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Abstract: Magnetic Resonance Imaging (MRI) is a noninvasive technique used in medical imaging to
diagnose a variety of disorders. The majority of previous systems performed well on MRI datasets
with a small number of images, but their performance deteriorated when applied to large MRI
datasets. Therefore, the objective is to develop a quick and trustworthy classification system that
can sustain the best performance over a comprehensive MRI dataset. This paper presents a robust
approach that has the ability to analyze and classify different types of brain diseases using MRI
images. In this paper, global histogram equalization is utilized to remove unwanted details from the
MRI images. After the picture has been enhanced, a symlet wavelet transform-based technique has
been suggested that can extract the best features from the MRI images for feature extraction. On gray
scale images, the suggested feature extraction approach is a compactly supported wavelet with the
lowest asymmetry and the most vanishing moments for a given support width. Because the symlet
wavelet can accommodate the orthogonal, biorthogonal, and reverse biorthogonal features of gray
scale images, it delivers higher classification results. Following the extraction of the best feature,
the linear discriminant analysis (LDA) is employed to minimize the feature space’s dimensions.
The model was trained and evaluated using logistic regression, and it correctly classified several
types of brain illnesses based on MRI pictures. To illustrate the importance of the proposed strategy,
a standard dataset from Harvard Medical School and the Open Access Series of Imaging Studies
(OASIS), which encompasses 24 different brain disorders (including normal), is used. The proposed
technique achieved the best classification accuracy of 96.6% when measured against current cutting-
edge systems.

Keywords: brain; MRI; medical imaging; feature extraction; recognition; healthcare

1. Introduction

The brain, which is the human body’s most important structural element, contains
50–100 trillion neurons [1]. It is also known as the human body’s core section. Furthermore,
it is known as the “processor” or “kernel” of the nervous system, and it plays the most
important and critical role in the nervous system [2,3]. To the best of our knowledge,
diagnosing brain disease is too difficult and complex due to the presence of the skull
around it [4].

Utilizing technology to evaluate individuals with the aim of identifying, tracking,
and treating medical issues is known as medical imaging. In medical imaging, magnetic
resonance imaging (MRI) is a precise and noninvasive technique that can be used to
diagnose a variety of disorders. In the last few decades, many scholars have proposed
various state-of-the-art methods for brain MRI classification, and most of them focused on
various modules of the MRI systems.

A latest convolutional neural network-based MRI method, data expansion, and image
processing were proposed by [5] to recognize brain MRI images in various diseases. They
compared the significance of their approach with pre-trained VGG-16 in the presence of
transfer learning using a small dataset. Another deep learning-based method for detecting
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brain tumors in MRI images was created by [6]. This approach was divided into three
phases: in the first phase, the CNN-based classifiers were implemented; while in the second
phase, a region-based CNN was utilized on the output of the first phase; finally, in the third
phase, the boundary of the brain tumor was focused and segmented by the Chan-Vese
energy function followed by the edge detection method. On the other hand, an integrated
approach was designed by [7], combining a mathematical morphological operator and an
OASIS operator. In the first step, they extracted the largest connected area, such as the brain.
After this, the unsupervised framework was employed to extract the various axial slices of
brain. The main contribution of this paper was to identify the brains automatically, which
was evaluated through five matrices using a publicly available dataset. Similarly, the glioma
disease was analyzed by [8], where they utilized the Gaussian Naïve Bayes technique. In
their approach, they employed the grow cut method followed by 3D features on MRI
images. Then, they statistically analyzed the corresponding values through Spearman and
Mann–Whitney U tests and achieved better results than the standard MRI dataset. The
authors of [9] proposed an integrated approach for the detection of the tumor on brain MRI
images. This approach is the combination of two well-known methods, morphological edge
detection followed by fuzzy methods, respectively. In this method, the authors located
the tumor through edge detection methods, while their performances were enhanced by a
fuzzy algorithm, and showed the best recognition rate on a brain MRI dataset.

The authors [10] recently developed a piece of work that used deep learning and
transfer learning to classify different MRI pictures of brain tumors. They showed acceptable
results on a small public dataset of brain tumor MRI images. Likewise, an artificial neural
network (ANN) based approach was developed by [11] that efficiently classified normal
and abnormal MRI images. In this approach, they utilized a median filter in the pre-
processing step in order to diminish the noise from MRI images. For the feature extraction,
they employed the wavelet transform to extract the best features from the enhanced
images. Then the dimensions are reduced by employing color moments. Finally, for the
classification of normal and abnormal MRI images, the fast-forward ANN has been utilized.
They utilized only 70 images for their corresponding experiments. In contrast, a cutting-
edge system with three fundamental modules was created by [12] for the identification
of brain tumors. They utilized histogram equalization in the pre-processing module in
order to enhance the contrast of the brain MRI images. While, in the feature extraction
module, they used principal component analysis followed by independent analysis to
extract prominent features. Finally, they utilized an integrated classifier that was based on
Naïve Bayes recurrent neural networks. They claimed better performance using publicly
available brain MRI datasets.

Additionally, [13] established a reliable method for the recognition and segmentation
of the brain tumor in MRI images. To distinguish between a wide range of tumor tissues
in normal and abnormal MRI images and segment the tumor area accordingly, they used
Berkeley’s wavelet transform followed by a deep learning classifier. Most of the afore-
mentioned approaches showed better performances and acceptable results on small brain
MRI images. However, their performances and classification accuracies are accordingly
decreased on large brain MRI datasets.

As a result, this study suggests a precise and effective system for the classification
of brain diseases using MRI images. In this approach, the following contributions have
been made.

• In the preprocessing step, the MRI images have been enhanced through existing
well-known techniques like global histogram equalization.

• Then, for feature extraction, an accurate and robust technique is proposed that is based
on symlet wavelet transform. This technique yields better classification outcomes
because it can handle the orthogonal, biorthogonal, and reverse biorthogonal features
of gray scale images. Our tests support the frequency-based supposition. The wavelet
coefficients’ statistical reliance was assessed for each frame of grayscale MRI data. A
gray scale frame’s joint probability is calculated by collecting geometrically aligned
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MRI images for each wavelet coefficient. In order to determine the wavelet coefficients
obtained from these distributions, the mutual information between the two MRI
images is used to calculate the statistical dependence’s intensity.

• Following the extraction of the best feature, a linear discriminant analysis (LDA) was
used to minimize the feature space’s dimensions.

• Following the selection of the best features, the model is trained using logistic re-
gression, which uses the coefficient values to determine which characteristics (i.e.,
which pixels) are crucial in deciding which class a sample belongs to. The per-class
probability for each sample may be computed using the coefficient values, and the
conditional probability for each class can be computed using this method. In general,
the class with the highest probability might be found to acquire the predicted label.

• In order to assess the performance of the proposed approach, a comprehensive set of
experiments was performed using the brain MRI dataset, which has 24 various kinds
of brain diseases.

For this assessment, a comprehensive dataset is collected from Harvard Medical
School [14] and Open Access Series of Imaging Studies (OASIS) [15], which has total 24 var-
ious kinds of diseases such as Fatal stroke (FS), Motor neuron disease (MN), Glioma (GL),
Vascular dementia (VD), Cavernous angioma (CA), Hypertensive encephalopathy (HY),
Cerebral calcinosis (CC), Metastatic adenocarcinoma (MA), Chronic subdural hematoma
(CS), Multiple embolic infarctions (MI), AIDS dementia (AD), Cerebral toxoplasmosis (CT),
Meningioma (M), Pick’s disease (PD), Sarcoma (SR), Alzheimer’s disease (AL), Creutzfeld-
Jakob disease (CJ), Metastatic bronchogenic carcinoma (MB), Alzheimer’s disease with
visual agnosia (AV), Multiple sclerosis (MS), Lyme encephalopathy (LE), Herpes encephali-
tis (HE), Cerebral haemorrhage (CH), Huntington’s disease (HD), and normal brain (NB).
The proposed technique achieved better performance on this comprehensive MRI dataset.

