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Abstract

Estimation of relatedness between pairs of individuals is important in many genetic research areas. When estimating relatedness, it is
important to account for admixture if this is present. However, the methods that can account for admixture are all based on genotype data
as input, which is a problem for low-depth next-generation sequencing (NGS) data from which genotypes are called with high uncertainty.
Here, we present a software tool, NGSremix, for maximum likelihood estimation of relatedness between pairs of admixed individuals from
low-depth NGS data, which takes the uncertainty of the genotypes into account via genotype likelihoods. Using both simulated and real
NGS data for admixed individuals with an average depth of 4x or below we show that our method works well and clearly outperforms all
the commonly used state-of-the-art relatedness estimation methods PLINK, KING, relateAdmix, and ngsRelate that all perform quite
poorly. Hence, NGSremix is a useful new tool for estimating relatedness in admixed populations from low-depth NGS data. NGSremix is
implemented in C/Cþþ in a multi-threaded software and is freely available on Github https://github.com/KHanghoj/NGSremix.
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Introduction
Estimation of genetic relatedness between pairs of individuals
is important in many genetic research areas. For example,
genetically related individuals are removed or accounted for in
genome-wide association studies to avoid an inflated false
positive rate (Morris and Cardon 2019). The genetic relatedness
between a pair of individuals is most often described using the
concept of identity-by-descent (IBD), which is genetic identity
due to recent common ancestry. To quantify the genetic
relatedness between a pair of individuals the summary
statistics R ¼ ðk0; k1; k2Þ can be used, where k0, k1, and k2 are the
proportion of the genome where a pair of individuals share 0, 1,
or 2 alleles IBD, respectively (Weir et al. 2006). These statistics
are useful because their expected values differ between differ-
ent types of familial relationships, with the expected value of
k0 being 1 for unrelated individuals and in general it is smaller
the closer related two individuals are. For instance, the
expected values of R for sibling pair is ð0:25; 0:5; 0:25Þ and for a
parent offspring pair, it is ð0; 1; 0Þ. R can therefore be used to
quantify how closely related two individuals are. There are
also other IBD-based summary statistics of genetic relatedness,
like the kinship coefficient, however, we will here focus on R,

because other such summary statistics can be calculated from
it. For example, the kinship coefficient is simply

k1
2þk2

2 .
Several methods exist for estimation of genetic relatedness

between a pair of individuals. When choosing a method to use it
is important to consider what type of data is available, where the
individuals are from and whether the individuals are admixed.
Most current methods are based on the assumption that the
individuals are all from a single homogeneous population
(Thompson 1975; Ritland 1996; Milligan 2003; Purcell et al. 2007;
Albrechtsen et al. 2009), including the commonly used method
implemented in PLINK (Purcell et al. 2007). If this assumption is
violated the estimation of relatedness will be biased and
relationships can be miss-classified (Rohlfs et al. 2012; Thornton
et al. 2012; Moltke and Albrechtsen 2014). To address this
problem, several methods, such as PC-Relate (Conomos et al.
2016), REAP (Thornton et al. 2012), RelateAdmix (Moltke and
Albrechtsen 2014), and KING (Manichaikul et al. 2010) have been
developed. These methods are all developed to be applied to
diallelic genotype data, like single nucleotide polymorphism
(SNP) chip data. However, next-generation sequencing (NGS) data
are becoming more common, and often these data are sequenced
at low to medium depth, where genotype calling can come with
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significant biases (Nielsen et al. 2012). This bias will be propagated
into relatedness estimation and can lead to miss-classification of
pairwise relatedness (Korneliussen and Moltke 2015). This issue
can be avoided if instead of calling genotypes from low-depth
data one accounts for the genotype uncertainty by summing over
all possible unobserved genotypes and weighting each of these
using genotype likelihoods (GLs). Several methods, like ngsRelate
(Korneliussen and Moltke 2015; Hanghøj et al. 2019), and the very
similar lcMLkin (Lipatov et al. 2015), have used this approach to
estimate pairwise relatedness from homogeneous populations
from low-depth sequencing data. Other methods that use exter-
nal information also exist, such as SEEKIN (Dou et al. 2017), which
uses imputation based on reference panels. However, none of
these methods address relatedness estimates between individu-
als with admixed ancestry.

