J 0.9466 0.7963 0.9148 0.9076 0.9031 0.8954

Micronodule
DSC 0.9812 0.9678 0.9807 0.9674 0.9751 0.9586

J 0.9645 0.9391 0.9627 0.9379 0.9523 0.9210

Emphysema Fibrosis Ground glass Normal Micro nodules Consolidation

Figure 3: Examples of HRCT of six ILD. (The first row shows original HRCT images and the second row shows respective
segmented image.)
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highest accuracy of 94.65% (with 95% CI variation of
93.06%-96.24%) and gets slightly mixed with by about
2.55% with ground glass and micronodule disease. On the
other hand, the lowest accuracy is for the consolidation,
84.12% (with 95% CI variation of 85.41%-82.83%), which
gets confused with fibrosis and ground glass. However, the
classification performance of the proposed classifier for the
consolidation class has been considerably improved due to
the segmented image inputs compared to the whole image
input classifier [26], which was just 46.67%.

Further, Table 4 shows the interaction of six ILD classes
for the proposed classifier obtained as precision, recall, and
F-score values from the mean values of confusion matrix
of Table 3. The average values of the precision, recall, and
F-score are 89.65%, 89.39%, and 89.45%, respectively.
Figure 4 shows the ROC curves for the six classes, and their
AUC values are given in Table 4. The ROC plots and AUC
values indicate that the classifier is well trained, and classifi-
cation results are obtained with a sufficient classification
margin.

Table 5 compares the performance of the proposed two-
stage hybrid ILD classifier with the earlier works in the liter-
ature. Most of the methods have used lung image patches of
size 32 × 32, and only one method proposed by Gao et al.
[26] used the whole images for ILD classification. Most of
the earlier patch-based ILD classifiers have considered only
five classes and have not included the consolidation class.
Most of the existing patch-based ILD classifiers give average
values of F-score, and accuracy for five classes is less than
about 78%. Recently developed patch-based classier devel-
oped by Doddavarapu et al. [21] provides average values of
F-score, and accuracy for five classes is about 94%. The pro-
posed classifier shows nearly matching performance by giv-
ing the accuracy of about 90% to classify six classes. Thus,
the proposed classifier performs better even with six ILD
classes. A similar work of developing an ILD classifier using

whole HRCT images to classify six ILD classes was devel-
oped by Gao et al. [26]. The average values of F-score and
accuracy for this classifier are 66.83% and 69.23%, far lower
than those of the proposed classifier. The proposed algo-
rithm’s accuracy is improved due to automatic preprocess-
ing of unwanted noisy parts of HRCT images by the lung
segmentation process performed at stage 1.

3.3. Implementation of the ILD Classification Process. A PC
with 4.20GHz Intel Core i7 processor and NVIDIA GTX
1080 8GB GPU was used to train the two-stage hybrid
approach of deep learning networks for ILD classification.
For the segmentation training using around 4000 images,
the c-GAN network, which is a shallow network, took about
2000 seconds. On the other hand, it takes approximately
19.20 seconds for the training of ResNet50 for deep feature
extractions using around 1000 images, and SVM training
took around 17.85 seconds. During testing of the two-stage
hybrid approach, the total time required per image was
about 0.7 seconds which is the sum of about 0.5 seconds
taken for stage 1 and about 0.2 seconds taken for stage 2.
Therefore, the time requirement analysis indicates that the
two-stage hybrid approach of ILD classifier did not take
much additional computational time compared to giving
the advantage of improved classification accuracy.

4. Discussion

The proposed ILD classification approach is based on utiliz-
ing the whole HRCT images. Though this approach has the
advantage of eliminating the dependency on human exper-
tise required for manual extraction of ROI of ILD, it will
not be able to mark the specific region infected by ILD.
The time needed to scan many HRCT images using the
ROI approach will be high. However, the proposed approach
will monitor the whole image to classify it into a particular

Table 3: Confusion matrix of the proposed classifier (mean and variation values with 95% confidence interval).

