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ABSTRACT: Given that daily exposure to nanoparticles is now
unavoidable, there are concerns that nanoparticles have un-
expected biological effects due to their small size. Here, we
examined the biodistribution of silver nanoparticles, which are the
most frequently used nanoparticles owing to their antibacterial
activity, with a diameter of 10 nm (nAg10) to the male genital
tract, and the effects of paternal treatment with nAg10 on fetal
development. Male Slc:ICR male mice were orally treated with
nAg10 for 14 consecutive days. Inductively coupled plasma mass
spectrometry analysis detected silver in the blood and testis of
male mice, but no general toxicological effects were induced.
Moreover, there were no significant changes in fetal development
when these treated male mice were mated with nontreated female
mice. This implies that although orally ingested nAg10 is distributed to the male genital tract, it does not affect fetal development
under the present treatment conditions.
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Nanoparticles are particles that measure less than 100 nm
in at least one dimension. Their large specific surface

area affords nanoparticles with many useful properties, and
their use is currently expanding in many areas, including the
cosmetics, food, and medical industries.1,2 For example, due to
their enhanced antimicrobial activity compared with conven-
tionally sized particles, silver nanoparticles are being
incorporated into food handling tools, clothing, and cosmetics,
and their use in hundreds of other daily use products is being
considered.3 Given this marked increase of daily exposure,
there is concern that nanoparticles may induce unexpected
biological effects as a result of their small size altering their
pharmacokinetics compared with those of conventionally sized
particles.4 Indeed, specific provisions for nanomaterials are
now included within the European regulation on the
Registration, Evaluation, Authorisation and Restriction of
Chemicals (REACH).5 Thus, the safety of nanoparticles is of
growing interest.
Fetuses and pregnant women are particularly vulnerable to

exposure to chemicals and other foreign substances, and the
effects of these chemicals may be passed on for several
generations.6 Our group has been conducting studies in the
field of nanoparticle safety, including an analysis of the
correlations among the pharmacokinetics, toxicity, physico-
chemical properties, and safety of nanoparticles.7 Through our
studies, we have shown that exposure to silver nanoparticles

inhibits placental syncytialization in the human choriocarcino-
ma cell line BeWo8 and that exposure to silica nanoparticles in
mice during late pregnancy causes fetal growth restriction (i.e.,
decreased fetal weight).9 Despite recent advances in the field of
nanosafety, the majority of safety evaluations conducted on the
fetotoxicity of nanoparticles have focused mainly on exposure
of the female parent during pregnancy.
However, in recent years, the Paternal Origins of Health and

Disease concept, which relates to the study of how factors such
as exposure to environmental pollutants affect the generations
through the male parent, has begun to attract attention as an
extension of the Developmental Origin of Health and Disease
concept.10 For instance, there are reports that exposure of the
male parent to nicotine causes significant increases in
spontaneous locomotor activity and significant deficits in
reversal learning in their F1 generation,11 and that exposure to
lead acetate adversely affects the fertility of both the male
parent and their offspring.12 In the field of nanosafety, the
effects of nanoparticles on the reproductive system of the F0
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generation have already been reported. For example, silver
nanoparticles showed a decrease in sperm count and their
motility in male mice13 or in serum gonadotropins and
testosterone production in male rat.14 However, it remains
unclear whether nanoparticles have multigenerational effects
through parental male parental exposure.
Here, using Slc:ICR mice, we examined the biodistribution

of a model nanoparticle, in this case silver nanoparticles with a
diameter of 10 nm (nAg10), to the male genital tract and the
effects of this biodistribution on pregnancy outcomes. These
nanoparticles were chosen based on the particle size of silver
nanoparticles currently used as food additives, which is around
11 ± 4 nm.15

Testicular Biodistribution and Toxicity after Oral
Treatment with nAg10
An aqueous suspension of silver nanoparticles with a diameter
of 10 nm (nAg10) was used in this study. We previously
confirmed by transmission electron microscopy that the
nanoparticles were smooth-surfaced spheres.16 Male Slc:ICR
male mice were treated with glucose (control) or nAg10 (0.1,
0.5, and 2.5 mg/kg mouse) by oral gavage for 14 consecutive
days. During the treatment period, there were no significant
changes in body weight (Figure 1A), the average weight on day
14 (Figure 1B) or daily food intake between the four groups
(Figure 1C).
Moreover, we evaluated the effects of nAg10 on general

hematology. Hematologic analysis revealed that the numbers
of total leukocytes, erythrocytes, platelets, monocytes,

Figure 1. Effects of nAg10 on body weight and food intake. Male
Slc:ICR (6−8 weeks) mice were treated with glucose or nAg10 (0.1,
0.5, or 2.5 mg/kg mouse) by oral gavage for 14 consecutive days. (A)
Body weight was determined each day during the treatment period.
(B) Body weight on day 14 was determined. (C) Daily food intake
was determined each day during the treatment period. Data were
pooled from two experiments and are presented as means ± SEM; n =
10−13.