Here, we present a maximum likelihood method, NGSremix,
that can estimate the relatedness coefficients (R) from low-depth
sequencing data when individuals have admixed ancestry. The
method takes GLs, admixture proportions, and ancestral allele
frequencies as input. The GLs can be calculated using many soft-
ware such as Samtools (Li et al. 2009) and ANGSD (Korneliussen
et al. 2014), and ancestral allele frequencies can be estimated
from clustering methods such a NGSadmix (Skotte et al. 2013)
and PCAngsd (Meisner and Albrechtsen 2018) assuming that the
ancestral populations are discrete and there is NGS or genotype
data available from a sufficient number of individuals. The latter
can be admixed individuals, unadmixed individuals, or both. We
note that accurate ancestral allele frequencies estimated solely
from admixed individuals usually require a large sample popula-
tion and/or high levels of differentiation between the ancestral
populations.

We also present a performance assessment of the method us-
ing both simulated data and real sequencing data from the 1000
genomes project and compare its performance to the commonly
used state-of-the-art methods, PLINK (Purcell et al. 2007), KING
(Manichaikul et al. 2010), relateAdmix (Moltke and Albrechtsen
2014), and ngsRelate (Hanghøj et al. 2019) when applied to
admixed individuals with low-depth NGS data. Importantly, the
assessment shows that NGSremix works well and clearly outper-
forms all the other methods when there is admixture and you
have low-depth NGS data.

Methods
The model
The main objective of the model is to enable maximum likelihood
estimation of the relatedness coefficients (R ¼ ðk0; k1; k2Þ) for two
individuals, A and B, with ancestry from one or more of K different
populations. We assume that we have NGS data from M variable
diallelic sites for both individuals and denote this XA ¼
ðXA1 ;XA2 ; . . . ;XAMÞ and XB ¼ ðXB1 ;XB2 ; . . . ;XBMÞ. Furthermore, we
assume that the paired ancestry proportions for both individuals,
denoted UA ¼ ð/A11;/

A
12;/

A
21; . . . ;/AKKÞ and UB ¼ ð/B11;/

B
12;/

B
21; . . . ;/BKKÞ

are known. Finally, we assume that for each site the ancestral allele
frequencies for the K populations, F, are known. The frequencies, F,
can be defined in terms of either of the two alleles, but for sequence
data the frequency is often defined in terms of the alternative
(nonreference) allele. In practice, we estimate the ancestral allele
frequencies F using NGSadmix (Skotte et al. 2013) and the paired
ancestry proportion is estimated as described in Supplementary
Material Section Estimation of paired ancestries and implemented
in NGSremix. The paired ancestry proportions are simply the
proportions of sites in the genome with a certain combination of

ancestry, i.e., /Aa1 ;a2
denotes the proportion of individual A’s genome

where the first allele is from population a1 and the second allele is
from population a2.

Using this terminology, we write up the likelihood function for
R. Because we assume UA, UB and F are known we have for sim-
plicity not included them in this likelihood function. On the other
hand, for each site the four alleles and their ancestry
(a ¼ ðaA1 ; aA2 ; aB1 ; aB2 )), IBD status (z ¼ ðz1; z2Þ), and ordered geno-
types (gA and gB) are not observed, see Figure 1. Therefore, we in-
clude these as latent variables and weight each possible value of
these by their probability. Note that even though we describe the
model with ordered genotypes we do not require phased input
data. Instead, we sum over all possible genotype orderings. The
likelihood function can then be written aS

