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          1   Introduction 

 Dengue fever (DF) is a mosquito-borne infectious disease caused by the viruses of 
the genus  Togaviridae  subgenus  Flavirus . The disease has fi rst appeared in the 
Phillipines in 1953, and from then on it has become the most important anthropod-
borne viral disease due to its spread among humans (Monath  1994  ) . The reemer-
gence of this disease worldwide is causing larger, more frequent epidemics especially 
in cities and in the tropics. Dengue virus infection has been reported in more than 
100 countries, with 2.5 billion people living in areas where dengue is endemic (CDC 
 2000 ; Guzman and Kouri  2002 ; PAHO  2007  )  (see Fig.  1.1 ). Dengue is one of the 
major international public health concerns of World Health Organization (WHO) 
because of the growing geographic distribution of virus and mosquito vectors, 
 co-circulation of multiple virus serotypes and higher frequency of the epidemics.  

 The disease is caused by four distinct, but closely related viruse serotypes DEN1, 
DEN2, DEN3, and DEN4, which are transmitted to humans through the bites of 
infective female  Aedes  mosquitoes (Gubler  1998  ) . A person who recovers from the 
infection due to one of the virus serotypes would have life long immunity against 
that serotype but he is susceptible to subsequent infection by the other three  serotypes. 
There is strong evidence (De Paula and Fonseca  2004 ; Gubler  1998 ; Halstead  2007 ; 
Harris et al.  2000 ; Monath  1994 ; Nimmannitya  1997 ; Ooi et al.  2007 ; Wilder-Smith 
and Schwartz  2005  )  that subsequent infections would increase the risk of more acute 
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forms of the disease known as dengue hemorrhagic fever (DHF) and dengue shock 
syndrome (DSS) which could be fatal and may even lead to death. The annual occur-
rence is estimated to be around 100 million cases of DF and 250,000 cases of DHF. 
The mortality rate is around 25,000 per year (Gibbons  2002  ) . The mortality rate is 
most common in children. The main pathophysiology of DHF and DSS is the devel-
opment of plasma leakage from the capillaries, resulting in hemoconcentration, 
ascites, and pleural effusion that may lead to shock (Halstead  1998  ) . 

 The clinical symptoms of dengue illness overlap with other illnesses (George 
and Lum  1997 ; Harris et al.  2000 ; Wilder-Smith and Schwartz  2005  )  causing a 
confounding problem in disease surveillance and management (Ooi et al.  2007  ) . 
De fi nitive laboratory diagnosis requires isolation of the virus ribonucleic acid 
(RNA) by polymerase chain reaction (PCR) test, immuno fl uorescence, or immuno-
histochemistry (De Paula and Fonseca  2004 ; Halstead  1998 ; Vaughn et al.  2000  ) . 
Further, the places where dengue is endemic may not have the necessary infrastruc-
ture to carry out these tests (Ooi et al.  2007  ) . Thus, a scheme for a reliable clinical 
diagnosis based on the data would be useful for early recognition of dengue fever. 

 WHO  (  2009  )  has evolved a scheme for classifying dengue infection based on the 
symptoms of the disease (see Table  1.1 ). Halstead (Halstead  2007  )  reviewed the 
clinical diagnosis and pathophysiology of vascular permeability and coagulopathy, 
parenteral treatment of DHF/DSS, and suggested new laboratory tests.  

 Recent mathematical models both deterministic (Derouich et al.  2003 ; Esteva 
and Vargas  1998,   1999 ; Pongsumpun and Tang  2001  )  and stochastic (Grassly and 
Fraser  2008 ; Medeiros et al.  2011 ; Paula et al.  2003 ; Wearing and Rohani  2006  )  
provide an insight into the dynamics of the dengue disease. In most of the studies 
the incidence rates and age structure play a vital role in understanding the transmis-
sion of the virus. The rate of spread of an infectious disease which is an important 
aspect for disease management is estimated using a neural network technology 
(Sree Hari Rao and Naresh Kumar  2010  ) . Statistical analysis based on the   c   2  tests 

  Fig. 1.1    Worldwide spread of dengue from 2007 to 2010 (CDC  2011  )        
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for discrete attributes, logistic regression and Mann–Whitney  U  test for continuous 
attributes are applied on the clinical data sets for classifying issues related to the 
diagnosis (Chadwick et al.  2006 ; Kalayanarooj et al.  1997 ; Ramos et al.  2009  ) . 
Decision tree-based algorithms such as C4.5 have been used to differentiate den-
gue from non-dengue illness and predict the outcome of the disease. We have 
examined these issues critically and have established that our methodology yields 
more positive predictions when compared with those obtained by using C4.5 deci-
sion tree approach (Tanner et al.  2008  ) . 

