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Carbon cycling by microbes has been recognized as the main mechanism of organic matter
decomposition and export in coastal wetlands, yet very little is known about the functional
diversity of specific groups of decomposers (e.g., bacteria) in salt marsh benthic trophic
structure. Indeed, salt marsh sediment bacteria remain largely in a black box in terms of their
diversity and functional roles within salt marsh benthic food web pathways. We used DNA
stable isotope probing (SIP) utilizing 13C-labeled lignocellulose as a proxy to evaluate the
fate of macrophyte-derived carbon in benthic salt marsh bacterial communities. Overall,
146 bacterial species were detected using SIP, of which only 12 lineages were shared
between enriched and non-enriched communities. Abundant groups from the 13C-labeled
community included Desulfosarcina, Spirochaeta, and Kangiella. This study is the first to
use heavy-labeled lignocellulose to identify bacteria responsible for macrophyte carbon
utilization in salt marsh sediments and will allow future studies to target specific lineages
to elucidate their role in salt marsh carbon cycling and ultimately aid our understanding of
the potential of salt marshes to store carbon.
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INTRODUCTION
Coastal wetlands provide a variety of key ecosystem functions
that include food web support, nutrient cycling, sediment sta-
bilization, and long-term carbon sequestration (Minello et al.,
2003; Mitsch and Gosselink, 2007). Many of these functions
are tied to macrophyte abundance, microbial decomposition
rates and the accumulation of biomass or soil organic matter
(Newell, 1993; Megonigal et al., 2004). Carbon cycling by micro-
bial communities has been recognized as the main mechanism
of organic matter decomposition in coastal wetland systems in
the United States (Benner et al., 1986; Paerl and Pinckney, 1996;
Wagner et al., 2008), although most of these studies have been
performed on the East Coast (Kowalchuk et al., 2002; Blum
et al., 2004; Aneja et al., 2006). A number of East Coast U.S.A.
studies have identified sulfate-reducing bacteria as key anaero-
bic degraders in salt marshes (Howarth and Teal, 1979; Hines
et al., 1989; Rooney-Varga et al., 1998), although the diverse func-
tional roles of salt marsh bacteria remain poorly characterized.
In addition, West Coast marshes are typically smaller and drier
with reduced precipitation and less freshwater input than their
East Coast counterparts, suggesting that ecological and biogeo-
chemical functional diversity may differ. It has recently been
hypothesized that these factors lead to differences in decompo-
sition rates and long-term carbon storage in southern California
coastal marshes (Keller et al., 2012). An understanding of key
microbial participants in carbon cycling will improve our overall
understanding of ecosystem functioning in southern California
coastal salt marshes.

While aboveground and belowground plant material and root
exudates are all known to be important carbon sources in salt
marsh systems (e.g., Hodson et al., 1984; Hemminga et al., 1988),

our study focuses on the role of lignocellulose as a major com-
ponent of aboveground litter and as an important substrate for
microbial degradation in the marsh ecosystem. Earlier studies
have found a close coupling between macrophyte productivity
and microbial processes in salt marsh ecosystems (Howarth, 1993;
Boschker et al., 1999). Specifically, East Coast studies revealed that
lignocellulose-rich Spartina spp. contribute the bulk of dissolved
organic carbon (DOC) in the most productive marshes (Gallagher
et al., 1976; Moran and Hodson, 1990) and that bacteria are the
primary degraders of decaying Spartina (Benner et al., 1986). As
macrophyte carbon (plant lignocellulose) is broken down into
cellulose and other simpler carbon compounds, this leads to a
succession of food source availability (Peterson et al., 1985; Choi
et al., 2001), which in turn can lead to changing communities
of bacteria and fungi that preferentially consume the more labile
components of dissolved organic matter (Coffin et al., 1990; Blum
et al., 2004). This study focuses on the influence of macrophyte
carbon on near surface sediment bacterial communities (Buchan
et al., 2003), because of their known ability to degrade complex
carbon-rich litter in salt marsh systems (Lydell et al., 2004; Romani
et al., 2006; Das et al., 2007).