PðXA;XBjRÞ ¼
YM
j¼1

X
z2f0;1g2

X
a2f1;::;Kg4

X
gA ;gB2f0;1g2

PðXAj jG
A
j ¼ gAÞ

PðXBj jGBj ¼ gBÞPðGAj ¼ gA;GBj ¼ gBjAj ¼ a;Zj ¼ zÞ
PðAj ¼ ajZj ¼ zÞPðZj ¼ zjRÞ;

where z ¼ ðz1; z2Þ with z1 indicating whether allele 1 of individual
A and B are IBD and z2 indicating whether the two individuals’
allele 2 are IBD. Furthermore, a ¼ ðaA1 ; aA2 ; aB1 ; aB2 Þ are the
unobserved ancestral populations of the two individuals’ two
alleles and gA and gB are the ordered genotypes for both
individuals. Note that we sum over all possible ordered genotypes
such that both alleles from individual 1 can be IBD with any of
the two alleles of individual 2, if they are from the same ancestry
and have the same allelic state. PðXAj jG

A
j ¼ gAÞ and PðXBj jGBj ¼ gBÞ

are GLs that represent the information from the sequencing data,
which can be calculated as described in Section 2.2.3 e.g., using
ANGSD (Korneliussen et al. 2014). The rest of the components of
the likelihood function and a detailed description of how the
likelihood function is derived can be found in Supplementary
Material Section Derivation of the likelihood function.

To obtain maximum likelihood estimates of the paired
ancestry U and the relatedness coefficients R, we are using
Expectation-Maximization (EM) algorithms. The EM algorithms
are described in the Supplementary Material Section EM
algorithm and Estimation of paired ancestries. We defined
convergence as the euclidean distance between the current and
the previous parameter estimates being less than 10�6. For faster
convergence, we implemented an accelerated EM algorithm
using the squared iterative approach (S3) developed by Varadhan
and Roland (2008). Convergence was reached on average after 20
iterations and no convergence issues were observed in the tested
data sets. The computation time for NGSremix and the other
methods used in this study is available in Supplementary Table
S2. The method is implemented in C/Cþþ in a multi-threaded
software and is available on Github https://github.com/
KHanghoj/NGSremix.

Simulation of data
Data were simulated to validate NGSremix and compare its
performance with the existing methods: PLINK (Purcell et al.
2007), KING (Manichaikul et al. 2010), relateAdmix (Moltke and
Albrechtsen 2014), and ngsRelate (Hanghøj et al. 2019). Using
allele frequencies from Northern Europeans from Utah (CEU)
and Yoruba in Ibadan, Nigeria (YRI) samples from the 1000
genomes project (Auton et al. 2015) we simulated NGS data
with 100,000 diallelic sites for 10 pairs of individuals for each of
6 different relationship types: unrelated individuals
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(R ¼ ð1; 0; 0Þ), full siblings (R ¼ ð0:25; 0:5; 0:25), parent-offspring
(R ¼ ð0; 1; 0Þ), half siblings (R ¼ ð0:5; 0:5; 0Þ), first cousins
(R ¼ ð0:75; 0:25; 0Þ). The performance of the methods was evalu-
ated using NGS data simulated based on 5 different average
depths: 1x, 2x, 4x, 8x, and 16x. Data were generated by first simu-
lating genotypes for each pair of individuals (see Simulation of
genotypes). Next, the genotypes were used to simulate NGS data
(see Simulation of NGS data) and finally GLs were calculated
(Section Calculation of genotype likelihoods). Finally, we esti-
mated ancestral allele frequencies from these GLs using
NGSadmix (Skotte et al. 2013), that accounts for genotype uncer-
tainty, allowing for two ancestral sources and used these esti-
mates along with the GLs as input to our method.

As input to ngsRelate, we only used the GLs. For PLINK and
KING that both require genotype data, we called genotypes from
the calculated GLs by choosing the genotype with the highest GL
and used these as input. For RelateAdmix that requires genotypes
as well as admixture proportions and ancestral allele frequen-
cies, we first used the called genotypes to estimate admixture
proportions and ancestral allele frequencies using ADMIXTURE
(Alexander et al. 2009) and then used these estimates as well as
the called genotypes as input.

Simulation of genotypes
For unrelated pairs, we simulated genotypes without linkage
disequilibrium by first randomly sampling an admixture
proportion between the two ancestral populations (CEU and
YRI) of 0, 0.25, 0.5, 0.75, or 1 for each individual. Then for each
site, the ancestry of the alleles for each of the two individuals
were sampled using the admixture proportions. Finally, the
genotypes were sampled based on the sampled ancestral popu-
lations at that site and the allele frequencies from the 1000
genomes project (Auton et al. 2015). For the remaining relation-
ship types, haplotypes were simulated by first simulating geno-
types for an appropriate number of unrelated admixed founder
individuals using the same approach as for the unrelated pairs.