 Strategies to identify individuals likely to be in the early phase of dengue infec-
tion based on clinical features alone using the evidences or rules generated from the 
data would be of great help to the public health of fi cials in prioritizing and directing 
patient strati fi cation for clinical investigations and management. The authors have 
developed a new alternating decision tree (RNIADT for short) (Sree Hari Rao and 
Naresh Kumar  2011c  )  methodology which generates more accurate decisions rules 
as compared to the C4.5 decision tree (Tanner et al.  2008  )  and logistic regression 
(Chadwick et al.  2006 ; Ramos et al.  2009  )  for identifying the early clinical features 
that predict the diagnosis of dengue. Tanner et al.  (  2008  )  have applied C4.5 decision 
tree algorithm on acute febrile illness affected individuals using simple clinical and 
hematological parameters. Further, this study also requires laboratory features such 
as platelet count, crossover threshold value of a real-time PCR (RT-PCR) for dengue 
viral ribonucleic acid (RNA) and the presence of preexisting anti-dengue immuno-
globulin G (IgG) antibodies. It is known that administration of these laboratory tests 
require 2–12 days (Sa-Ngasang et al.  2006 ; Vaughn et al.  1997  )  and in some cases 
the condition of the patient may not allow such a long wait. However, the research 
in Tanner et al.  (  2008  )  provides more insight into the scienti fi c understanding of 
the disease prevalence among the infected individuals. From the effective clinical 
management point of view, it is desirable to have a methodology that helps one to 
identify the suspected dengue individuals from simple clinical features. This helps 
to reduce the spread of the disease in the community. 

   Table 1.1    WHO characteristics of dengue    fever   

 Dengue fever: Headache; retro-orbital pain; myalgia; arthralgia; rashes; hemorrhagic manifesta-
tions; leukopenia and supportive dengue fever serology or occurrence at the same location 
and time as other con fi rmed cases of dengue 

 Dengue hemorrhagic fever. (a) fever or history of acute fever, lasting 27 days, occasionally 
biphasic; (b) bleeding (hemorrhagic tendencies), evidenced by at least one of the following; 
a positive tourniquest test (TT); petechiae, ecchymosis, or purpura; bleeding from the 
mucosa; gastrointestinal tract; injection sites or other locations; hemotemesis or melena; 
thrombocytopenia (100,000 cells/mm 3  or less). (c) Evidence of plasma leakage due to 
increased vascular permeability, manifested by at least one of the following: a rise in the 
hematocrit equal or greater than 20% above average for age, sex and population; a drop in the 
hemotocrit following volume-replacement treatment equal to or greater than 20% of baseline; 
signs of plasma leakage such as pleural effusion; ascites, and hypoproteinemia 

Dengue shock syndrome: Fever; hemorrhagic tendencies; thrombocytopenia, and plasma leakage 
must all be present plus evidence of circulatory failure manifested as: rapid and weak pulse; 
narrow pulse pressure (<20 mmHg) or hypotension for age (this is de fi ned as systolic; 
pressure <80 mmHg for those less than 5 years of age, or <90 mmHg for those 5 years of age 
and older); cold clammy skin and restlessness 
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 The main emphasis in this chapter is to present methods other than those fol-
lowed conventionally by clinicians. The following are the principal objectives of the 
present study:

   (a)    To de fi ne the early clinical features of suspected dengue in children and adults 
which helps reduce the dengue virus transmission in a community  

   (b)    To develop a new alternating decision tree methodology for predicting the diag-
nosis of dengue utilizing both clinical and laboratory features and to compare 
with other approaches based on statistical methods, logistic regression, and 
decision tree algorithms such as C4.5  

   (c)    To examine the conformability of the WHO de fi nitions of dengue fever on the 
realistic clinical and laboratory data  

   (d)    To develop an accurate model which can predict the diagnosis of dengue based 
on clinical and laboratory features     

 In order to achieve this, we have used the data sets having 1,044 data records 
of dengue affected populations consisting of both children and adults from cen-
tral and western States of India.  

    2   Dengue Virus Biology 

 The following details concerning the dengue virus and Dengue virus biology may 
be found in Net DV (2011). For the sake of brevity we present the following details 
(Net DV (2011)).

The size of the dengue virus is around 50 nm and is enveloped with a lipid mem-
brane (Fig.  1.2 ). The total genome is approximately 10.6 kb in length. A short trans-
membrane segment attaches the viral membrane with 180 identical copies of the 
envelope (E) protein. The genome of the virus has about 11,000 bases that encode a 
single large polyprotein that is subsequently cleaved into several structural and non-
structural mature peptides. The polyprotein is divided into three structural proteins, 
 C ,  prM ,  E ; seven nonstructural proteins,  NS 1,  NS 2 a ,  NS 2 b ,  NS 3,  NS 4 a ,  NS 4 b ,  NS 5; 
and short noncoding regions on both the 5 ¢  and 3 ¢  ends (Fig.  1.3 ). The structural 
proteins are the capsid (C) protein, the envelope (E) glycoprotein and the membrane 
(M) protein, derived by furine-mediated cleavage from a prM precursor. The  E  gly-
coprotein is responsible for virion attachment to receptor and fusion of the virus 
envelope with the target cell membrane and bears the virus neutralization epitopes. 
In addition to the  E  glycoprotein, only one other viral protein,  NS 1, has been associ-
ated with a role in protective immunity.  NS 3 is a protease and a helicase, whereas 
 NS 5 is the RNA polymerase in charge of viral RNA replication.   

    2.1   Life Cycle of Dengue Virus 

 The life cycle of dengue virus involves endocytosis via a cell surface receptor 
(Fig.  1.4 ). The virus uncoats intracellularly via a speci fi c process. In the infec-
tious form of the virus, the envelope protein lays  fl at on the surface of the virus, 
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forming a smooth coat with icosahedral symmetry. However, when the virus is 
carried into the cell and into lysozomes, an acidic environment causes the protein 
to snap into a different shape, assembling into trimeric spike. Several hydropho-
bic amino acids at the tip of this spike inserts into the lysozomal membrane and 
causes the virus membrane to fuse with lysozome. This releases the RNA into the 
cell and infection starts.  