The entire paper is organized as follows: Section 2 describes the existing MRI systems
along with their respective disadvantages. Section 3 presents the proposed approach, while,
the experimental setup is described in Section 4. Based on the experimental setup, the
results are shown in Section 5. Finally, Section 6 summarizes the proposed approach along
with future directions.

2. Literature Review

In the past couple of years, lots of efficient and accurate studies have been done for
the classification of numerous types of brain ailments using MRI images. Most of these
studies showed the best performances on a small dataset of brain MRI. However, their
performances degraded accordingly on larger testing datasets. Therefore, a robust and
accurate framework has been designed that showed good classification results on a large
brain MRI dataset.

A novel method has been proposed by [16] that is based on statistical features coupled
with various machine learning techniques. They claimed the best performance on a small
MRI dataset. However, computational-wise, this approach is much more expensive. A
state-of-the-art framework has been designed by [17], which classified the Alzheimer
disease using MRI images. In this framework, the corresponding MRI image has been
enhanced in the preprocessing step, while the brain tissues are segmented in the post-
processing step. Then several deep learning techniques (convolutional neural network)
are employed to classify the corresponding disease. However, the convolutional neural
network has an overfitting problem [18]. Also, this approach has been tested and validated
on a small dataset. Similarly, an accurate and robust method was proposed by [19]. They
utilized stepwise linear discriminant analysis (SWLDA) for feature extraction and support
vector machines for classification on a large brain MRI dataset. They achieved the best
performance using the MRI dataset. However, SWLDA is a linear method that might be
employed in a small subspace of binary classification problems [20].

On the other hand, an integrated approach was designed by [21], where the authors
integrated a feature-based classifier and an image-based classifier for brain tumor clas-
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sification. Further, their proposed architecture was based on deep neural networks and
deep convolutional networks. They achieved a comparable classification rate. However,
a huge number of training images and the carefully constructed deep networks required
for this approach [22]. Similarly, a state-of-the-art framework was designed by [23] in
order to classify brain MRI along with gender and age. They utilized deep neural network,
convolutional network, LeNet, AlexNet, ResNet, and SVM to classify abnormal and normal
MRIs accurately. However, they showed better performance on a small dataset, and most
of the experiments were in a static environment. Likewise, the authors of [24] proposed
an efficient brain image classification system using an MRI dataset. In their system, they
extracted the features by shape and textual method, such as region based active contour,
and showed good performance. However, the major limitation of the region-based method
is its’ sensitivity to the initialization, and because of this, the region of interest does not
segment properly [25].

A cutting-edge method for classifying various brain illnesses using MRI images was
reported by Nayak et al. [26]. They utilized convolutional neural network-based dense
EfficientNet coupled with min-mix normalization for categorization, and they showed
better performance using the MRI dataset. However, this approach employs a huge number
of operations, which make the model computationally slower [27]. Similarly, an integrated
framework was designed by [28], where the authors employed a semantic segmentation
network coupled with GoogleNet and a convolutional neural network (CNN) for brain
tumor classification using MRI and CT images. They achieved better results using a small
dataset of brain MRI and CT. However, in GoogleNet, the connected layers cannot manage
various input image sizes [29].

A fully automated brain tumor segmentation approach was developed by [30] that
was based on support vector machines and CNN. Moreover, the segmentation was done
through the details of various techniques such as structural, morphological, and relaxom-
etry. However, the methodologies utilized in this framework have comparatively lower
significance with larger amounts of input MRI images [31]. Because it is a challenging
task for these methods to accurately detect the abnormalities in the brain MRI images [31].
Moreover, a modified CNN based model was developed by [32] for the analysis of brain
tumors. The authors employed CNN along with parametric optimization techniques such
as the sunflower optimization algorithm (SFOA), the forensic-based investigation algorithm
(FBIA), and the material generation algorithm (MGA). They claimed the highest accuracy
of classification using the MRI dataset. However, SFOA is very sensitive to initializing
and premature convergence [33]. Moreover, in MGA, the predictions are made based on
single-slice inputs, hypothetically restraining the information available to the network [34].

An integrated framework was proposed by [35], which was based on the VGG19 fea-
ture extractor along with a progressive growing generative adversarial network (PGGAN)
augmentation model for brain tumor classification using MRI images. They achieved good
classification results on a publicly available MRI dataset. However, this approach cannot
generate high-resolution images via the PGGAN model [36]. Moreover, this approach
might not generate new examples with objects in the desired condition [37]. Another
state-of-the-art scheme was proposed by [38], which contained some steps such as prepro-
cessing, segmentation, feature extraction, and classification. The image was enhanced via
a Wiener filter followed by edge detection. The tumor was segmented by a mean shift
clustering algorithm. The features were extracted from the segmented tumor through the
gray level co-occurrence matrix (GLCM), and the classification was done by support vector
machines. However, the GLCM method is robust to Gaussian noise, and the extracted
features are based on the difference between the corresponding pixels, but the magnitude
of the difference was not taken into account [39].

A state-of-the-art fused method was developed by [40] that was based on gray level
co-occurrence matrix (GLCM), spatial grey level dependence matrix (SGLDM), and Harris
hawks optimization (HHO) techniques followed by support vector machines for brain
tumor detection. However, this approach depends on the manual selection of the region of
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interest, due to which the corresponding results in the dependence of parameter values on
the extracted region might not be selected [40].

As a result, in this work, a solid framework was created for the classification of various
brain illnesses using an MRI dataset. A symlet wavelet-based feature extraction method
was designed and is used in the proposed framework to extract the key features from brain
MRI images. Furthermore, the dimensions of the feature space are reduced by LDA, and
the classification is done through logistic regression. The proposed approach achieved the
best classification results using MRI images compared to the existing publications.

3. Proposed Feature Extraction Methodology

The overall working diagram for the proposed brain MRI images is presented in
Figure 1.
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3.1. Preprocessing

Most images contain extra elements, including background information, lighting
effects, and pointless details that could lead to classification errors. To facilitate quick
processing and enhance image quality, it is crucial to remove any superfluous parameters.
To enhance the quality of the images by extending the dynamic range’s intensity using
the histogram of the entire image, the global histogram equalization (GHE) is used in the
preprocessing stage. In essence, GHE finds the histogram’s sequential sum, normalizes
it, and then multiplies it by the value of the highest gray level. Then, utilizing one-to-
one correspondence, these values are translated onto the earlier original values. GHE’s
transformation function is given in Equation (1).

Gk = C(gk) =
k

∑
i=0

P(gi) =
k

∑
i=0

ni
n

(1)

where k = 0, 1, 2 . . . , N − 1, 0 ≤ Gk ≤ 1, n is the total number of pixels in the input image,
ni is the number of pixels with the grey level gi, and P(gi) is the PDF of the input grey level.
To evenly distribute the brightness histogram of picture (I) in GHE, the image (I) must first
be normalized before the PDF can be calculated. This is shown by Equation (2),

P(Ii) =
ni
n

, 0 ≤ Ii ≤ 1 and
N−1

∑
i=0

P(gi) = 1 (2)

where the cumulative density function (CDF) dependent on PDF is denoted by C(rk) in (1).
The supplied transformation function in Equation (1), which is mapped by multiplying
it by [N − 1], represents the GHE and has a dynamic range of [0, N − 1]. This method
produced images with a resolution of 240 × 320 pixels. The corresponding results are
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shown in Figure 2. The Figures (a) and (b) the left side images are affected by light and the
right-side images are respectively enhanced by the preprocessing step; while, the Figures (c)
and (d), the left side images are affected by noise and the right-side images are respectively
enhanced by the preprocessing step.
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3.2. Symlet Wavelet Transform

Following the preprocessing stage of enhancing the MRI images, the symlet wavelet
transform has been used to extract a number of standout features from the MRI images.
The decomposition method was employed in this procedure, which required grayscale
video frames. The proposed algorithm was converted from RGB to grayscale in order to
increase its effectiveness. The decomposition of the signal into a group of distinct feature
vectors could be understood as the wavelet decomposition. Each vector includes smaller
sub-vectors, such as

F2D
0 = F2D−1

0 , F2D−2
0 , . . . , F2D−n

0 (3)

where F represents the 2D feature vector. Let assume, a 2D MRI image like Y that has been
divided into orthogonal sub-images for various visualizations. One level of decomposition
is depicted in the following equation.