Next, we simulated data for the relevant pair by simulating off-
spring of these founders (and in some cases their offspring) us-
ing the relevant pedigree. For example, for siblings, we
simulated data for two unrelated founder individuals (parents)
and then simulated the siblings by simulating two offspring
from these parents. In all cases, genotypes for an offspring of
two parents were simulated by randomly sampling one allele
from each parent at each site.

Simulation of NGS data
Based on the simulated genotypes, NGS data were generated for
each individual as follows. First, the sequencing depth d at each
site was sampled from a Poisson distribution with mean equal to
the specified average sequencing depth. Next, d bases were sam-
pled at each site j, Xj ¼ ðb1; b2; . . . ; bdÞ, based on the individual’s
genotype and a per base sequencing error probability, e, of 0.005.
In case of a sequencing error, the base is replaced with the other
possible base at the site.

Calculation of genotype likelihoods
GLs were calculated using the model described by McKenna et al.
(2010). However, for simplicity, we assume that there are only
two alleles. At each site j and for each of the genotypes, Gj ¼
ðg1; g2Þ where g1; g2 2 f0; 1g, we calculated the likelihood of
observing the NGS data Xj ¼ ðb1; b2; . . . ; bdÞ, aS

PðXjjGj ¼ ðg1; g2ÞÞ ¼ PðXjjGj ¼ ðg2; g1ÞÞ

¼
Yd

i¼0

1
2

Pðbijg1Þ þ
1
2

Pðbijg2Þ
� �

where

PðbijgyÞ ¼
e bi 6¼ gy

1� e bi ¼ gy

�

Figure 1 Left: Diagram of the unobserved state of the latent variables, z, a, gA, gB , in a site. The circles represent the two alleles of each of the two
individuals A and B. Specifically, for each of these individuals, e.g., individual A, the first allele has an unobserved ancestry state aA1 , which can take any
value among the K possible ancestral populations and an unobserved allelic state, gA1 . Similarly, the second allele has an unobserved ancestry state, aA2 ,
and an unobserved allelic state, gA2 , where ðgA1 ; gA2 Þ constitutes the unobserved ordered genotype, gA, for the individual. Lines indicate the unobserved
IBD states, i.e., whether the first alleles of the two individuals are IBD, z1, and whether the second alleles of the two individuals are IBD, z2. Right:
Example diagram with a set of realized values for all the latent variables for two African American individuals with genotypes T/G and T/T (gA ¼ ðT;GÞ
and gB ¼ ðT;TÞ), who share their first allele IBD (z1 ¼ 1), which is possible because these alleles have the same African ancestry (aA1 ¼ aB1 ¼ AFR) and the
same allelic state (gA1 ¼ gB1 ¼ T). The second allele of the two individuals cannot be IBD ðz2Þ because the two alleles originate from different ancestral
populations (aA2 ¼ AFR 6¼ aB2 ¼ EU) and/or because they have different allelic states ðgA2 ¼ G 6¼ gB2 ¼ TÞ. Note that we here used T and G instead of 0 and 1
as possible allelic states and AFR and EU instead of 1 and 2 as possible ancestral states to make the example more concrete.
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Note that this model was originally described for unordered
genotypes, but that the GLs for ordered genotypes are the same
as for unordered genotypes. Thus, the method does not require
phased information but only the GLs.