 The dengue virus (DENV) RNA genome in the infected cell is translated by the 
host ribosomes. The resulting polyprotein is subsequently cleaved by cellular and 
viral proteases at speci fi c recognition sites. The viral nonstructural proteins use a 
negative-sense intermediate to replicate the positive-sense RNA genome, which 
then associates with the capsid protein and is packaged into individual virions. 
Replication of all positive-stranded RNA viruses occurs in close association 
with virus-induced intracellular membrane structures. DENV also induces such 
extensive rearrangements of intracellular membranes, called replication complex 
(RC). These RCs seem to contain viral proteins, viral RNA, and host cell factors. 
The subsequently formed immature virions are assembled by budding of newly 
formed nucleocapsids into the lumen of the endoplasmic reticulum (ER), thereby 

  Fig. 1.2    Dengue virus particle (Stephen et al.  2007  )        

  Fig. 1.3    Dengue virus genome       
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acquiring a lipid bilayer envelope with the structural proteins  prM  and  E . The viri-
ons mature during transport through the acidic trans-golgi network, where the  prM  
proteins stabilize the  E  proteins to prevent conformational changes. Before release 
of the virions from the host cell, the maturation process is completed when  prM  is 
cleaved into a soluble  pr  peptides and virion-associated  M  by the cellular protease 
furin. Outside the cell, the virus particles encounter a neutral  pH , which promotes 
dissociation of the  pr  peptides from the virus particles and generates mature, infec-
tious virions. At this point the cycle repeats itself (Net DV,  (  2011  ) .   

    3   Transmission of Dengue Virus 

 The dengue virus is transmitted mainly by the mosquitoes belonging to 
 Aedes   species. Among them the most prevalent species are  Aedes aegypti  and  Aedes 
albopictus . In some of the regions in Paci fi c Islands and New Guinea  Aedes 
 polynesiensis ,  Aedes scutellaris  and  Aedes pseudoscutallaris  transmit the disease. 
The  A. polynesiensis  in Society Islands and  Aedes niveus  in the Philippines are the 
other mosquitoes belonging to this species that transmit the virus (  http://www. 
nathnac.org/pro/factsheets/dengue.htm    ). These mosquitoes prefer to breed close to 
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  Fig. 1.4    Dengue virus life cycle (Net  2011  )        
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human habitation where water- fi lled receptacles, small pools that collect in dis-
carded human waste are found. They are active during the daylight hours and they 
feed throughout the day indoors and during overcast weather. 

 The  A. aegypti  being a holometabolous insect undergoes a complete metamor-
phosis with an egg, larvae, pupae, and adult stage in its life cycle. The life cycle of 
 A. aegypti  can be completed within one-and-a-half to 3 weeks. The environmental 
conditions play a crucial role in deciding the adult lifespan which may range any-
where from 2 weeks to a month. 

 The bites of the infective female  Aedes  mosquitoes transmit the disease to 
humans. The main source of virus for the uninfected mosquitoes is the infected 
humans. The virus is acquired by the mosquitoes while probing and feeding on the 
blood of an infected person. The infected mosquito is capable of spreading the 
disease after 8–10 days of incubation. During the incubation period the virus repli-
cates within the mosquito’s salivary gland. Once the mosquito acquires the infec-
tion it is capable of spreading the disease to the end of its life. The mosquito’s eggs, 
however, can survive for as long as 1 year and at temperatures as low as 10°C 
(50°F). The mosquitoes transmit the disease to a susceptible human during probing 
and blood feeding. There is no de fi nitive theory to say whether a particular 
mosquito carries the dengue virus or not. The infected female mosquitoes through 
the transovarial process may also transmit the virus to their offsprings, but the role 
of this in sustained transmission of the virus to humans has not yet been de fi ned. 

 Clinical symptoms in humans indicate the circulation of the virus, and this 
condition would prevail approximately around 2–7 days.  

    4   Clinical Epidemiology 

 The clinical symptoms such as malaise and headache, followed by sudden onset of 
fever, intense backache and generalized pains, mainly in the orbital and periarticular 
areas are manifested within 6 days of infection (  http://www.histopathology-india.
net/Dengue.htm    ). There would be a recurrence of fever for a day or two (saddleback 
fever) after a nonfebrile interval of 24–48 h. During this time skin rashes and lymph-
adenopathy appear in the infected humans. There is a greater risk to persons who are 
previously exposed to this virus as an enhanced uptake of the virus into the host 
cells by the antiviral antibodies which may lead to disseminated intravascular coag-
ulation and death due to shock (hemorrhagic dengue). 

    4.1   Pathological Features 

 Biopsy studies of the rashes reveal that in the cases of nonfatal dengue, lymphocytic 
vasculitis is found in the dermis whereas in the cases of fatal DHF the gross  fi ndings 
are petechial hemorrhages in the skin, hemorrhagic effusions in the pleural, pericar-
dial, and abdominal cavities. In many organs hemorrhage and congestion are seen. 
Histopathological examinations reveal hemorrhage, perivascular edema, and focal 

http://www.cdc.gov/ncidod/dvbid/dengue/mapdistribution-2000.htm
http://www.cdc.gov/ncidod/dvbid/dengue/mapdistribution-2000.htm
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necrosis but no evidence of vasculitis or endothelial lesions. It is observed that most 
of the morphologic abnormalities are due to disseminated intravascular coagulation 
and shock.  