Y = R1 + P1 (4)

where, R1 and P1 denote rough and precise coefficient vectors, respectively, and Y de-
notes the decomposed image. If the MRI image is divided into multiple levels, then, the
Equation (3) can be expressed as.

Y = Rj +
[
Pj + Pj−1 + Pj−2 + . . . + P2 + P1

]
(5)

where, j indicates the decomposition’s level. Only the rough coefficients were used for
feature extraction because the precise coefficients are typically made up of noise. Each
frame is divided into up to four layers of decomposition during the decomposition process,
or j = 4, because beyond this value, the image loses a lot of information, making it difficult
to discover the useful coefficients and perhaps leading to misclassification.
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The precise coefficients further consist of three sub-coefficients. So, the Equation (4)
can be written as

Y = R4 + [P4 + P3 + P2 + P1]
= R4 + [(Ph)4 + (Pv)4 + (Pd)4]+

[(Ph)3 + (Pv)3 + (Pd)3]+
[(Ph)2 + (Pv)2 + (Pd)2]+
[(Ph)1 + (Pv)1 + (Pd)1]+

(6)

Or simply, the Equation (5) can be written as

Y = R4 +
4

∑
i=1

[(Ph)i + (Pv)i + (Pd)i] (7)

where, Pv, Ph, and Pd represent vertical, horizontal, and diagonal coefficients, respectively.
As can be seen from Equation (6) or (7), all the coefficients are linked to one another in a
chain, making it simple to identify the salient features. Figure 3 graphically displays these
coefficients. For each stage of the decomposition, the rough and precise coefficient vectors
are produced by passing the signal through low-pass and high-pass filters, respectively.
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The feature vector is produced by averaging all the frequencies present in the MRI
images following the decomposition procedure. The frequency of each MRI image within a
given time window has been calculated by applying the wavelet transform to the analysis
of the relevant frame [41].

W(x, y) =
1√
x

∞∫
−∞

y(t)ϕ f ,e

(
t− y

x

)
dt (8)

where, ϕ f , e is the wavelet function for estimating frequency, and t is the time. In order to
obtain a greater level of judgment for frequency estimation, x is the scale of the wavelet
between the lower and upper frequency boundaries. Moreover, y represents the wavelet’s
position within the time frame with respect to the signal sampling period, and the wavelet
coefficients with the supplied scale and position parameters are denoted by W(ai, bj), and
their mode frequency conversion is shown below.

f1 =
fa

(
ϕ f ,e

)
am

(
ϕ f ,e

) (9)
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where fa

(
ϕ f , e

)
is the wavelet function’s average frequency, and δ is the sampling period

of the signal. In order to obtain the feature vector, the entire image frequencies for each
MRI are averaged as follows:

favg =
f1 + f2 + f3 + . . . ,+ fK

K
(10)

where, K denotes the total number of frames for every MRI image, fK is the last frame of
the current disease, and favg denotes the average values of the frequency for every MRI
image. It is also a feature vector for that MRI.

3.3. Feature Selection and Dimension Reduction via Linear Discriminant Analysis (LDA)

LDA ensures maximum separability by maximizing the ratio of between-class varia-
tion to within-class variance in any given data set. LDA is used to classify data in order to
solve speech recognition classification issues. The input is mapped into the classification
space, where the samples’ class identification is determined by an ideal linear discrimi-
nant function produced by LDA. When the within-class frequencies are unequal and their
performances have been evaluated using test data generated at random, LDA handles the
situation with ease. The following equations are used to compare within-class VARW and
between-class VARB.

VARB =
c

∑
i=1

Vi
(
mi −m

)(
mi −m

)T (11)

VARB =
c

∑
i=1

∑
mkεCi

(mk −mi)(mk −mi)
T (12)

where, c is the total number of classes (in our case, c represents the total MRI diseases
within each state), and Vi represents the vector in the ith class Ci. Also, m represents the
mean of the class Ci, mk represents the vector of a specific class, and m represents the mean
of all vectors. The optimal projection matrix for discrimination, Do, is taken by maximizing
the determinant of the between-class and within-class scatter matrices, and it is selected as

D0 =
argmax

D

∣∣DTVARBD
∣∣

|DTVARW D|
= [d1, d2, . . . , dt]

T (13)

where, Do is the collection of discriminate vectors of VARW and VARB that correspond to
the c − 1 highest generalized Eigen values ω. Do has a size of t× r (t ≤ r), and r is the
dimension of a vector. Then,

VARBdi = ωiVARWdi, i = 1, 2, . . . , c− 1 (14)

where, the upper bound value of t is c − 1, and the rank of VARB is c − 1 or less.
Thus, LDA minimizes the within scatter of classes like MRI diseases while maximizing

the total dispersion of the data. Please refer to [42] for additional information on LDA.

3.4. Classification via Logistic Regression

A popular linear model that can be used for image categorization is logistic regression.
In this model, a logistic function is used to simulate the probabilities describing the potential
outcomes of a single experiment.

The example of logistic regression can be binary, e.g., One-vs-Rest, or multinomial
logistic regression with optional regularization of `1, `2 or Elastic-Net.

As an optimization problem, binary class `2 regularized logistic regression optimizes
the following cost function:

min
w,c

1
2

wTw + C
n

∑
i=1

log
(

exp
(
−yi

(
XT

i w + c
)))

(15)
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Similarly, `1 regularized logistic regression optimizes the following cost function:

min
w,c

–w–1 + C
n

∑
i=1

log
(

exp
(
−yi

(
XT

i w + c
)))

(16)

Elastic-Net regularization is a combination of `1 and `2, and minimizes the following
cost function:

min
w,c

1− ∂

2
wTw + ∂–w–1 + C

n

∑
i=1

log
(

exp
(
−yi

(
XT

i w + c
))

+ 1
)

(17)

where, ∂ regulates the relative magnitude of `1 regularization vs. `2 regularization. Note
that, in this notation, the target yi is supposed to accept values from the set [−1, 1] at trial i.
Additionally, The Elastic-Net is identical, as might be demonstrated to `1 when ρ = 1 and to
`2 when ρ = 0. Please see [43] for a comprehensive detail of logistic regression.

4. Designed Approach Evaluation

The proposed technique is evaluated in the following order to show the performance
of the proposed technique.

4.1. MRI Images Dataset

A comprehensive and generalized MRI dataset was created that contained the actual
MRI images from the Harvard Medical School and OASIS MRI databases. The collection
contains brain MRI images that have been T1 and T2 weighted. Each input image is
256 × 256 × 3 pixels in size and contains demographic and clinical data, including the
patients’ gender, age, clinical dementia rating, mental state observation, and test parameters.
The patients are all right-handed. This dataset is separated into two groups: the first
comprises eleven diseases (which is used as a benchmark dataset by most existing works),
and the second contains 24 diseases, including eleven from the first group. For large-scale
experiments, this group is more ubiquitous. The overall number of brain MRI images in
the first group is 255 (220 abnormal and 35 normal), while the total number of images in
the second group is 340 (260 abnormal and 80 normal).