In general, little is known about salt marsh plant-microbe
interactions in southern California where Spartina foliosa (cord-
grass) and Sarcocornia pacifica (pickleweed) are key components
of marsh foodwebs (Kwak and Zedler, 1997). Characterizing the
role of specific microbial groups in the salt marsh benthic food
web is difficult despite the recognition that their connection with
organic matter cycling is integral to trophic structuring (Neutel
et al., 2002, 2007). DNA stable isotope probing (SIP) overcomes
some of the challenges inherent in using traditional culturing
and environmental molecular methods to study microbes in the
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environment by directly linking substrate utilization to microbial
identity (Radajewski et al., 2000; Buckley et al., 2007). The SIP
method follows heavy-labeled carbon isotopes into the nucleic
acids of microbes, providing an unambiguous identification of
microbial consumers of plant carbon (Prosser et al., 2006). SIP has
been used to identify bacteria actively degrading cellulose in habi-
tats such as agricultural soils, prescribed-burned forest soils and
cellulose-responsive bacteria and fungi in pine forest grasslands
(Haichar et al., 2007; Bastias et al., 2009; Eichorst and Kuske, 2012).
In this study, our objective was to use DNA SIP with 13C-labeled
lignocellulose to identify salt marsh sediment bacteria capable of
incorporating macrophyte carbon. Specifically, we performed sta-
ble isotope incubations with salt marsh sediments followed by 16S
rRNA gene amplification, T-RFLP and gene sequencing to iden-
tify and compare lignocellulose-responsive and non-responsive
bacterial communities.

MATERIALS AND METHODS
SITE DESCRIPTION
Salt marsh sediment cores were collected from a 1 m2 quadrat
placed on sediments around the base of live Spartina foliosa plants
in the Talbert salt marsh in Huntington Beach, California (33o38′
0.52′′ N, 117o57′ 70.3′′ W). Samples were taken in the low Spartina
marsh zone that possessed ∼80% Spartina foliosa cover with
the remaining area covered in microalgae. Using the hydrome-
ter method (Bouyoucos, 1962) and loss on ignition to determine
grain size and organic matter content, the sediment in the sampled
area was found to be 60% mud and 30% sand with 30% organic
matter. Redox potential was measured to be 30 mV at 1 cm depth
with a millivolt meter (Mettler-Toledo, Columbus, OH, USA).
Salinity was measured to be 48 ppt with a portable refractometer
(VWR, West Chester, PA, USA), and atmospheric humidity in the
plot area at the base of Spartina plants was 71%, measured with a
humidity reader (Fisher Scientific, Waltham, MA, USA). Sediment
pH was found to be 7.2 using a pH meter (Mettler-Toledo).

CORE SAMPLE PROCESSING
Triplicate sediment cores (2 cm diameter × 1 cm deep) were col-
lected for SIP from within the quadrat using a sterile syringe with
the tip cut off and returned to California State University, Long
Beach where they were equilibrated at room temperature for 10 h.
In the laboratory, 5 g (wet weight) of each core was placed in
20 ml sterile scintillation vials and homogenized with 2.5 ml of
sterile 0.2 μm filtered seawater. The resulting slurries were labeled
with 5 mg of 13C lignocellulose (Isolife, Netherlands; Benner et al.,
1984; Hodson et al., 1984; Wilson, 1985). Samples were incubated
at 21◦C in the dark for 30 days and then frozen at −20◦C to stop
the experiment. A 30 day incubation was used to ensure label was
incorporated based on previous findings of lignocellulose degra-
dation rates (Benner et al., 1984). A 4 mg sediment subsample
from each scintillation vial microcosm was sent to the University
of California, Davis Stable Isotope Facility and analyzed for 13C
on a PDZ Europa ANCA-GSL elemental analyzer followed by a
PDZ Europa 20–20 isotope ratio mass spectrometer (Sercon Ltd.,
Cheshire, UK). These measurements are accurate to 0.2% for 13C1.