    4.2   Serotypes 

 The dengue infection may spread due to any of the four known serotypes of the 
 fl avivirus. Based on the serotype of the virus spreading the infection, the dengue 
fever is termed DEN-1, DEN-2, DEN-3, and DEN-4. Even though the viral subtypes 
are closely related, they are antigenetically distinct. Therefore, a person already 
infected by one speci fi c dengue serotype has lifelong homotypic immunity against 
a reinfection by the same serotype. In addition there will be a brief period of some 
partial heterotypic immunity but it does not provide permanent immunity or protec-
tion against the potential infection by any of the other serotypes. There is a possibil-
ity of having several serotypes circulating concurrently within an exposed population 
during epidemics. This is of vital importance in view of the fact that, dengue fever 
that produces some minor nonspeci fi c viral symptoms, may also progress towards 
its more aggressive and often fatal form known as DHF. 

 Once a human being becomes infected by the bite of the  Aedes  mosquito, the 
incubation period is anywhere between 3 and 14 days (with an average lag time of 
4–7 days), during which the viral replication takes place. The virus primarily targets 
the reticuloendothelial system, including dendritic cells, endothelial cells and hepa-
tocytes (  http://www.medicinemd.com/Med_articles/Dengue_fever_en.html    ). After 
5–7 days of acute febrile illness, recovery is usually complete within 1–2 weeks.  

    4.3   Symptoms 

 The initial dengue infection may be asymptomatic and results in a nonspeci fi c 
febrile illness, or it may produce complex manifestations of the classic dengue fever. 
A characteristic presentation of the symptoms includes sudden onset of fever, 
accompanied by severe frontal headaches, and joint (arthralgia), and muscle pains 
(myalgia). Some patients also experience nausea or vomiting and develop rashes on 
skin. The rashes would appear 3–5 days after the initial infection, and spreads from 
the torso to the extremities and the face. 

 Some patients, who have previously been infected by one of the dengue serotypes, 
may also develop bleeding and endothelial leakage upon infection with another 
dengue serotype. This syndrome is termed DHF. Subsequently, some patients with 
DHF may also develop shock (DSS), which is lethal and may lead to death of the 
infected person. 

 The symptoms of DHF and/or DSS are much more severe than in dengue fever, 
and usually occur within 3–7 days of the illness, coinciding with the time of decline 
or interruption of the phase of fever. The primary symptoms of DHF and DSS 

http://www.cdc.gov/ncidod/dvbid/dengue/mapdistribution-2000.htm
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consist of plasma leakage and bleeding. The plasma leakage is caused by an 
increased capillary permeability, often resulting in hemoconcentration, pleural 
effusions, and ascites. Bleeding is caused by capillary fragility and thrombocytope-
nia (a marked decrease of platelets) which may result in bleeding incidents into the 
skin (petechial skin hemorrhages), or even life-threatening bleeding into the gastro-
intestinal tract. 

 The DHF or DSS symptoms appear only in patients who are earlier infected by 
one or more of the dengue serotypes. Typically, the basic dengue fever lasts for 
about 6–7 days, with a trailing end of the fever curve after a small peak (biphasic 
fever pattern). The patient’s thrombocytes (platelets) keep dropping until the 
patient’s temperature has returned to normal. 

 It is found that dengue clinical symptoms share a commonality with those of 
others illnesses such as malaria, typhoid fever, leptospirosis, West Nile virus infec-
tion, measles, rubella, acute human immunode fi ciency (AIDS) virus conversion 
disease, viral hemorrhagic fevers, rickettsial diseases, early severe acute respiratory 
syndrome (SARS), and any other disease that can manifest in the acute phase as an 
undifferentiated febrile syndrome.  

    4.4   Diagnosis 

 A con fi rmed diagnosis is established by culture of the virus, PCR tests, or serologic 
assays. The diagnosis of DHF is made on the basis of the following symptoms and 
signs: hemorrhagic manifestations; a platelet count of less than 100,000 per mm 3 ; 
and an objective evidence of plasma leakage, shown either by  fl uctuation of packed 
cell volume (greater than 20% during the course of the illness) or by clinical signs 
of plasma leakage, such as pleural effusion, ascites, or hypoproteinemia. 
Hemorrhagic manifestations without capillary leakage do not constitute DHF. 
Additional laboratory criteria for a positive diagnosis include one or more of the 
following:

   Demonstration of a fourfold or more increase in reciprocal IgG or immunoglob-• 
ulin M (IgM) antibody titers to one or more dengue virus serotype antigens  
  Isolation of the dengue virus from serum, plasma, or leukocytes  • 
  Demonstration of dengue virus antigens or viral genomic sequences, derived • 
from autopsy tissues     

    4.5   WHO Guidelines for Diagnosis of Dengue 

 WHO in 1975 established the following guidelines for the diagnosis of dengue 
fever:

   Fever  • 
  Hemorrhages positive tourniquet test, spontaneous bruising, mucosal bleeding, • 
vomiting blood or bloody diarrhea  
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  Thrombocytopenia less than 100,000 platelets/mm  • 
  Plasma leakage evident by a hematocrit level of more than 20% higher than • 
expected, or a drop of the hematocrit level by 20% or more, following IV  fl uid 
therapy; hypoproteinemia, pleural effusion and ascites (collection of  fl uids in the 
thoracic cavity and/or abdominal cavity)    