4.2. Experiment Settings

The performance of the created approach is assessed using the extensive set of experi-
ments below, which are carried out in MATLAB using the specifications of RAM 8GB and
processor running at 1.7 Hz.

• The first experiment is implemented in order to assess the significance of the developed
method on a publicly available MRI dataset. The entire experiment is performed
against an n-fold cross validation scheme, where every image is used for both training
and testing.

• While, the second experiment presents the importance of the proposed technique in
the MRI classification system. For which, a comprehensive sub experiments were
executed; where, well-known existing feature extraction algorithms were employed
like Speeded Up Robust Features (SURF), Gray Texture Features, Fusion Feature, Least
Squares, Partial, Semidefinite Embedding, Latent Semantic Analysis, Independent
Component Analysis (ICA) instead of the developed approach.

• Finally, the third experiment prescribes the comparison of the developed approach
against the state-of-the-art systems. This experiment was performed against three
major measurement rules such as sensitivity, accuracy, and specificity, which are
measured through the values of false positive and false negative.

5. Experimental Results

The performance of the proposed approach is evaluated through the following com-
prehensive set of experiments, which are presented in the following order.



Diagnostics 2022, 12, 2791 10 of 19

5.1. 1st Experiment

This experiment presents the significance of the developed technique on the brain
MRI dataset. An n-fold cross validation rule was used, where every MRI image has been
used accordingly for training and validation. Table 1 contains the performance of the
proposed approach.

Table 1. Performance of the developed approach using MRI dataset (Unit %).

Illnesses FS MN GL VD CA HY CC MA CS MI AD CT ME PD SR AL CJ MB AV MS LE HE CH HD NB

FS 96 0 0 0 1 0 0 0 0 2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

MN 0 98 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0

GL 1 0 99 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

VD 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CA 0 0 1 0 95 0 0 2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1

HY 2 0 0 0 0 93 0 0 0 0 0 2 0 0 1 0 0 0 0 0 0 2 0 0 0

CC 0 0 0 0 0 1 99 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MA 0 0 0 0 2 0 0 97 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CS 0 1 0 0 0 0 1 0 96 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0

MI 1 0 0 1 0 0 0 0 2 94 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0

AD 0 0 0 0 0 0 0 0 0 1 97 0 0 0 0 2 0 0 0 0 0 0 0 0 0

CT 0 0 1 0 0 0 0 0 0 0 0 98 1 0 0 0 0 0 0 0 0 0 0 0 0

ME 0 0 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0 0

PD 2 0 0 1 0 0 0 1 0 0 0 0 0 94 0 0 0 0 0 0 0 0 0 0 2

SR 0 0 0 0 1 0 0 0 0 0 2 0 0 0 96 1 0 0 0 0 0 0 0 0 0

AL 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 97 0 0 2 0 0 0 0 0 0

CJ 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 99 0 0 0 0 0 0 0 0

MB 1 0 0 0 0 2 0 0 0 0 1 0 0 0 0 0 0 94 0 0 0 0 2 0 0

AV 0 0 0 0 0 0 0 1 0 0 0 0 2 0 0 0 0 1 95 0 0 0 0 1 0

MS 0 0 1 0 0 0 0 0 0 1 0 0 0 0 2 0 0 0 0 96 0 0 0 0 0

LE 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 98 0 0 0 0

HE 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 99 0 0 0

CH 0 1 0 0 0 0 2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 2 94 0 0

HD 2 0 0 1 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 1 0 0 0 93 1

NB 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 97

Average 96.58%

Table 1 clarifies that the developed technique achieved the best classification rates on a
large brain MRI dataset. This is because the statistical reliance of the wavelet coefficients is
measured in the proposed method, which means that the joint probabilities are calculated
by collecting geometrically aligned MRI images for each wavelet coefficient. In order to de-
termine the wavelet coefficients obtained from these distributions, the mutual information
between the two MRI images is used to calculate the statistical dependence’s intensity. The
execution time for the classification of every class using the proposed approach was 21.5 s
against brain MRI dataset, which shows that the proposed approach was not only accurate
but also computational wise less expensive.

5.2. 2nd Experiment

In the second type of experiment, a number of tests were performed to demonstrate
the value of the suggested feature extraction method for the classification of brain MRI
images. The existing state-of-the-art feature extraction techniques are employed instead of
utilizing the proposed feature extraction method in the MRI system. The same experimental
setup is kept for these experiments as in the first experiment. Then Speeded Up Robust
Features, Gray Texture Features, Fusion Feature, Latent Semantic Analysis, Partial, Least
Squares, Semidefinite Embedding, Independent Component Analysis are employed in the
current respective MRI system. The entire results are presented in Tables 2–8.
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Table 2. Performance of Speeded Up Robust Features (SURF) method (instead of using the developed
approach) using MRI dataset (Unit %).

Illnesses FS MN GL VD CA HY CC MA CS MI AD CT ME PD SR AL CJ MB AV MS LE HE CH HD NB

FS 87 0 2 0 0 0 1 0 2 0 0 2 0 0 0 2 0 0 1 0 1 0 0 2 0

MN 2 88 0 0 1 0 0 0 0 2 0 0 1 0 1 0 0 0 0 2 0 0 1 0 2

GL 0 1 90 0 0 2 0 1 0 0 0 1 0 0 0 0 2 0 0 0 1 0 2 0 0

VD 1 0 0 85 2 0 1 0 1 0 2 0 0 3 0 0 0 2 0 1 0 0 0 2 0

CA 2 0 3 1 80 0 0 2 0 1 1 0 2 0 2 1 0 0 2 0 1 2 0 0 0

HY 0 1 0 0 0 85 2 0 1 0 0 2 0 1 0 0 2 0 0 2 0 0 2 0 2

CC 0 0 1 0 2 0 88 1 0 0 2 0 2 0 1 0 0 1 0 0 0 2 0 0 0

MA 2 0 0 2 0 2 0 82 0 2 0 1 0 2 0 2 1 0 2 0 1 0 0 1 0

CS 0 2 1 0 0 0 4 0 83 0 2 0 1 0 2 0 0 1 0 2 0 0 1 0 1

MI 1 0 0 2 1 0 1 0 0 85 0 2 0 2 0 0 1 0 2 0 0 1 0 2 0

AD 0 1 0 0 0 2 0 2 0 1 87 0 1 0 0 2 0 1 0 0 2 0 0 0 1

CT 0 0 2 0 0 0 2 0 1 0 2 91 0 0 1 0 0 0 0 1 0 0 0 0 0

ME 2 1 0 1 2 0 0 1 0 2 0 1 79 3 0 2 1 0 2 0 1 0 2 0 0

PD 0 1 2 0 0 1 2 0 2 0 1 0 2 80 2 0 1 2 0 1 0 2 0 1 0

SR 1 0 0 2 1 0 0 1 0 2 0 2 0 0 81 2 0 1 2 0 1 0 2 0 2

AL 2 0 1 0 0 2 0 0 2 0 1 0 1 2 0 82 2 0 0 2 0 1 0 2 0

CJ 0 1 0 2 0 0 1 2 0 1 0 2 0 0 1 0 86 1 0 0 2 0 1 0 0

MB 0 0 2 0 1 2 0 0 0 0 2 0 0 1 0 1 0 88 1 0 0 0 0 0 2

AV 1 0 0 2 0 0 1 0 2 0 0 1 0 0 0 0 0 0 90 2 0 1 0 0 0

MS 0 2 0 0 0 1 0 2 0 1 0 0 2 0 1 0 1 0 0 89 0 0 0 1 0

LE 2 0 1 0 2 0 0 0 1 0 2 0 0 1 0 0 0 2 1 0 84 0 2 0 2

HE 0 1 0 2 0 0 2 0 0 2 0 1 0 0 1 2 0 0 0 2 0 86 0 1 0

CH 1 0 0 0 1 0 0 1 0 0 1 0 2 0 0 0 2 0 2 0 1 0 87 0 2

HD 0 0 2 0 0 2 1 0 2 0 0 1 0 1 2 0 0 1 0 1 0 2 3 82 0

NB 2 1 0 1 0 0 2 2 0 1 1 0 2 0 0 2 1 0 1 0 2 0 0 1 81

Average 85.04%

Table 3. Performance of Gray Texture Features method (instead of using the developed approach)
using MRI dataset (Unit %).