1http://stableisotopefacility.ucdavis.edu/

NUCLEIC ACID EXTRACTION AND PCR AMPLIFICATION
Four 0.5 g subsamples from each 13C lignocellulose microcosm
were used for DNA extractions using a FastDNA Spin Kit for
soil (MPBIO, Solon, OH, USA) following manufacturer’s instruc-
tions and then pooled to yield ∼5 μg of DNA per microcosm
sample. DNA from each of the triplicate microcosms was pro-
cessed immediately for SIP following the protocol of Neufeld
et al. (2007). Briefly, DNA was mixed with a CsCl solution (initial
density of 1.725 g ml−1). Samples were loaded into 5.1 ml cen-
trifuge tubes (Beckman Coulter, Brea, CA, USA) and enriched
DNA was separated from non-enriched by ultracentrifugation
(Vti 65.2 rotor, Avanti J-E centrifuge, Beckman Coulter, Indi-
anapolis, IN, USA) for 40 h at ∼177,000 g at 20◦C with no
braking. A syringe pump (Braintree Scientific, Braintree, MA,
USA) was calibrated and used to dispense 12 × 425 μl fractions,
which were collected from the bottom of the pierced centrifuge
tube, with heavy, enriched fractions coming off first and light,
non-enriched fractions coming off last. The density of each frac-
tion was calculated by weighing fractions of known volume on
an analytical balance (Denver Instrument, Bohemia, NY, USA).
Gradient formation was confirmed for the fractions and varied
from 1.80 to 1.68 g ml−1 for replicate three, for example. DNA
was precipitated via centrifugation after overnight addition of
molecular grade glycogen (Thermo Fisher Scientific, Waltham,
MA, USA) and polyethylene glycol (Sigma–Aldrich, Miamisburg,
OH, USA) and the resulting pellet was washed with 70% ethanol.
DNA was resuspended in 50 μl TE (10 mM Tris–HCl and 1 mM
EDTA) buffer and run on a 1% agarose gel to confirm recovery of
DNA from each fraction. Bacterial 16S rRNA genes were ampli-
fied from enriched and non-enriched fractions in 20 μl reaction
volumes using GM3 and GM4 primers (Muyzer et al., 1995) as
previously described (Dillon et al., 2009a). Briefly, 1 mM MgCl2,
10 pmol of each primer (Operon, Huntsville, AL, USA), 50 nmol
of each dNTP (Promega, Madison, WI, USA), 1× PCR buffer
and 1.5 units of GoTaq DNA Polymerase (Promega), 4 μl of
0.4% (w/v) Bovine Serum Albumin and 50–100 ng of extracted
nucleic acids. Reaction conditions were as follows: 5 min initial
denaturation at 94◦C, followed by 30 cycles of denaturation (94◦C
for 30 s), annealing (53◦C for 30 s) and elongation (72◦C for
90 s), and a final extension (72◦C for 10 min) carried out in an
Eppendorf Mastercycler (Brinkmann Instruments, Westbury, NY,
USA).

T-RFLP ANALYSIS
Terminal restriction fragment polymorphism (T-RFLP; Liu et al.,
1997) was used to screen SIP fractions for community differences.
Briefly, bacterial amplicons from a 30-cycle PCR as described
above were amplified for another 5–10 cycles using a WellRed fluo-
rescently labeled GM3 forward primer (Beckman Coulter; Dillon
et al., 2009b; Harrison and Orphan, 2012). 100 ng of resulting
amplicons were digested with Hae III restriction endonuclease
(Promega, Madison, WI, USA) in 20 μl reactions at 37◦C for
4 h following manufacturer’s instructions. Terminal restriction
fragments (T-RFs) from each SIP fraction of the triplicate micro-
cosms were determined via capillary gel electrophoresis using
a CEQ800 sequence analyzer (Beckman Coulter, Fullerton, CA,
USA) with a two-base pair bin size used to group peaks above a
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1% peak-area threshold. Visual inspections of T-RFLP traces from
enriched and non-enriched fractions (see below) from the tripli-
cate microcosms revealed similar peak patterns (data not shown),
so the fractions from a single replicate microcosm (number 3)
were chosen for further analyses. T-RFLP data were analyzed
using PRIMER v6.2 (Primer-E Ltd., Plymouth, UK) by cluster
analyses and a multidimensional scaling (MDS) plot based on
presence/absence of peaks to elucidate differences in community
composition among fractions. Permutational multivariate anal-
yses of variance (perMANOVA) based on presence or absence of
peaks using Bray–Curtis dissimilarity of relative peak area percent-
ages were performed on enriched and non-enriched community
data using fractions 5–8 (representative of enriched) and 9–12
(representative of non-enriched).