 In addition to the symptoms of dengue fever, DSS is de fi ned as including the 
following:

   A rapid and weak pulse  • 
  A narrow pulse pressure (<20 mmHg)  • 
  Hypotension  • 
  An altered mental status  • 
  Cool and clammy skin    • 

 Dengue fever being a viral disease, there is no direct therapy available. The treat-
ment is usually limited to supportive care. To maintain an adequate blood pressure 
and to prevent dehydration oral and intravenous  fl uids are provided. Platelet transfu-
sions are indicated, if the platelet count falls below 20,000 per  m l (normal level: 
200,000–400,000 per  m l), or if signi fi cant episodes of bleeding occur. Blood in the 
stool (melena) may indicate gastrointestinal bleeding and requires platelet and/or 
red blood cell transfusions. To manage the febrile episodes, acetaminophen contain-
ing drugs are preferred over aspirin, nonsteroidal anti-in fl ammatory drugs (NSAIDs) 
or corticosteroids. Patients with DHF or DSS require close observation, including 
intravenous (IV)  fl uids, such as Ringer’s lactate solution, starch, dextran 40 or albu-
min 5%, all of which may be of value to the patient. Blood transfusions to replace 
blood loss or fresh frozen plasma for patients with a coagulopathy may be necessary 
in individual cases.

For more details we refer our readers to URL   http://www.medicinemd.com/
Med_articles/Dengue_fever_en.html       

    5   Knowledge Extraction Methods 

 Our notations and terminology are fairly consistent and may be understood by refer-
ring to WHO  (  2009  )  and other earlier works. Standard de fi nitions are used to com-
pute the speci fi city, sensitivity, predictive positive value, predictive negative value, 
and area under the curve (AUC). 

    5.1   Missing Values: Concerns 

 The missing values in databases may arise due to various reasons such as value 
being lost (erased or deleted) or not recorded, incorrect measurements, equipment 
errors, or possibly due to an expert not attaching any importance to a particular 

http://www.cdc.gov/ncidod/dvbid/dengue/mapdistribution-2000.htm
http://www.cdc.gov/ncidod/dvbid/dengue/mapdistribution-2000.htm
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procedure. The incomplete data can be identi fi ed by looking for null values in the 
data set. However, this is not always true, since missing values can appear in the 
form of outliers or even wrong data (i.e., out of boundaries) (Pearson  2005  ) . 
Especially in medical databases, most data are collected as a by-product of patient 
care activities rather than from an organized research point of view (Cios and 
Mooree  2002  ) . There are three main strategies for handling missing data situations. 
The  fi rst consists in eliminating incomplete observations, which has major limita-
tions namely loss of substantial information, if many of the attributes have missing 
values in the data records (Kim and Curry  1977  )  and this renders introduction of 
biases in the data (Little and Rubin  1987  ) . The second strategy is to treat the missing 
values during the data mining process of knowledge discovery and data mining 
(KDD) as envisaged in C4.5. The third method of handling missing values is through 
imputation, replacing each instance of the missing value with a probable or pre-
dicted value (Dixon  1979  ) , which is most suitable for KDD applications, since the 
completed data can be used for any data mining activity. 

 There are numerous methods for predicting or approximating missing values. 
Single imputation strategies involve using the mean, median, or mode (Schafer 
 1997  )  or regression-based methods (Horton and Lipsitz  2001  )  to impute the missing 
values. Traditional approaches of handling missing values like complete case analysis, 
overall mean imputation and missing-indicator method (Heijden et al.  2006  )  can 
lead to biased estimates and may either reduce or exaggerate the statistical power. 
Each of these distortions can lead to invalid conclusions. Statistical methods of 
handling missing values consist of using maximum likelihood and expectation max-
imization algorithms (Allison  2002 ; Roderick and Donald  2002 ; Schafer  1997  ) . 
Some of these methods would work only for certain types of attributes either nomi-
nal or numeric. Machine learning approaches like neural networks with genetic 
algorithms (Mussa and Tshilidzi  2006  ) , neural networks with particle swarm optimi-
zation (Qiao et al.  2005  )  have been used to approximate the missing values. The use 
of neural networks comes with a greater cost in terms of computation and training. 
Methods like radial basis function networks, support vector machines, and principal 
component analysis have been utilized for estimating the missing values. 

 The wrapper algorithm (Sree Hari Rao and Naresh Kumar  2011c  )  presented in 
 Appendix A  checks for the presence of missing values, imputes them if they are 
present and then generates the decision tree. It follows from the above study that 
using a complete data set rather than an incomplete one results in better decision 
making in terms of identifying the right set of attributes that contribute to the 
diagnosis of the disease.  