Figure 2. Silver concentration in blood and testis in nAg10-treated
mice. Male Slc:ICR (6−8 weeks) mice were treated with glucose or
nAg10 (0.1, 0.5, or 2.5 mg/kg mouse) by oral gavage for 14
consecutive days. After the mating period, the mice were euthanized,
and testes and blood were collected. (A) Silver concentration in blood
(n = 6−10) and (B) silver content in testes (n = 10−13) were
measured by inductively coupled plasma mass spectrometry. Data
were pooled from two experiments and are presented as individual
plots together with mean ± SEM; **P < 0.01.

Figure 3. Effect of nAg10 nanoparticles on testes. Male Slc:ICR (6−8
weeks) mice were treated with glucose or nAg10 (0.1, 0.5, or 2.5 mg/
kg mouse) by oral gavage for 14 consecutive days. After the mating
period, the mice were euthanized, and the weight of (A) both the
testes and (B) seminal vesicles was measured. Independent experi-
ments were performed two times. n = 10−13. Data are presented as
means ± SEM (C) Sections of the testes were stained with
hematoxylin and eosin for histological analysis. Images to the right
show higher magnification views of the black area in the images to the
left (left images: ×4, right images: ×20). Scale bars, 500 or 100 μm.
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lymphocytes, and granulocytes also did not differ among the
four groups (Supplementary Methods and Supplementary
Figure S1). The plasma levels of alanine aminotransferase and
aspartate aminotransferase also did not differ among the four
groups (Supplementary Methods and Supporting Information
Figure S2). ICP-MS analysis revealed significantly higher
concentrations of silver in the blood (Figure 2A) and testis
(Figure 2B) of the mice treated with 2.5 mg/kg of nAg10
compared with those of the control group.
However, no significant changes were observed in the

weights of the testes with epididymis or the seminal vesicle
(Figure 3) or in the weights of the liver, kidneys, or spleen
(Supplementary Figure S3) between the treated and untreated
groups. Moreover, pathological analysis revealed no evidence
of damage in the testes from mice treated with nAg10 at any
dose (Figure 3C). Taken together, these results indicate that
although orally administered nAg10 was absorbed into the
blood and biodistributed to the testes, no general toxicological
effects were induced under the present treatment conditions.
To maintain a safe and isolated environment for germ cell

maturation after meiosis, the testes have one of the strictest
blood−tissue barriers that restricts the migration of foreign
substances into the lumen of the seminiferous tubules.17

However, there are reports that silver nanoparticles decrease
the expression of zonula occludens-1 at tight junctions, which
increases the permeability of the blood−brain barrier,18 and
that silver nanoparticles increase mitochondrial-mediated
apoptosis of Sertoli cells in the testis.19 Given that silver was
detected in the testes after treatment with nAg10, silver
nanoparticles likely have the potential to also break through

the blood−testis barrier. Thus, studies to determine the
mechanisms of migration and accumulation of silver nano-
particles in the testes are needed.
We showed that nAg10 was distributed to the testes through

continuous oral treatment for 14 days, suggesting that nAg10
may have a chronic effect on the testes. The testes are an organ
that produce hormones and sperm.20 Although there were no
significant effects on the pathology of testes in the nAg10-
treated mice in the present study, that does not negate the
possibility that the silver nanoparticles may affect hormone
production and sperm motility. Given that nanosized-plastics
downregulate the expression of testosterone secretion-related
genes in Leydig cells in the testes,21 the chronic effects of silver
nanoparticles on male reproductive system should be assessed.
Moreover, this study was conducted using Slc:ICR mice, and
to extrapolate to humans, it is necessary to calculate the
threshold value and set the Acceptable Daily Intake in the
future.
Understanding the mechanisms of barrier permeation of

nAg10 is an important goal for the future. Generally,
transcellular and paracellular pathways have been reported to
be involved in the mechanisms of biological barrier permeation
by nanoparticles.22 For example, it has been reported that
nanoparticles modulate the expression of tight junction and
adhesion-binding proteins, inducing abnormal placement of
Sertoli cells,23,24 and in vitro studies have shown that Sertoli
cells and spermatogonial cells take up nanoparticles,25,26

suggesting that nanoparticles may be able to cross the blood-
testis barrier. On the other hand, present study showed that no
abnormalities in pathological analyses of the testes in nAg10-