Real data
We also tested NGSremix using real data from 417 individuals
from the 1000 genomes project phase 3 release with 2504 individ-
uals (Auton et al. 2015). These individuals have all been se-
quenced at low depth, however, they have also been genotyped
using SNP chips and many of them have been sequenced with
high depth exome and/or whole-genome sequencing. Therefore,
we also have a high-quality genotype data set to compare the
low-depth sequencing data to. Specifically, we focused on indi-
viduals from the admixed population of Americans of African
Ancestry (ASW, n¼ 61). We also included European individuals
(CEU, n¼ 99), African individuals (YRI, n¼ 108), and two popula-
tions representing a Native American component (PEL, n¼ 85;
MXL, n¼ 64) in order to estimate accurate admixture proportions
and ancestral allele frequencies for the admixed ASW individu-
als. To assess performance on low-depth NGS data, we analyzed
the low-depth NGS data for these samples which have a median
depth around 4x depth of coverage. First, we calculated GLs (-gl 2
-Q 30 -q 30) for all individuals using ANGSD (Korneliussen et al.
2014). When doing so we restricted the analysis to polymorphic
sites in the high-quality genotype data for these five populations
with a minor allele frequency of 0.05, followed by linkage disequi-
librium pruning (PLINK1.90 –indep-pairwise 50 10 0.1) (Chang
et al. 2015). A total of 270,428 sites were used for downstream
analysis. Next, we estimated the ancestral allele frequencies us-
ing NGSadmix (Skotte et al. 2013), that accounts for genotype un-
certainty, allowing for three ancestral sources. Finally, we
applied NGSremix to the GL data, ancestry proportions, and an-
cestral allele frequencies to estimate the relatedness coefficients
ðRÞ for all pairs of individuals.

For comparisons using PLINK, KING and relateAdmix, we
called genotypes from the low-depth NGS data by choosing the
maximal GL for each site and each individual and used these as
input. Furthermore, for relateAdmix we estimated ancestry pro-
portions and ancestral allele frequencies from the called geno-
types using ADMIXTURE (Alexander et al. 2009) and used these as
additional input.

To validate the results obtained from the low-depth sequenc-
ing data, we performed a set of secondary analyses using the
high-quality genotype data for the same individuals using the
same set of genomic sites.

Data availability
The 1000 genomes data used in this studies can be found here
https://www.internationalgenome.org/data. Supplementary ma-
terial is available at figshare: https://doi.org/10.25387/g3.
14587164.

Results
Performance assessment using simulated data
We first assessed the performance of NGSremix on simulated
data. We simulated genotype data for 6 different relationship
types and various admixture scenarios based on allele frequen-
cies from the CEU and YRI 1000 Genomes population data. From
these genotype datasets, we then simulated NGS data with
depths 1x, 2x, 4x, 8x, and 16x. Finally, we estimated k0, k1, and k2

values for the simulated NGS data for all pairs of individuals

(N¼ 7140) using our NGSremix as well as the four commonly
used state-of-the-art methods ngsRelate, relateAdmix, PLINK,
and KING. Because KING estimates kinship and not R, the kinship
coefficient for NGSremix and KING were also compared. When
analyzing the simulated data with average depths of 8x or 16x,
all methods can distinguish between full siblings, half-siblings,
and parent-offspring (Supplementary Figures S1 and S2).
However, only our NGSremix and relateAdmix obtain accurate
estimates and allows clear separation of unrelated individuals
from first-cousin. For simulated NGS data with an average depth
of 4x, i.e., low-depth NGS data, NGSremix is the only method that
gives accurate results and allows the different relationship types
to be distinguished from each other (Figure 2). ngsRelate give
somewhat reasonable estimates for the first degree relationships,
however, cannot separate the unrelated, second-cousin, and
first-cousin. relateAdmix on the other hand, can for the most
part distinguish between the relationships, but the relatedness
coefficient estimates cannot be interpreted as IBD fractions mak-
ing it difficult to use them e.g., for relationship classification. The
last two methods, PLINK and KING, performs worse in this sce-
nario with estimated relatedness and kinship coefficients that
are difficult to interpret. Similar results are obtained at lower
depths (Supplementary Figures S3 and S4); even on 1x data our
method performs fairly well, especially when increasing the
number of sites, and is able to differentiate all relationship types
except from unrelated and second cousins, see Supplementary
Figure S6. As mentioned, NGSremix handles admixture by esti-
mating paired ancestry proportions. We have also implemented a
version of NGSremix without paired ancestry where we assume
the ancestral populations to be discrete. The paired ancestry pro-
portions result in less variance when the relatedness is high
(Supplementary Figure S5).