Illnesses FS MN GL VD CA HY CC MA CS MI AD CT ME PD SR AL CJ MB AV MS LE HE CH HD NB

FS 72 0 4 2 1 2 0 0 2 0 1 2 2 0 0 1 2 1 2 0 2 2 0 0 2

MN 1 69 0 2 0 1 4 2 0 2 2 0 4 2 1 0 1 0 2 2 1 0 2 2 0

GL 0 1 78 0 2 2 1 0 1 0 0 1 0 1 2 2 0 2 1 0 2 2 0 1 1

VD 2 0 1 76 0 0 3 0 1 3 0 0 1 2 0 1 1 3 4 0 1 0 1 0 0

CA 0 3 1 0 77 2 0 0 4 0 1 2 0 0 2 1 0 0 3 1 0 1 1 0 1

HY 3 1 0 2 0 71 2 2 0 2 0 1 1 1 2 0 0 3 4 0 1 2 0 1 1

CC 0 2 1 1 0 0 68 3 2 0 1 1 2 1 4 3 0 2 0 4 2 1 2 0 0

MA 1 3 0 0 1 2 2 70 3 2 1 3 2 1 0 0 2 1 1 2 0 1 1 0 1

CS 0 0 2 0 1 1 0 0 80 1 1 0 0 1 0 0 1 2 3 0 1 2 2 1 1

MI 1 0 0 0 0 2 1 2 1 81 0 3 2 0 1 0 1 1 2 0 0 1 1 0 0

AD 1 1 1 1 2 1 0 0 3 1 74 1 1 2 1 1 0 0 3 2 0 2 1 0 1

CT 1 0 0 3 2 0 2 1 0 1 1 73 2 1 1 4 0 2 1 0 2 1 0 2 0

ME 0 2 2 0 1 0 1 2 1 0 2 1 69 4 0 0 3 1 3 1 1 0 3 2 1

PD 2 0 0 1 1 3 1 1 0 3 2 1 1 66 2 4 1 2 2 0 3 1 2 0 1

SR 1 3 0 0 2 1 1 1 4 1 2 1 3 1 72 0 0 0 1 0 0 2 2 0 2

AL 0 1 0 1 0 2 2 1 0 0 1 2 3 1 1 73 1 2 3 1 0 2 0 1 2

CJ 1 2 2 0 1 1 2 1 1 1 2 0 0 1 2 2 75 0 1 0 2 0 1 1 1

MB 0 0 1 0 2 0 0 3 0 1 0 2 1 0 1 0 1 79 3 0 1 1 0 1 3

AV 2 1 1 2 1 3 3 0 0 0 1 1 0 3 1 1 2 0 68 2 1 2 1 2 2

MS 3 1 2 0 0 2 0 1 1 0 2 0 3 2 1 0 0 2 5 69 0 1 2 1 2

LE 0 1 1 2 3 4 1 2 1 3 0 0 1 0 2 1 1 0 2 3 67 0 2 3 0

HE 0 3 2 0 0 2 0 2 2 4 0 0 0 0 2 3 1 1 1 2 2 70 2 0 1

CH 1 2 0 3 1 0 1 0 1 0 2 2 2 3 1 0 0 1 2 3 1 0 71 1 2

HD 2 0 3 1 2 1 0 3 0 1 1 2 1 0 0 0 0 2 1 1 0 0 2 74 3

NB 1 2 1 1 0 2 0 1 1 0 2 1 0 0 0 1 2 3 1 0 2 1 0 2 76

Average 72.72%
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Table 4. Performance of Fusion Feature method (instead of using the developed approach) using
MRI dataset (Unit %).

Illnesses FS MN GL VD CA HY CC MA CS MI AD CT ME PD SR AL CJ MB AV MS LE HE CH HD NB

FS 70 2 3 1 0 1 2 2 1 0 1 1 0 2 1 2 0 0 0 2 4 2 1 0 2

MN 2 66 0 1 3 4 1 1 0 3 2 1 3 1 1 1 0 3 0 1 3 1 0 1 1

GL 0 1 67 1 2 0 2 1 1 2 0 0 2 2 3 2 2 1 3 0 1 2 3 0 2

VD 1 0 1 71 1 2 0 3 0 3 2 2 1 0 2 0 1 2 1 1 2 0 2 1 1

CA 0 0 1 1 72 2 1 2 1 1 1 0 2 3 0 2 3 0 0 0 2 2 1 3 0

HY 1 1 0 0 2 73 2 1 1 2 0 1 1 2 1 0 2 1 2 1 1 2 3 0 0

CC 3 0 1 1 0 1 74 2 1 3 1 0 0 2 1 1 0 2 0 3 0 1 0 2 1

MA 0 1 0 0 1 1 1 77 2 0 0 2 2 1 1 2 0 0 0 2 1 2 2 0 2

CS 1 2 2 1 2 0 2 2 66 1 2 1 1 2 0 0 2 0 2 1 1 2 2 1 4

MI 3 1 0 0 0 4 0 0 0 64 5 0 0 1 1 1 0 4 5 0 4 0 3 2 2

AD 1 2 1 1 2 1 1 2 2 1 68 2 3 1 0 0 1 2 1 1 0 1 2 1 3

CT 0 0 2 0 2 1 0 0 0 0 2 79 1 2 1 1 0 0 2 0 2 3 1 0 1

ME 2 1 0 2 3 0 3 2 4 0 0 5 60 2 2 3 2 1 1 1 0 4 1 0 1

PD 4 0 2 0 0 3 1 1 2 1 0 0 2 71 3 2 0 1 0 3 1 2 1 0 0

SR 1 1 0 1 1 0 0 3 1 0 0 2 1 1 73 1 0 1 2 1 3 0 2 3 2

AL 1 2 1 2 0 2 1 0 0 0 1 1 1 1 2 76 0 1 2 0 0 2 2 1 1

CJ 3 1 0 0 1 0 1 2 1 1 1 0 0 0 3 1 77 2 2 1 0 0 2 0 1

MB 2 3 1 4 3 1 0 1 3 0 6 0 1 0 1 0 0 67 1 1 0 3 0 1 1

AV 0 2 1 3 1 0 1 2 0 3 1 1 2 2 2 1 1 2 69 1 0 2 1 2 0

MS 1 3 2 0 1 1 0 0 2 4 1 1 3 0 1 0 0 2 1 72 2 1 0 1 1

LE 1 0 1 1 1 2 1 1 3 0 2 0 0 0 0 1 2 2 1 1 75 1 1 1 2

HE 2 1 1 0 0 1 3 0 0 0 2 3 1 1 1 0 0 2 1 1 2 74 1 0 3

CH 3 0 0 2 3 4 1 1 3 2 1 0 0 0 3 2 2 1 3 0 1 0 66 2 0

HD 0 3 2 0 1 1 1 0 3 5 0 2 1 1 2 3 1 2 0 1 1 2 1 65 2

NB 2 1 2 3 0 0 0 2 1 4 3 2 1 1 0 0 4 2 2 0 0 1 3 2 64

Average 70.24%

Table 5. Performance of Latent Semantic Analysis method (instead of using the developed approach)
using MRI dataset (Unit %).