    5.2   Statistical Procedures 

 The univariate statistical method such as   c   2  test is applied on the data sets to identify 
the patients with abnormal clinical  fi ndings with respect to the diagnosis of the 
disease. Logistic regression is used to develop a model for selecting the clinical 
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attributes that in fl uence the diagnosis. Those clinical attributes with  p  < 0.2 in the 
univariate statistic are included in the model with age and gender as potential 
confounders. The speci fi city, sensitivity, predictive value of both positives and 
negatives are computed using standard formulae to identify the clinical attributes 
that can distinguish dengue from other illnesses in children and adults. In addition 
to the above metrics a better measure known as area under the curve (AUC) score is 
being used in place of accuracies and error rate as it can represent the overall per-
formance of a classi fi er (Huang and Ling  2005  )  in a robust manner. Based on the 
values (see Table  1.5 ) of the AUC one can categorize the performance of the 
classi fi er. The clinical attributes are selected either separately or in combination so 
as to have at least 70% positive and negative predictive values (Ramos et al.  2009  ) . 
The statistical analysis is carried out using SPSS© software. The machine learning 
algorithms are developed using MATLAB© and Weka© softwares (Sree Hari Rao 
and Naresh Kumar  2011a,   b,   c,   d  ) .  

    5.3   What Are Decision Trees? 

 Decision trees are machine learning methods that can solve the problems of label-
ing or classifying data items out of a given  fi nite set of classes using the features 
in the data items. Decision trees such as C4.5 (Quinlan  1993  ) , classi fi cation and 
regression trees (CART), alternating decision trees (ADTree) (Freund and Mason 
 1999  )  have been used in computational biology, bioinformatics and clinical diag-
nosis (Middendorf  2004 ; Tanner et al.  2008 ; Wong et al.  2004  ) . The C4.5 decision 
tree handles the missing values during the model induction phase of generating 
the tree. 

 Alternating decision trees are based on AdaBoost algorithm which generates 
rules based on the majority votes over simple weak rules (Freund and Mason  1999 ; 
Sree Hari Rao and Naresh Kumar  2011c  ) . An alternating decision tree consists of 
decision nodes (splitter node) and prediction nodes which can be either an interior 
node or a leaf node. The tree generates a prediction node at the root and then alter-
nates between decision nodes and further prediction nodes. Decision nodes specify 
a predicate condition and prediction nodes contain a single number denoting the 
predictive value. An instance can be classi fi ed by following all paths for which 
all decision nodes are true and summing the predictive value of the any prediction 
nodes that are traversed. A positive sum implies membership of one class and nega-
tive sum corresponds to the membership of the opposite class.  

    5.4   How to Generate and Interpret an Alternating Decision 
Tree? 

 To generate an alternating decision tree we apply the algorithm (see  Appendix A ) 
on the data set given in Table  1.2  speci fi cally chosen for the purpose of demonstra-
tion. The data set has three attributes: Attribute1 ∈ { A ,  B ,  C }, Attribute2 ∈ {True, 
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False}, and a decision attribute ∈ {Class1, Class2}. There are 14 instances out of 
which 9 belong to Class1 and 5 belong to Class2.  

 We designate Class1 as −1 and Class2 as +1. The initial sum of the weights with 
a precondition of the decision attribute being true is  W  

+
  = 5 and  W  

−
  = 9.    The initial 

prediction value at the root node is computed as = = -51
2 9n 0.2954.a I  The weights 

associated with these instances are then updated (see  Appendix A  item 3 (iv)) as 
= =0.2954

,1 0.745iw e  for Class1 and -= =0.2954
,1 1.341iw e  for Class2. We identify a 

weak classi fi er having a rule Attribute1 =  A . There are three instances in Class2 and 
two instances in Class1 with Attribute1 =  A . Therefore, the prediction value 

* +
* += =(3 1.341) 11

2 (2 0.745) 1n 0.351a I  and  b * +
* += = -(2 1.341) 11

2 (7 0.745) 1n 0.2617.I   The weights are readjusted 
before the next boosting iteration. An alternating decision tree for the data set given 
in Table  1.2  is shown in Fig.  1.5 . The root node indicates a predictive value of the 
decision tree before the splitting takes place. If the sum of all prediction values is 
positive then the instance belongs to the labeled Class1, otherwise it is placed in 
Class2. The prediction nodes are shown as ellipses and decision nodes as rectangles. 
The number in the ellipse indicates the boosting iteration. The dotted line connects 
the prediction nodes and the decision nodes, whereas a solid line connects the deci-
sion nodes with the prediction nodes. To classify an instance having attribute values 
Attribute1 =  A  and Attribute2 = true we  fi rst consider the root prediction value and 
based on the each instance value traverse the tree and add the prediction value of 
the particular node traversed. We derive the following sum by going down the 
 appropriate path in the tree collecting all the prediction value encountered: −0.294 + 
(−0.2617) + (0.373) = −0.1827 indicating that the instance belongs to Class1.  

 The above methodology has been followed in Sree Hari Rao and Naresh Kumar 
 (  2011a,   b,   d  )  for identifying the early clinical features and assessment of laboratory 
features for dengue diagnosis and their results are presented in Sect.  6  of this 
chapter.  

   Table 1.2    An example data set for generating 
alternating decision tree   
 Attribute1  Attribute2  Decision 

 A  True  Class1 
 A  True  Class2 
 A  False  Class2 
 A  False  Class2 
 A  False  Class1 
 B  True  Class1 
 B  False  Class1 
 B  True  Class1 
 B  False  Class1 
 C  True  Class2 
 C  True  Class2 
 C  False  Class1 
 C  False  Class1 
 C  False  Class1 
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    5.5   What are In fl uential Attributes? 