CLONING, SEQUENCING, AND DIVERSITY
Positive PCR amplicons were pooled for representative enriched
(fractions 07 and 08) and non-enriched SIP fractions (fractions 11
and 12) identified by T-RFLP and cloned using pcr4-TOPO vec-
tor and TOP10 competent cells (Invitrogen, Carlsbad, CA, USA)
following manufacturer’s instructions. Each clone was screened
via PCR for successful insertion of amplicons using M13 vector
primers. Plasmids were extracted using a miniprep extraction kit
(Epoch Life Sciences, Sugar Land, TX, USA) following the man-
ufacturer’s instructions then sequenced using M13 forward and
reverse vector primers by the University of Washington High-
Throughput Genomics Unit (Seattle, WA, USA). Vector sequence
was trimmed using 4Peaks software2 and forward and reverse con-
tigs were merged using Seqman software program (DNASTAR,
Madison, WI, USA). Chimeric sequences were identified using
Mallard v.1.0 (Ashelford et al., 2006) and removed. The remain-
ing 214 sequences were aligned using the online SINA aligner
(v1.2.9; Pruesse et al., 2012) and manually refined in ARB (v5.2;

2http://nucleobytes.com/index.php/4peaks

Ludwig et al., 2004) with nearest neighbors from the SILVA ref-
erence database 102. Sequences were deposited in Genbank with
accession numbers KF41379-KF41593.

Diversity analyses were performed on the clone library
sequence data. Specifically, a pair-wise sequence distance matrix
was exported and analyzed using the average neighbor method in
MOTHUR (Schloss et al., 2009) for operational taxonomic units
(OTUs) assigned based on an evolutionary distance of 3 and 7%,
corresponding to 97 and 93% similarity cutoffs commonly used to
define species and genus level diversification, respectively (Stacke-
brandt and Goebel, 1994). Rarefaction curves were generated, and
alpha diversity indices (Chao, ACE, Shannon-Wiener, Simpson’s
D) and evenness were calculated. Percent coverage of the libraries
was calculated as in (Good, 1953). The beta diversity tests

∫
-

Libshuff and AMOVA were used to test for community differences
between the enriched and non-enriched fractions. AMOVA tests
whether the genetic diversity within communities is significantly
different from their pooled genetic diversity (Schloss, 2008) while∫

-Libshuff is a Cramér-von Mises-type statistic and a Monte Carlo
procedure to determine if two libraries are significantly different
(Singleton et al., 2001). A Bonferroni correction to account for
reciprocal pair-wise comparisons of two groups was applied for
the

∫
-Libshuff statistic, which was deemed to be significant at the

p = 0.025 level.

RESULTS
Elemental analysis confirmed successful labeling of the enriched
sediment (δ13C = 579.0%) to ∼5 times the non-enriched sedi-
ments. An MDS plot using dissimilarity based on the presence or
absence of peak composition from T-RFLP data for each fraction
showed clustering of heavy (enriched) and light (non-enriched)
communities (PerMANOVA Pseudo-F = 2.548, p(MC) = 0.0859,
unique permutations = 35; Figure 1) and allowed us to iden-
tify samples for downstream molecular sequencing. Among 16S
rRNA sequences analyzed at the species level (3% distance), 146

FIGURE 1 | Multidimensional scaling (MDS) plot ofT-RFLP data based on

presence or absence ofTRFs. Orange symbols show light, non-enriched
fractions and blue symbols show heavy, enriched fractions. Solid ellipses
drawn on graph illustrate different groups at the p = 0.086 level

(perMANOVA). Traditionally, enriched DNA is found in fractions 5–8 and light
fractions found in 9–12 (Neufeld et al., 2007). Fractions 7/8 and 11/12 (dashed
ellipses) were pooled as representatives of enriched and non-enriched DNA,
respectively, to use for molecular sequencing.
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total OTUs were detected (Table 1) of which only 12 were shared
between the lignocellulose-responsive and non-responsive com-
munities (Figure 2D). At the genus level (7% distance), 101 OTUs
were detected of which 19 were found in both clone libraries
(Figure 2C), further illustrating the differences even at higher
taxonomic levels.