Performance assessment using real data
To further assess the performance of NGSremix we also applied
the same methods to data from the admixed African American
(ASW) individuals from the 1000 genomes project. We modeled
the ancestry of ASW using a reference panel including popula-
tions with European (CEU), African (YRI), and Native American
(represented by MXL and PEL) ancestries. First, we applied the
methods to high-quality genotype data for these individuals to
obtain estimates that are as close to the truth as possible, see
Supplementary Figure S7.

NGSremix and relateAdmix that are both designed to take ad-
mixture into account, gave close to the same results and identi-
fied 5 parent-offspring pairs and one pair of second degree
relatives (i.e., a half sibling, avuncular, or grandparent-grandchild
pair). These results are consistent with previous reports for these
pairs (Coriell Institute, 2021). In contrast PLINK, ngsRelate and
KING showed larger variance although they still manage to iden-
tify the same 5 parent-offspring pairs and the half-sibling pair.
We note that two false positive third degree relatives (NA20274-
NA20314 and NA20299-NA20314) are identified when modeling
the ASW ancestry using only European and African populations
in the reference panel, see Supplementary Figures S8 and S9.
This is due to insufficient modeling of the high levels of Native
American ancestry (40� 65%) in these three individuals in a two-
way admixture model (Supplementary Figure S8, Bottom) (Martin
et al. 2017).

We next applied the methods to low-depth sequencing data
(around 4x) from the same individuals. The results showed that
our method is the only method that is able to identify the same
related individuals as identified from the high-quality genotype
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Figure 2 Estimated k1 and k2 or kinship for 120 simulated admixed individuals with 6 relationship types (10 of each type of related pairs) and an average
depth of 4x. The first plot is the theoretical k1 and k2 values. Plots of the estimated k1 and k2 values are visualized for NGSremix, ngsRelate, reateAdmix,
and PLINK. Plots of the kinship coefficient for NGSremix and KING are provided since KING only estimates kinship.

A. K. Nøhr et al. | 5



Figure 3 Inferred relatedness coefficients k1 and k2 or kinship, for 61 admixed African Americans from the 1000 genomes project sequenced at low
depth. Plots of estimated R values are visualized for NGSremix, ngsRelate, relateAdmix, and PLINK. Plots of the kinship coefficient for NGSremix and
KING are provided since KING estimates kinship and not R.
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data by both NGSremix and relateAdmix (Figure 3). ngsRelate
have similar, suboptimal results as it did when it was applied to
the high-quality genotype data, while relateAdmix, PLINK, and
KING performed markedly worse. Hence, our method clearly out-
performs the existing methods when applied to low-depth NGS
data, not only for simulated data but also for real data. Also, we
observed markedly worse results when applying NGSremix to
genotypes called using a GL threshold than without using such a
threshold. For this reason, we did not use a threshold when call-
ing genotypes for the above-presented comparisons between
NGSremix and the other methods (Supplementary Figure S10).

Discussion
We have presented a new maximum likelihood-based software
tool, NGSremix, for estimation of pairwise relatedness between
admixed individuals sequenced at low depth. Using simulated
data and real data from the 1000 genomes project, we have
shown that our method is superior when used on admixed indi-
viduals sequenced at low depth compared to current state-of-
the-art methods: PLINK, KING, relateAdmix, and ngsRelate.
NGSremix’s accurate estimates of relatedness are due to the fact
that it takes GLs as input instead of called genotypes, which is an
advantage for low-depth NGS data, where genotypes cannot be
called with high certainty. Second, NGSremix handles admixture
by estimating paired ancestry proportions and including these in
the model.