 Decision making in databases is based on the attributes or features that form the data 
set. The set of attributes that contribute to better decision making are termed 
in fl uential attributes. The presence of features that do not contribute much to the 
decision making degrades the performance accuracies of the supervised machine 
learning algorithms. The severity of this problem can be felt if one needs to search 
for patterns in large databases without considering the correlations between the 
attributes and the in fl uence of such attributes on the decision attribute. The selection 
of in fl uential features that maximizes the gain in the knowledge extracted from the 
data set is an important question in the  fi eld of machine learning, knowledge discovery, 
statistics and pattern recognition. 

 The machine learning algorithms including the top-down induction of decision 
trees such as classi fi cation and regression trees (CART), and C4.5 suffer from 
attributes that may not contribute much to decision making, thus affecting the 
performance of classi fi ers. A good choice of features would help reduce the 
dimensionality of the data set resulting in improved performance of the classi fi er 
in terms of accuracies and the size of the models, resulting in better understanding 
and interpretation.  

  Fig. 1.5    An example alternating decision tree       
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    5.6   How to Extract the In fl uential Attributes? 

 Feature selection is a popular technique to select the in fl uential attributes as a subset 
of the original features. Feature selection is often used as a preprocessing step in 
the data mining activity. In situations presented by real world processes, in fl uential 
features are often unknown a priori, hence features that are redundant or those that 
are weakly participating in decision making must be identi fi ed and appropriately 
handled. 

 Feature selection can be subdivided into  fi lter-based methods and wrapper 
approaches. Wrapper subset evaluation models (Ron and George  1997  )  use the 
method of classi fi cation itself to measure the importance of the feature set. Wrapper 
methods generally result in better performance in terms of classi fi cation accuracies 
than  fi lter methods because the features selected are optimized for the classi fi cation 
algorithm to be used. The wrapper approach (Kohavi and John  1998  )  de fi nes a sub-
set of solutions to a chosen data set and a particular induction algorithm, taking into 
account the inductive biases of the algorithm and its interaction with the training 
data set. The in fl uential attribute selection procedure using wrapper subset evalua-
tion is shown in Fig.  1.6 . The point of concern with the wrapper method is its com-
putational complexity as each feature set considered must be evaluated with the 
classi fi cation algorithm used (Dash and Liu  1997 ; Saeys et al.  2007  ) .   

  Fig. 1.6    Wrapper method of subset evaluation for selecting in fl uencing attributes       
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    5.7   How to Identify Optimal Feature Subsets? 

    5.7.1   Genetic Search 

 Genetic algorithms (GA) are stochastic optimization methods, inspired by the 
principle of natural selection. The search algorithms based on GA are capable of 
effectively exploring large search spaces (Goldberg  1989  ) . GAs performs a global 
search as compared to many search algorithms, which perform a local or a greedy 
search. 

 A genetic algorithm is mainly composed of three operators: reproduction, cross-
over, and mutation. Reproduction selects good string; crossover combines good 
strings to try to generate better offsprings; mutation alters a string locally to attempt 
to create a better string. In each generation, the population is evaluated and tested 
for termination of the algorithm. If the termination criterion is not satis fi ed, the 
population is operated upon by the above GA operators and then reevaluated. This 
procedure is continued until the termination criterion is met. The default parameters 
for GA search (Sree Hari Rao and Naresh Kumar  2011a ; Witten and Frank  2005  )  
are given in Table  1.3 . The results obtained by applying GA search (Sree Hari Rao 
and Naresh Kumar  2011a  )  for extracting in fl uential clinical and laboratory features 
of dengue are discussed in Sect.  6.5  of this chapter.   

    5.7.2   Particle Swarm Optimization Search 

 The particle swarm optimization (PSO) is an evolutionary computation method 
which emulates the movements of  fl ock of birds. The standard PSO consists of a 
randomly initialized population of size  N  known as particles. Each particle  p  

 i 
  can be 

viewed as a point in  K  dimensional space  p  
 i 
  = ( p  

 i 1
 ,  p  

 i 2
 , …,  p  

 iK 
 ). The  fi tness values of 

the best positions of the particles at a previous time is given by    fi
    
  = (   fi

    1
 ,    fi

    2
 , …,    fi

   K 
 ). 

The index of the particle which has the best  fi tness value is designated as ‘ g  
best

 ’. The 
rate of change of position (velocity) for a particle  i  is represented by     V  

 i 
  = ( v  

 i 1
 , 

 v  
 i 2
 , …,  v  

 iK 
 ). The positions of the particles are updated using the following    equations

     = +ij ij ijx x v    (1.1)  

   Table 1.3    Parameter values for genetic search   
 Attribute  Value 

 Start set 
 Population size 
 Number of generations 
 Probability of crossover 
 Probability of mutation 
 Report frequency 
 Random number seed 

 No attributes 
 20 
 20 
  0.6 
  0.033 
 20 
  1 
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     η η= ´ + ´ ´ - + ´ ´ -1 2rand1( ) ( ) rand2( ) ( )ij ij ij ij gj ijv w v f x f x    (1.2)  

where  j  = 1, …,  K ,  w  is the inertia weight which is a positive linear function of time 
that changes according to the generation iteration. The parameters   h   

1
  and   h   

2
  rep-

resent the acceleration terms that pulls the particles towards  p  
best

  and  g  
best

 . The 
rand1( ) and rand2( ) are random number generation functions. 