Rarefaction curves for non-responsive and lignocellulose-
responsive bacterial communities were similar at both the genus
and species level cutoffs (Figures 2A,B). Percent coverage val-
ues were also similar (Table 1). Comparable bacterial richness
was observed between responsive and non-responsive bacterial
communities; for example 82 and 76 OTUs were observed at
the 3% distance level for the non-enriched and enriched bacte-
rial communities, respectively (Table 1). Indeed, the richness and
diversity estimators Chao, ACE, Shannon and Simpson’s (Chao,

1984; Chao et al., 1992) were not statistically different between the
two communities as indicated by the overlapping confidence inter-
vals at both cutoffs. High evenness was observed as well (above 0.9
for both cutoffs), indicating no taxon was too rare or too common
in either community (Table 1).

Despite the similarities in alpha diversity metrics, beta diversity
comparisons revealed differences in community diversity between
the lignocellulose-responsive and non-responsive bacterial com-
munities. Significant statistical differences were observed only in
one direction for the

∫
-Libshuff pair-wise comparisons at both

the 3% (XY p = 0.0003, YX p = 0.1007) and 7% cutoffs (Libshuff,
XY p = 0.0002, YX p = 0.110), which using the strict definition for
this method does not provide evidence of significant differences
between the two communities (Schloss, 2008). However, AMOVA
(p = 0.029; Excoffier et al., 1992) results were significant indicating

Table 1 | Calculated alpha diversity indices for lignocellulose-responsive and non-responsive bacterial communities at the 3 and 7%

evolutionary distance level.

Level Group N OTUs [% Coverage] Chao ACE Shannon-Wiener Evenness Simpson’s D

Species (0.03) Non-enriched 111 82 [26]1 316.6 (257)2 322.56 (255.4) 4.2 (0.2) 0.95 0.01 (0.01)

Enriched 108 76 [30] 175.0 (105.3) 193 (120.5) 4.2 (0.2) 0.97 0.01 (0.00)

Genus (0.07) Non-enriched 111 63 [43] 149.3 (104) 305 (151.8) 3.7 (0.2) 0.90 0.04 (0.02)

Enriched 108 57 [47] 120.9 (85.5) 247.4 (95.6) 3.7 (0.2) 0.92 0.03 (0.01)

1Numbers in brackets denote percent coverage.
2Numbers in parentheses show 95% confidence intervals.

FIGURE 2 | Rarefaction analysis of bacterial 16S rRNA gene clone sequence data andVenn diagrams showing distribution of total and shared OTUs at

7% (A,C) and 3% (B,D) distance cutoff in lignocellulose-responsive (blue) and non-responsive (red) bacterial communities. Error bars are 95%
confidence intervals.
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that the genetic diversity within the individual communities was
significantly different from their pooled genetic diversity.

Overall, 43% of bacterial species-level OTUs were unique to
the enriched fraction, indicating a large portion of the total sedi-
ment community is lignocellulose-responsive. When we examined
the specific bacterial taxa identified, we found a diverse bacte-
rial community in both the lignocellulose-responsive and non-
responsive communities, which both included diverse members of
the Alpha-, Delta-, and Gamma-proteobacteria and Bacteroidetes.