From the results of the simulations, we saw that the state-
of-the-art methods that rely on genotypes as input could sepa-
rate full-siblings, parent-offspring, and half-siblings when the
average depth was 16x. However, KING, ngsRelate, and PLINK
gave highly inaccurate relatedness/kinship estimates for the
sibling and unrelated pairs. In contrast, relateAdmix (Moltke
and Albrechtsen 2014) provided accurate estimates close to
similar to the results of NGSremix, which is not a surprise as
relateAdmix accounts for admixture and is methodically very
similar to NGSremix. This shows that calling genotypes is a
good option if the depth is high enough to call genotypes cor-
rectly and when an appropriate method that takes admixture
into account is used. However, when lowering the simulated
depth to 8x the genotype-based methods, including
relateAdmix, obtained less accurate results compared to those
based on 16x data. For depths below 8x, the uncertainty of ge-
notype calls reached a level where the genotype-based meth-
ods began to give nonsensical results e.g., for 4x data PLINK
(Purcell et al. 2007) and KING (Manichaikul et al. 2010) estimate
all k1 coefficients and kinship coefficients to zero for all pairs
of individuals regardless of relationship type. Thus, our results
show that calling genotypes for low-depth NGS data can
greatly bias estimation of pairwise relatedness. A common pro-
cedure to reduce this bias is to filter based on the genotype
quality such that genotype calls with a low probability for be-
ing correct are disregarded. This might seem like a good way to
remove the biases related to genotype uncertainty. However,
because the probabilities assigned to heterozygous and homo-
zygous calls will be very different with lower probabilities
assigned to homozygous calls, these are more likely to be fil-
tered away, which can result in further inflation of the geno-
type uncertainty biases (Supplementary Figure S10). This is not
the case when using GLs, because they contain all information
about the uncertainty of the genotype, while this information
is lost when calling a genotype. Even for simulated data of
depth 1x our method provided sensible results, however, albeit

more noise was observed. We cannot make an exact statement
about how low a depth our method can handle since it depends
on number of SNPs, how admixed the individuals are, and the
number of individuals. However, we expect it will not work
well with lower depth since observing reads containing each
individuals two alleles would be required at least at some sites.

All the tested methods in this study, including NGSremix,
have a series of limitations. First, the estimated relatedness from
the real data can deviate from the expectation for all relationship
pairs except for parent-offspring and monozygotic twins, e.g., the
kinship coefficients for a pair of full-siblings is expected to be 0.5,
but will often deviate from this exact value. This is due to biologi-
cal variance during the recombination process, where a pair can
share more/less IBD segments than expected (Thompson 2013)
with variable variance depending on the relationship (Veller et al.
2020). This can in some cases make it challenging to disentangle
the actual degree of a pair of relatives. Second, all the methods ei-
ther assume allele frequencies are from discrete homogeneous
populations or in the case of KING assumes that each pair of indi-
viduals is from the same homogeneous population. Third, for all
of the methods except for KING the number of individuals in-
cluded in the analysis is important since they are based on the
assumption that allele frequencies can obtained. For NGSremix
and relateAdmix the number of individuals is even more impor-
tant because these methods are based on the assumption that
the ancestral allele frequencies and admixture proportions can
be accurately estimated using clustering methods such a
NGSadmix (Skotte et al. 2013). The exact number of individuals
per population needed in order to obtain accurate estimates from
these methods will depend on the number of sites, the admixture
patterns, and the degree of population differentiation. However,
having less than 5 individuals representing a population will lead
to inaccurate estimates (Jørsboe et al. 2017). Thus, NGSremix can-
not be applied to studies were only a few individuals have been
sequenced. Instead, it requires sequencing or genotype data for
multiple individuals representing each ancestral population.
Finally, NGSremix assumes that there is no inbreeding and that
the markers are independent i.e., no linkage disequilibrium.
These assumptions are also shared with the other methods with
the exception of ngsRelate which allows for arbitrary inbreeding
patterns (Hanghøj et al. 2019). With regards to the assumption of
no linkage disequilibrium then all of the methods can still be ap-
plied with data that has not been pruned. In this case, the models
should be viewed as composite likelihood models which will have
a different interpretation of the likelihood value. However, it will
not affect the expected maximum likelihood point estimate
(Lindsay 1988).

In conclusion, we have presented a maximum likelihood
method for estimating relatedness for low-depth sequencing
data that can be applied to admixed individuals. In simulations
and real data from low-depth sequencing of admixed individuals
the method outperforms other methods and gives reasonable
results down to 1x sequencing.
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