Illnesses FS MN GL VD CA HY CC MA CS MI AD CT ME PD SR AL CJ MB AV MS LE HE CH HD NB

FS 65 0 2 2 0 1 2 4 0 2 1 2 1 4 0 2 2 2 1 0 2 2 2 0 1

MN 2 66 1 0 2 2 0 1 2 2 0 1 2 2 2 0 4 1 2 2 2 0 1 3 0

GL 1 2 71 2 1 0 2 2 1 0 2 1 1 4 0 2 1 0 1 0 2 2 0 0 2

VD 0 1 2 69 2 2 1 0 2 1 0 4 2 1 2 0 2 2 2 1 1 0 2 1 0

CA 2 2 3 1 67 0 0 2 1 3 2 1 0 0 1 3 1 1 2 1 0 2 1 2 2

HY 3 1 2 1 1 64 2 1 1 2 4 0 1 2 0 0 0 2 1 2 1 2 3 1 3

CC 4 0 1 3 2 4 60 0 2 0 2 3 2 2 1 2 1 3 2 0 2 0 1 2 1

MA 0 2 2 1 0 2 4 61 1 3 2 0 1 2 2 3 2 0 2 2 1 2 2 0 4

CS 2 1 0 2 2 1 0 2 67 2 0 1 2 1 2 0 1 2 2 2 3 0 1 2 2

MI 1 2 2 1 2 0 2 1 2 69 2 0 1 2 0 2 2 0 1 2 1 2 0 1 2

AD 2 1 1 0 1 2 0 2 0 2 72 1 0 2 2 1 0 2 2 0 2 2 2 1 0

CT 0 2 2 1 2 0 2 1 2 0 1 73 2 0 1 2 2 1 2 1 0 1 0 2 0

ME 1 0 1 2 0 2 1 0 1 2 2 2 75 1 2 0 1 2 0 2 1 0 1 0 1

PD 0 1 0 1 2 1 0 2 0 1 0 1 0 77 1 2 2 0 1 1 2 1 0 2 2

SR 2 1 2 0 1 0 2 0 1 0 2 0 1 0 78 1 0 1 2 2 0 2 1 1 0

AL 1 2 1 2 0 2 1 2 2 2 0 1 0 2 1 71 2 2 0 1 2 1 0 2 1

CJ 2 0 2 1 2 4 0 1 2 1 2 2 2 1 3 0 63 1 2 2 1 2 2 0 2

MB 3 2 2 4 1 0 2 2 1 1 3 0 1 2 0 1 1 61 2 3 1 0 2 3 2

AV 2 3 2 0 1 2 3 0 2 0 2 1 4 0 3 2 0 5 60 0 2 2 1 3 0

MS 0 2 2 1 1 2 5 3 0 2 2 2 1 3 4 0 3 2 0 59 2 1 2 0 1

LE 1 1 1 0 2 1 2 0 3 1 0 0 2 1 0 2 1 2 4 0 71 2 0 1 2

HE 3 2 0 0 0 1 2 2 3 1 1 0 1 1 0 0 0 2 1 3 1 73 2 1 0

CH 0 1 3 1 1 2 0 1 0 1 0 1 0 2 2 2 1 2 3 1 0 0 74 1 1

HD 2 2 0 0 3 1 1 1 0 0 2 0 1 0 0 0 2 4 0 0 1 1 1 76 2

NB 1 1 1 2 2 0 0 0 1 1 2 0 0 1 1 0 0 0 1 1 2 2 1 2 78

Average 68.80%
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Table 6. Performance of Partial Least Squares method (instead of using the developed approach)
using MRI dataset (Unit %).

Illnesses FS MN GL VD CA HY CC MA CS MI AD CT ME PD SR AL CJ MB AV MS LE HE CH HD NB

FS 61 0 2 1 2 0 4 2 1 0 4 2 1 2 3 0 2 2 1 0 2 4 1 0 3

MN 2 67 1 2 0 2 1 3 2 1 0 1 2 4 0 2 1 2 2 2 0 1 0 2 0

GL 1 2 70 0 2 1 0 2 1 0 2 3 0 1 2 1 2 0 1 2 2 0 2 1 2

VD 0 1 2 74 1 2 2 0 1 1 2 0 2 0 1 2 1 2 0 1 1 2 1 0 1

CA 2 2 0 1 73 1 0 2 0 2 1 2 1 1 2 0 2 1 2 2 0 1 0 2 0

HY 1 0 2 2 2 63 1 2 1 2 4 2 0 3 1 2 1 2 2 0 2 0 2 1 2

CC 2 2 1 0 3 2 62 1 2 0 1 4 2 1 2 1 2 0 1 2 1 2 4 0 2

MA 0 1 2 2 1 2 2 60 1 2 0 1 2 2 3 4 0 2 3 1 2 1 0 4 2

CS 4 2 1 2 2 1 0 2 59 1 2 2 1 2 1 2 2 3 0 2 4 2 1 2 0

MI 1 2 2 1 0 2 2 1 2 66 1 2 4 1 0 1 2 1 2 1 0 1 2 2 1

AD 2 0 1 2 2 2 1 2 0 2 68 1 2 2 1 2 1 0 1 2 1 2 1 0 2

CT 1 2 2 0 1 0 2 1 2 0 2 71 0 2 2 1 2 1 2 0 2 1 0 2 1

ME 2 1 0 2 2 1 2 0 1 2 2 0 68 1 2 2 0 2 1 2 2 0 2 1 2

PD 0 2 2 1 2 2 1 2 4 1 0 3 2 61 1 2 2 1 2 1 0 2 1 2 3

SR 2 2 1 2 1 2 2 1 0 2 2 1 2 2 60 0 1 4 1 2 2 3 2 1 2

AL 1 0 2 1 2 1 2 0 2 1 2 2 1 2 2 64 2 0 2 1 2 2 1 4 1

CJ 2 2 1 2 1 2 0 2 1 2 1 1 2 0 2 2 66 2 1 2 1 1 2 0 2

MB 1 2 0 1 0 1 2 1 2 0 2 2 1 2 1 2 2 69 2 0 2 2 1 2 0

AV 2 1 2 0 2 0 1 0 1 2 2 0 2 1 2 0 2 2 72 2 1 0 2 0 1

MS 0 2 1 2 1 2 0 2 2 1 0 2 1 1 0 1 1 0 2 73 2 1 0 2 1

LE 2 1 2 1 0 2 2 1 2 0 2 1 0 2 2 1 0 2 1 2 69 2 2 1 0

HE 1 2 0 2 1 1 2 2 0 1 1 2 2 1 1 2 1 1 2 0 2 70 1 0 2

CH 2 0 2 1 2 2 4 0 2 2 1 2 1 2 2 0 2 2 1 2 1 2 62 2 1

HD 1 2 2 2 1 0 1 2 2 1 2 0 4 1 2 3 1 0 2 1 2 3 2 61 2

NB 2 2 1 0 4 2 2 3 1 2 0 4 1 2 1 2 0 2 1 2 0 2 1 2 60

Average 65.96%

Table 7. Performance of Semidefinite Embedding method (instead of using the developed approach)
using MRI dataset (Unit %).