Among genera representing 4% of the community or greater
that were only found in the 13C-lignocellulose-responsive com-
munity, we identified members of the Desulfosarcina, Kangiella,
Spirochaeta, and an uncultured group NKB5 (Figure 3A). Lineages
that represented 4% or more and were only found in the non-
responsive community were JTB148 (an unclassified member of
Chromatiaceae), JG37-AG-15 (unclassified Myxococcales), Haliea
and Desulfobulbus (Figure 3B). Notably, sequences assigned to the
Flavobacterial genus Sediminibacter were abundant in both the

FIGURE 3 | Relative contributions of genera in (A) lignocellulose-responsive bacterial community and (B) non-responsive bacterial community.

Cultured genera and uncultured lineages that comprised less than 2% of clones, respectively, were separately grouped.
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responsive and non-responsive communities (6 vs. 5%, respec-
tively; Figure 3). However, when viewed more generally at the
Class level, there was roughly twice the percentage of Flavobacteria
(19%) clones in the enriched community as in the non-enriched
community (10%; data not shown).

DISCUSSION
Lignocellulose-degrading and utilizing bacteria are ecologically
important in any plant-dominated ecosystem (McCarthy, 1987;
Romani et al., 2006), and in salt marshes bacterial communities
are thought to be largely supported by Spartina-derived car-
bon (Bushaw-Newton et al., 2008). Recent SIP studies utilizing
13C-labeled substrates have uncovered active microbial cellulose
degraders or carbon utilizers in environmental samples (Haichar
et al., 2007; Bastias et al., 2009; Eichorst and Kuske, 2012). How-
ever, this is the first study to report the successful use of SIP with
lignocellulose, a more realistic proxy for plant carbon than cellu-
lose alone, to identify microbes responsive to macrophyte-derived
carbon.

Sediment bacterial diversity has often been measured as an indi-
cator of general ecosystem community response, since changes in
the metabolic activity of microbes have the potential to impact
system stability (Hunter-Cevera, 1998). The main goal of this
study was to identify the specific microbial communities capable
of contributing to carbon cycling by degrading lignocellulose or
incorporating its breakdown products. Members of the deltapro-
teobacterial genus Desulfosarcina made up 6% of the enriched
community. This group of sulfate-reducing bacteria (SRB) is com-
monly found in salt marshes, mud flats, hypersaline mats, and
marine microbial biofilms (So and Young, 1999; Bahr et al., 2005;
Mussmann et al., 2005; Buhring et al., 2009). Diverse SRB com-
munities have been identified as key remineralizers in salt marsh
sediments (Klepac-Ceraj et al., 2004; Bahr et al., 2005), and rates of
sulfate reduction have been indirectly linked with seasonal changes
in Spartina primary production (Howarth and Teal, 1979). How-
ever, SRB typically respire simpler carbon substrates such as fatty
acids that have been produced by fermenters, suggesting that these
may be end users of the decomposing macrophyte carbon. Nev-
ertheless, our findings provide a direct link between plant-derived
carbon and these SRB in salt marsh sediments. In addition, the
prevalence of members of the SRB lineage Desulfobulbus in the
non-responsive fraction indicates that not all SRB lineages were
end users of plant carbon in this study.

In the responsive fraction, 5% of the bacterial sequences were
most closely related to Kangiella, a genus of non-motile, gram-
negative Gammaproteobacteria (Yoon et al., 2004; Han et al., 2009)
found in marine sediments (Romanenko et al., 2010). Cultured
members of this group have not previously been shown to degrade
complex carbon (Yoon et al., 2004; Jean et al., 2012) suggesting pos-
sible new roles for Kangiella either directly using lignocellulose or
indirectly using lignocellulose-derived degradation by-products in
the HBW marsh. Alternatively, we cannot rule out the possibility
that during the 30-day incubation period, cross feeding among
bacterial groups occurred in this microcosm, which could also
result in labeling of unexpected lineages such as Kangiella. Never-
theless, these findings indicate that unexpected sediment groups
benefit at least indirectly from plant carbon.