Figure 4. Effects of silver nanoparticles on mouse pups. Male Slc:ICR (6−8 weeks) mice were treated with glucose or nAg10 (0.1, 0.5, or 2.5 mg/
kg mouse) by oral gavage for 14 consecutive days. After the final treatment, the male mice were mated with female mice for 4 days. (A) Maternal
body weight was measured every day during pregnancy; n = 3−6. (B) Pregnancy rate was calculated. After birth, (C) litter size, (D) neonate weight,
and (E) neonate length was measured. Data were pooled from two experiments (B, n = 10−13; B, n = 9−12; C, D, n = 109−154) and are
presented as individual plots together with means ± SEM.

ACS Nanoscience Au pubs.acs.org/nanoau Letter

https://doi.org/10.1021/acsnanoscienceau.4c00021
ACS Nanosci. Au 2024, 4, 317−321

319

https://pubs.acs.org/doi/suppl/10.1021/acsnanoscienceau.4c00021/suppl_file/ng4c00021_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsnanoscienceau.4c00021/suppl_file/ng4c00021_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsnanoscienceau.4c00021/suppl_file/ng4c00021_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsnanoscienceau.4c00021/suppl_file/ng4c00021_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsnanoscienceau.4c00021/suppl_file/ng4c00021_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsnanoscienceau.4c00021?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnanoscienceau.4c00021?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnanoscienceau.4c00021?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnanoscienceau.4c00021?fig=fig4&ref=pdf
pubs.acs.org/nanoau?ref=pdf
https://doi.org/10.1021/acsnanoscienceau.4c00021?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


treated mice, which suggests that the transcytotic pathway may
be involved, but further analyses are required in this area.
Effect of Daily Oral Administration of nAg10 on Mouse
Pups
To evaluate the effect of male parental exposure to nAg10 on
pregnancy outcomes, male Slc:ICR mice were treated with
glucose or nAg10 (0.1, 0.5, and 2.5 mg/kg mouse) by oral
gavage for 14 consecutive days and then mated with
nontreated female Slc:ICR mice for 4 days. Maternal body
weight was measured daily during pregnancy, and there was no
significant difference between the mice that had mated with
the treated or untreated males (Figure 4A). There was no
significant change in the pregnancy rate (Figure 4B) and all
pregnant female mice gave birth on GD 18.5. Moreover, litter
size, neonate weight, and neonate length showed no significant
changes between the groups (Figure 4C−E). These results
indicate that paternal treatment with nAg10 did not affect fetal
development under these treatment conditions.
We are already exposed to nanoparticles on a daily basis. For

the general population, the human use level of silver has been
described as 0.4−27 μg per day for the general population.
And orally administered silver has been described to be
absorbed in a range of 0.4−18% in mammals with a human
value of 18%.27 Thus, it is assumed that 0.072−4.86 μg per day
of silver is absorbed in human (1.2−81 mg/kg). Assuming that
all the absorbed silver was nanosized, the amount (2.5 mg/kg)
which mice were treated in the present study might be about
the same. Since it is unknown how much nanosized silver is
contained in the products, there is room for consideration
about this assumption, but our results indicate the need to
accelerate assessments of the multigenerational effects of
nanoparticles.
Although there have been reports on assessing the effects of

nanoparticles on the male reproductive system,13,14 there is
little knowledge about their effects on the next generation in
terms of the Paternal Origins of Health and Disease concept.
This is a strength of this paper; however, we only assessed fetal
development as an indicator of impact of nAg10 on the next
generation in the present study. However, it has been reported
that cadmium causes abnormal glucose tolerance, decreased
insulin sensitivity, and abnormal accumulation of hepatic
glycogen in the daughters of male mice exposed to cadmium.28

Therefore, from the Developmental Origin of Health and
Disease and Paternal Origins of Health and Disease
perspectives, future studies should also consider the effects of
paternal nanoparticle exposure on the health of their offspring
such as the reproductive system, emotional cognition, and
metabolic functions.
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