Illnesses FS MN GL VD CA HY CC MA CS MI AD CT ME PD SR AL CJ MB AV MS LE HE CH HD NB

FS 79 0 1 0 2 2 0 1 0 2 0 1 2 0 1 0 1 2 0 2 1 2 0 1 0

MN 2 82 0 1 0 1 0 0 2 0 1 0 0 2 0 1 0 1 2 0 2 0 1 0 2

GL 0 1 87 0 2 0 1 0 0 1 0 2 1 0 0 0 1 0 0 1 0 2 0 1 0

VD 2 0 1 77 0 2 1 1 0 2 2 0 1 0 2 0 2 2 1 0 1 0 2 0 1

CA 0 1 0 2 81 0 2 0 2 0 1 2 0 2 0 1 0 0 1 2 0 1 0 2 0

HY 2 0 1 0 1 79 0 1 0 2 0 1 2 0 1 2 1 0 2 0 1 0 2 0 2

CC 1 2 0 2 0 1 75 0 2 1 2 0 1 2 0 1 2 2 0 1 0 2 2 1 0

MA 0 1 2 0 2 0 1 83 0 0 1 2 0 1 2 0 0 1 2 0 0 1 0 0 1

CS 1 0 0 1 0 2 0 1 85 0 2 0 1 0 0 2 1 0 0 2 1 0 1 0 0

MI 0 2 0 0 1 0 2 0 0 87 0 1 0 0 2 0 0 1 0 0 0 2 0 1 1

AD 2 0 1 0 0 0 0 2 0 0 88 0 2 0 0 0 1 0 2 0 0 0 1 0 1

CT 0 1 0 2 1 2 0 0 1 2 0 80 0 1 2 1 0 2 0 1 2 0 0 2 0

ME 1 0 2 0 0 0 2 1 0 0 1 0 84 0 1 0 2 0 1 0 0 2 1 0 2

PD 0 2 0 1 0 1 0 0 2 1 0 1 0 85 0 2 0 1 0 1 1 0 0 2 0

SR 1 0 1 0 2 0 1 2 0 0 2 0 1 0 82 0 2 0 1 0 0 2 1 0 2

AL 0 2 0 1 0 1 0 1 2 1 0 1 0 1 2 81 0 2 0 1 1 0 2 1 0

CJ 3 0 0 0 1 1 1 2 2 0 0 0 0 0 1 1 78 2 1 1 0 0 2 3 1

MB 2 1 1 1 0 2 0 1 1 1 2 1 0 1 0 0 1 79 2 2 1 1 0 0 0

AV 0 0 0 0 3 0 0 0 0 0 1 1 1 1 1 0 0 2 89 0 0 0 0 1 0

MS 0 1 0 0 0 2 0 0 0 2 0 0 0 0 0 1 0 1 1 90 0 1 0 1 0

LE 0 0 0 0 0 0 0 0 2 0 0 1 0 0 1 0 1 0 0 2 91 0 1 0 1

HE 1 1 1 0 2 1 0 0 0 0 1 2 0 0 0 0 1 1 0 1 1 86 0 0 1

CH 1 0 0 0 0 2 1 1 1 0 0 0 1 1 1 0 0 1 2 1 0 0 87 0 0

HD 2 1 0 2 1 0 0 2 0 1 1 0 1 1 2 3 0 0 0 0 1 2 0 80 0

NB 1 0 1 1 0 1 0 0 1 1 1 2 0 0 0 0 3 1 0 0 0 1 1 0 85

Average 83.20%
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Table 8. Performance of Independent Component Analysis (ICA) method (instead of using the
developed approach) using MRI dataset (Unit %).

Illnesses FS MN GL VD CA HY CC MA CS MI AD CT ME PD SR AL CJ MB AV MS LE HE CH HD NB

FS 71 0 2 1 2 2 0 1 2 2 0 1 2 0 2 1 2 0 2 1 1 0 2 2 1

MN 1 77 0 2 0 0 2 2 1 0 1 2 0 1 2 2 0 1 2 2 0 1 0 1 0

GL 2 0 81 0 2 1 0 1 0 2 0 1 1 0 1 1 2 0 1 0 2 0 1 0 1

VD 0 2 0 82 0 1 2 0 1 0 2 0 0 2 0 0 1 2 0 1 0 2 0 2 0

CA 1 0 2 1 73 0 1 2 1 2 0 1 2 0 2 2 0 1 2 0 2 0 1 2 2

HY 0 1 0 0 1 84 2 0 2 0 1 2 0 1 0 0 1 0 0 2 0 2 0 1 0

CC 2 0 1 1 0 0 85 1 0 2 0 0 1 0 0 2 0 0 1 0 1 0 2 0 1

MA 0 2 0 2 1 1 0 81 1 0 2 1 0 2 1 0 1 2 0 0 0 1 0 2 0

CS 1 0 1 0 2 0 2 0 80 1 0 2 0 0 2 1 0 0 1 2 2 0 2 1 0

MI 0 2 0 1 0 0 0 2 0 88 0 0 1 0 0 0 2 1 0 0 0 2 0 0 1

AD 2 0 1 0 2 1 2 0 2 0 74 1 0 2 1 2 0 0 2 1 1 0 2 2 2

CT 2 1 0 2 1 0 2 1 0 2 2 75 1 0 2 0 1 2 0 2 0 2 0 2 0

ME 0 2 1 0 2 1 1 0 2 1 0 2 77 1 0 2 0 1 2 0 1 1 2 0 1

PD 1 0 2 1 0 0 2 1 0 0 1 0 2 79 1 0 2 2 0 1 2 0 1 2 0

SR 2 1 0 0 1 2 0 0 2 1 0 1 0 0 83 2 0 0 2 0 0 2 0 1 0

AL 0 0 1 1 0 0 1 2 0 0 2 0 2 1 0 85 1 0 0 2 0 0 2 0 0

CJ 1 0 0 0 2 0 0 0 1 1 0 0 0 0 1 0 89 2 0 0 1 0 0 2 0

MB 0 2 0 1 0 1 0 2 0 0 0 2 0 0 0 0 0 90 0 1 0 0 1 0 0

AV 1 0 0 0 0 0 1 0 0 0 2 0 0 1 0 2 0 0 91 0 0 2 0 0 0

MS 0 0 2 0 1 0 0 0 1 0 0 0 2 0 0 0 0 0 0 92 0 0 0 0 2

LE 2 1 0 2 0 2 0 1 0 2 2 1 0 0 2 1 2 0 2 1 76 0 2 1 0

HE 1 0 2 0 1 0 2 0 2 0 1 0 1 2 0 2 0 2 0 2 2 78 0 1 1

CH 0 2 0 1 0 2 0 1 0 1 0 2 0 2 1 0 1 0 2 0 1 1 81 0 2

HD 2 0 1 0 2 0 1 0 2 0 2 0 1 0 2 2 0 1 0 1 2 2 0 77 2

NB 0 1 0 2 0 1 0 2 1 1 0 2 0 1 2 0 2 0 1 2 0 0 2 0 80

Average 81.16%

It is evident from Tables 2–8 that the corresponding MRI classification system did not
achieve better recognition rates using the existing well-known feature extraction methods.
Hence, the importance of the proposed feature extraction method might be judged by
the respective MRI disease classification system. This is because the proposed approach
can handle the orthogonal, biorthogonal, and reverse biorthogonal properties of gray
scale images, and produces higher classification results. Our experiments validate the
frequency-based assumption. The statistical reliance on wavelet coefficients is assessed for
all grayscale MRI images. A gray scale frame’s joint probability is calculated by collecting
geometrically aligned MRI pictures for each wavelet coefficient. In order to determine the
wavelet coefficients obtained from these distributions, the mutual information between the
two MRI images is used to calculate the statistical dependence’s intensity.

5.3. 3rd Experiment

Finally, in this experiment, we have compared the recognition rate of the proposed
approach against existing state-of-the-art systems. These systems were implemented
using the existing settings as described in their respective articles. For some systems,
we have borrowed their respective implementation, while for others we have utilized
their results as mentioned in their respective studies for a fair comparison. Moreover,
the proposed approach and the existing state-of-the-art methods are measured through
different measurement schemes such as sensitivity, accuracy, and specificity. For every
measurement, we utilized the following formulas for evaluation.

Sensitivity =
Tp

Tp + Fp
(18)

Accuracy =
Tp + Tn

Tp + Fp + Tn + Fn
(19)
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Speci f icity =
Tn

Tn + Fp
(20)

where Tp is true positive, Tn is true negative, Fp is false positive, and Fn is false negative. The
entire comparisons against the afore-mentioned measurements are respectively presented
in Tables 9–11.