Six percent of the enriched fraction sequences were identified
as Spirochetes, which were not found in the non-enriched bac-
terial community. Free-living anaerobic spirochetes are common
in marine sediments and microbial mats including those found
in salt marshes (Teal et al., 1996; Margulis et al., 2010) and have
been found to respond chemotactically to cellobiose in lab cul-
tures (Breznak and Warnecke, 2008). They have also been shown
to exist as symbionts in the guts of insects (Droge et al., 2008;
Berlanga et al., 2010), likely aiding in the breakdown of lignocel-
lulose components. While we have not specifically identified gut
contents of invertebrates in this study, it is possible that some of
the bacteria in the HBW marsh are associated with larval insects
that commonly inhabit salt marsh sediments.

In the non-responsive community, unclassified members of
Chromatiaceae and Myxococcales were abundant. These two
groups would not be predicted to be lignocellulose utilizers as pur-
ple sulfur photoautotrophs fix their own carbon and Myxococcales
typically prey upon other bacteria. At this point it is unknown if
they are unable to incorporate plant-derived carbon or perhaps
they were outcompeted for lignocellulose-derived substrates in
our study.

Members of the Flavobacterial genus Sediminibacter were
commonly recovered from both responsive and non-responsive
fractions. This is a poorly characterized genus named for a sin-
gle species of gram-negative chemoheterotrophic bacteria isolated
from marine sediments in Japan (Khan et al., 2007). However, not
all members of the Flavobacteria were abundant in both fractions.
Overall, there was roughly twice the percentage of Flavobacte-
ria in the lignocellulose-responsive community compared to the
non-enriched community. Flavobacteria have been found to be
associated with decaying Spartina blades in southeastern U.S.
coastal salt marshes (Buchan et al., 2003), potentially because of
their ability to degrade complex carbon-rich litter in salt marshes
(Lydell et al., 2004; Das et al., 2007). Flavobacteria have also been
identified as cellulose-responsive via SIP in cellulose-amended
pine forest soils (Eichorst and Kuske, 2012) and as members of
a lignocellulytic consortium in biofuel experiments (DeAngelis
et al., 2010). Our study in salt marsh sediments corroborates these
findings by directly linking lignocellulose-derived carbon to some
members of the Flavobacteria.

These findings have identified key lignocellulose-responsive
groups in the Huntington Beach Wetland. However, this should
not be considered an exhaustive study as we have not fully ana-
lyzed (i.e., sequenced) replicate samples, and the clone libraries
we obtained did not fully capture the diversity of lignocellulose-
responsive bacteria as seen in our rarefaction analyses, which
indicated that a higher sampling effort is needed to fully uncover
the diversity of these samples. High levels of species richness
and diversity are common for sediment microbial communities
(Hughes et al., 2001; Hughes and Hellmann, 2005). However,
the fact that significantly different communities were observed
between the labeled and non-labeled fractions indicates that even
these relatively small libraries were sufficient to identify commu-
nity differences and redundancy of species-level OTUs up to 6%
was seen in these libraries. Future studies combining SIP with next
generation sequencing approaches will more thoroughly sample
the biodiversity of carbon utilizers in salt marsh sediments.
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CONCLUSION
Despite the importance of understanding food web structure
and carbon storage potential in the environment, the role of
microbes, especially diverse bacteria, within ecosystems like
this can be difficult to detect and quantify (Neutel et al., 2002,
2007). Indeed little is known about the linkage between plants
and microorganisms in highly productive ecosystems such as
salt marshes (Koretsky et al., 2005). Our application of DNA
SIP to identify lignocellulose-responsive bacteria has provided a
direct link between the source and fate of macrophyte carbon
in salt marshes for the first time, a key step in understanding
the full spectrum of carbon cycling in these important ecosys-
tems. In addition, regional variability has been observed in
carbon storage potential among marshes (Chmura et al., 2003).
Studies such as ours, which identify potential bacterial decom-
poser communities in southern California salt marshes, advance
our understanding of the value of marshes in this region for
long-term carbon sequestration. This study represents a first
step in identifying lignocellulose-responsive bacterial commu-
nities, demonstrating the efficacy of the SIP approach with
lignocellulose and in salt marshes. Future studies in this and
other California coastal salt marshes should specifically target
these identified lignocellulose-responsive bacterial groups to fur-
ther elucidate their role in salt marsh carbon degradation and
utilization.
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