Actual cases
Prediction (%)

Emphysema Fibrosis Ground glass Normal Micronodules Consolidation

Emphysema 93:24 ± 1:66 5:56 ± 1:36 0:37 ± 0:34 0:00 0:37 ± 0:34 0:46 ± 0:46

Fibrosis 0:55 ± 0:23 89:26 ± 1:54 4:43 ± 0:91 0:22 ± 0:14 0:77 ± 0:46 4:76 ± 0:77

Ground glass 0:28 ± 0:26 5:27 ± 1:37 84:44 ± 2:17 4:70 ± 0:87 2:23 ± 0:84 3:08 ± 0:66

Normal 0:05 ± 0:06 0:16 ± 0:13 2:57 ± 1:14 94:65 ± 1:59 2:55 ± :70 0:02 ± 0:05

Micronodules 0:02 ± 0:04 0:26 ± 0:19 4:56 ± 0:73 3:45 ± 0:85 90:64 ± 1:42 1:06 ± 0:41

Consolidation 0:10 ± 0:08 9:84 ± 1:21 4:67 ± 0:67 0:21 ± 0:19 1:07 ± 0:43 84:12 ± 1:29

Table 4: ILD classifier interactive performance analysis of the proposed algorithm.

Emphysema Fibrosis Ground glass Normal Micronodules Consolidation Avg

Precision (%) 98.94 80.89 83.57 91.68 92.84 89.96 89.65

Recall (%) 93.24 89.26 84.44 94.65 90.64 84.12 89.39

F-score (%) 96.00 84.87 84.00 93.14 91.73 86.94 89.45

AUC 0.9960 0.9769 0.9811 0.9969 0.9948 0.9793 0.9875
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ILD class. The proposed ILD classifier has been developed
by assuming that the given input HRCT image has only
one type of ILD. However, the ILD classifier needs to be
improved for handling the input images with multiple ILDs,
which should bring out all the classes or severe classes of the
given image. Another limitation of the proposed algorithm is
that it is helpful to classify only five significant ILDs and will
not work for several other ILDs which are not considered in
this study.

5. Conclusions

A two-stage hybrid approach of deep learning networks has
been proposed to screen interstitial lung disease (ILD) using
whole HRCT images. Improving the accuracy of deep learn-
ing algorithms at each stage has improved the classifier’s
overall performance. At the first stage, the lung segmenta-

tion removes the unwanted background from HRCT images,
helping the next stage to accurately extract ILD features
from the lung image. Deep features from the segmented lung
images have been extracted using ResNet50. The multiclass
support vector machine algorithm utilizes the deep learning
features to classify into six ILD classes, viz., normal, emphy-
sema, fibrosis, ground glass, micronodules, and consolida-
tion. The performance of the proposed algorithm has been
compared with earlier patch-based and whole image-based
algorithms. The highest classification accuracy of 94.65%
has been obtained for the healthy class, which helps in
reducing the chances of false alarm situations. The lowest
classification accuracy of 84.12% has been obtained for the
consolidation class, which is far better than other whole
image-based algorithms. The proposed algorithm, which
has considered six ILD classes, performs considerably better
than existing algorithms with five classes and gives far better

Table 5: Comparison of the proposed classifier with the earlier CNN-based classifiers.

Method Image input type F-score (%) Accuracy (%)

Li et al. [17] ROI patch 66.57 67.05

LeNet [37] ROI patch 67.83 67.90

AlexNet [38] ROI patch 70.31 71.04

Pretrained AlexNet [38] ROI patch 75.82 76.09

VGGNet [10] ROI patch 78.04 78.00

Doddavarapu et al. [21] ROI patch 94.65 94.67

Gao et al. [26] Whole HRCT 66.83 69.23

Proposed two-stage hybrid classifier Segmented HRCT 89.45 89.39
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Figure 4: ROC plots of SVM classifier for the six ILD classes.

8 BioMed Research International



performance than a similar whole image-based algorithm.
The proposed approach brings out the potential of improv-
ing the overall performance by choosing the appropriate
CNN for a given task and improving accuracies at each stage
of the functions. Furthermore, the additional time required
for the proposed multistage CNN is negligible.

Data Availability

No data were used to support this study.
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