Table 9. Performance comparison of the state-of-the-art methods against the proposed approach on
MRI brain dataset (Number of utilized images 595 (where, normal = 115, and abnormal = 480)).

Published Methods Used Methods Recognition Rates Misclassification

Orouskhani, et al. [44] Conditional Deep Triplet Network 92.5% 1.2%

Inglese, et al. [45] Decision Support System 81.0% 2.5%

Mandle, et al. [46] Kernel-based SVM 90.2% 3.3%

Abdulmunem, et al. [47] Deep Belief Network 88.9% 3.5%

Jang, et al. [48] Sorting Algorithm 72.6% 4.6%

Popuri, et al. [49] Ensemble Learning 90.3% 3.1%

Latif, et al. [50] Neural-Network-Based Features with SVM Classifier 89.9% 0.9%

Nawaz, et al. [51] Multilayer Perception, J48, Meta Bagging, Random Tree 83.8% 2.0%

Assam, et al. [52] Random Forest 94.1% 3.9%

Islam, et al. [53] Convolutional Neural Network 78.9% 4.8%

Dehkordi, et al. [54] Evolutionary Convolutional Neural Network 91.3% 2.0%

Krishna, et al. [55] Local Linear Radial Basis Function Neural Network 88.7% 3.9%

Takrouni, et al. [56] Deep Convolutional Network 92.5% 2.0%

Fayaz, et al. [57] Convolutional Neural Network 86.8% 5.2%

Proposed Scheme Logistic Regression 96.6% 3.4%

Table 10. Performance comparison of the state-of-the-art methods and the proposed approach using
various evaluation measurements on brain MRI dataset (Number of utilized images 595 (where,
normal = 115, and abnormal = 480)).

Published Methods Used Methods True Positive True Negative False Positive False Negative

Orouskhani, et al. [44] Conditional Deep Triplet
Network 375 175 60 8

Inglese, et al. [45] Decision Support System 360 178 57 7

Mandle, et al. [46] Kernel-based SVM 350 177 63 9

Abdulmunem, et al. [47] Deep Belief Network 365 178 67 10

Jang, et al. [48] Sorting Algorithm 380 174 66 8

Popuri, et al. [49] Ensemble Learning 350 175 61 7

Latif, et al. [50] Neural-Network-Based
Features with SVM Classifier 355 176 64 11

Nawaz, et al. [51] Multilayer Perception, J48,
Meta Bagging, Random Tree 375 169 59 6

Assam, et al. [52] Random Forest 380 172 58 7

Islam, et al. [53] Convolutional Neural
Network 370 174 60 9



Diagnostics 2022, 12, 2791 16 of 19

Table 10. Cont.

Published Methods Used Methods True Positive True Negative False Positive False Negative

Dehkordi, et al. [54] Evolutionary Convolutional
Neural Network 360 173 55 8

Krishna, et al. [55] Local Linear Radial Basis
Function Neural Network 355 177 62 9

Takrouni, et al. [56] Deep Convolutional Network 365 171 68 10

Fayaz, et al. [57] Convolutional Neural
Network 370 178 60 8

Proposed Approach Logistic Regression 405 185 30 5

Table 11. Performance comparison of the state-of-the-art methods and the proposed approach using
sensitivity, accuracy, and specificity on brain MRI dataset (Number of utilized images 595 (where,
normal = 115, and abnormal = 480)).

Published Methods Used Methods Sensitivity Accuracy Specificity

Orouskhani, et al. [44] Conditional Deep Triplet Network 93.1% 92.5% 87.8%

Inglese, et al. [45] Decision Support System 83.8% 81.0% 76.5%

Mandle, et al. [46] Kernel-based SVM 89.3% 90.2% 92.4%

Abdulmunem, et al. [47] Deep Belief Network 91.4% 88.9% 85.4%

Jang, et al. [48] Sorting Algorithm 76.7% 72.6% 67.3%

Popuri, et al. [49] Ensemble Learning 91.6% 90.3% 86.6%

Latif, et al. [50] Neural-Network-Based Features with
SVM Classifier 90.2% 89.9% 88.1%

Nawaz, et al. [51] Multilayer Perception, J48, Meta Bagging,
Random Tree 81.2% 83.8% 85.3%

Assam, et al. [52] Random Forest 95.6% 94.1% 89.9%

Islam, et al. [53] Convolutional Neural Network 80.8% 78.9% 74.0%

Dehkordi, et al. [54] Evolutionary Convolutional Neural Network 93.6% 91.3% 90.1%

Krishna, et al. [55] Local Linear Radial Basis Function
Neural Network 89.4% 84.1% 85.2%

Takrouni, et al. [56] Deep Convolutional Network 93.1% 90.5% 87.6%

Fayaz, et al. [57] Convolutional Neural Network 88.7% 84.9% 90.2%

Proposed Approach Logistic Regression 97.9% 96.6% 92.1%

Table 9 denotes that the designed framework achieved remarkable achievements
compared to the state-of-the-art studies. This is the proposed frameworks that handles
the orthogonal, biorthogonal, and reverse biorthogonal properties of gray scale images. It
produces higher classification results.

Similarly, Table 10 presents the effectiveness of the proposed approach. A comparison
has been made against state-of-the-art methods in terms of true positive, true negative,
false positive, and false negative.

Likewise, Table 11 provides a comparison between the proposed approach and the
existing studies in terms of accuracy, sensitivity, and specificity. As can be seen, the pro-
posed approach provides better sensitivity and specificity results compared with existing
state-of-the-art methods.
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6. Conclusions

In medical imaging, magnetic resonance imaging (MRI) is a precise and noninvasive
technique that can be used to diagnose a variety of disorders. Various algorithms for
brain MRI categorization have been developed by a number of researchers. On small
MRI datasets, the majority of these algorithms did well and had higher identification
rates. When dealing with larger MRI datasets, however, their performance degrades.
As a result, the objective is to create a quick and precise classification system that can
sustain a high identification rate across a sizable MRI dataset. As a result, in this study,
a well-known enhancement method called global histogram equalization (GHE) is used
to reduce undesirable information in MRI images. Furthermore, a reliable and accurate
feature extraction technique is suggested for extracting and selecting the most prominent
feature from an MRI picture. The suggested feature extraction method for grayscale photos
is a compactly supported wavelet that has the greatest number of vanishing moments
and the least amount of asymmetry for a given support width. Our study supports the
frequency-based hypothesis. The statistical dependence of the wavelet coefficients is
assessed for all grayscale MRI pictures. A gray scale frame’s joint probability is calculated
by collecting geometrically aligned MRI pictures for each wavelet coefficient. Using mutual
information for the wavelet coefficients derived using these distributions, the degree of
statistical dependence between the two MRI images is evaluated. Furthermore, the linear
discriminant analysis is used after extracting the features to choose the best features and
lower the dimensions of the feature space, which may improve the performance of the
recommended method for generating feature vectors. Finally, logistic regression is used to
classify the brain illnesses. A huge dataset from Harvard Medical School and the OASIS is
utilized, which comprises a total of 24 distinct types of brain disorders, to assess and test
the suggested method.

In the proposed approach, the optimum set of features is extracted from the MRI
images that are important for improving the accuracy. Subsequently, the rate of convergence
is also one of the main factors improving the accuracy of this research; however, the
number of features in this approach is not too high to reduce the computational complexity.
Therefore, in the future, the proposed approach will be enclosed using MRI datasets in
various healthcare domains. Moreover, the proposed approach is robust and efficient,
which might be useful for real-time diagnostic applications in the future. Therefore, the
proposed method might play a significant role in helping the radiologists and physicians
with the initial diagnosis of the brain diseases using MRI.
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