 The velocities of the particles are limited by a maximum velocity  V  
max

 . If  V  
max

  is 
too small then the particles may not explore beyond its locally good regions, i.e. 
they could be trapped in local optima. For the cases where  V  

max
  is too large the 

particles would  fl y past the good solutions. 
 A standard PSO search parameters are given in Table  1.4 . The PSO search for 

extracting in fl uential clinical and laboratory features of dengue has been utilized in 
Sree Hari Rao and Naresh Kumar  (  2011b  )  and their results are discussed in Sect.  6.5 .    

    5.8   Does Descretization of Numeric Attributes Improve 
Decision Making? 

 Chadwick et al.  (  2006  )  have dichotomized all nominal laboratory features except 
WBC which was trichotomized to generate a user-friendly and accurate model. 

    5.8.1   Discretization Methods 

 Data discretization is the process of transforming quantitative attributes to qualita-
tive attributes. Data attributes are either numeric or categorical. While categorical 
attributes are discrete, numerical attributes are either discrete or continuous. 
Discretization involves dividing an attribute values into a number of intervals 
(min 

 i 
  … max 

 i 
 ) so that each interval can be treated as one value of a discrete attribute. 

The choice of the intervals can be determined by a domain expert or with the help 
of an automatic procedure. 

 The discretization methods such as equal width and equal frequency discretiza-
tion are unsupervised and have been used because of their simplicity and reasonable 
effectiveness. In equal width discretization (EWD) the attribute values are divided 
between  x  

min
  and  x  

max
  into  k  equal intervals such that each cut point is

     
min( )

min ( )-+ * x x

kx m max
   

   Table 1.4    PSO search parameters   
 Attribute  Value 

   h   
1
  

   h   
2
  

 Max generations 
 Number of particles ( N ) 

 2.0 
 20 
 50 
 100 
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where  m  takes on the values from 0, …, ( k  − 1). In equal frequency discretization 
(EFD) each subinterval in  k  between  x  

min
  and  x  

max
  has approximately the same num-

ber of sorted values of the attribute. Both EWD and EFD suffer from possible 
attribute loss on account of the predetermined value of  k . 

 A proportional  k -interval discretization (PKI) (Yang and Webb  2001,   2002  )  
adjusts discretization bias and variance by tuning the number and size of the inter-
val. This strategy seeks an appropriate trade-off between the bias and variance of 
the probability estimation by adjusting the number and size of intervals to the number 
of training instances. 

 The authors in Sree Hari Rao and Naresh Kumar  (  2011a,   b  )  have implemented 
the PKI algorithm on a dengue data set to convert the nominal laboratory features to 
categorical and evaluated the accuracies of different classi fi ers. The results are 
discussed in Sect.  6.5  of this chapter.   

    5.9   Standard Classi fi cation Methods 

 Standard machine learning classi fi ers such as RBFNetworks (RBF) (Haykins  1994  ) , 
Bayes Network (BNT) (Friedman et al.  1997  ) , logistic regression (LOR), Naive 
Bayes (NIB) (George and Pat  1995  ) , ADTree (ADT) (Freund and Mason  1999  )  and 
C4.5 (Quinlan  1993  )  have been utilized in Sree Hari Rao and Naresh Kumar  (  2011c  )  
to benchmark the performances of RNIADT and its ef fi cacy in extracting knowl-
edge from dengue data set.  

    5.10   Performance Metrics for Comparing Machine Classi fi ers 

 To evaluate the models generated by the decision trees, we employed a  k -fold cross 
validation algorithm ( k  = 10) as it is considered a powerful methodology to over-
come data over- fi tting (Kothari and Dong  2000  ) . The data set is divided into  k  sub-
sets, and the holdout method is repeated  k  times. Each time, one of the  k  subsets is 
used as the test set and the other  k  − 1 subsets are put together to form a training set. 
Then the average error across all  k  trials is computed. To compare and evaluate the 
decision trees popular performance measures such as sensitivity, speci fi city, receiver 
operator characteristics (ROC), and area under ROC (AUC) (Crichton  2002 ; Metz 
 1978  )  have been employed. The de fi nitions of the above measures are discussed 
brie fl y for the bene fi t of the readers. The classi fi cation task generates a set of rules 
which can be used for classifying individuals to different classes/groups. This may 
result in the following situations:

    1.    False positive (FP): the rules may predict the diagnosis of the patient as positive 
(presence of the disease) whereas the actual diagnosis is negative (absence of the 
disease).  

    2.    False negative (FN): the rules may predict the diagnosis of the patient as negative 
(absence of the disease) whereas the actual diagnosis is positive (presence of the 
disease).  
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    3.    True positive (TP): when the prediction of the classi fi er matches with the actual 
diagnosis as positive.  

    4.    True negative (TN): when the prediction of the classi fi er matches with the actual 
diagnosis as negative.     

 Based on the above situations the performance of the classi fi ers can be compared 
using the following standard measures:

   (a)    Sensitivity: the proportion of the people who are predicted as positive of all the 
people who are actually positive TP/(TP + FN).  

   (b)    Speci fi city: the proportion of the people who are predicted as negative of all the 
people who are actually negative TN/(TN + FP).  

   (c)    Positive predictive value: the proportion of the people whose predictions 
matches with the actual diagnosis as positives TP/(TP + FP).  

   (d)    Negative predictive value: the proportion of the people whose predictions 
matches with the actual diagnosis as negatives TN/(TN + FN).     

 A theoretical, optimal prediction can achieve 100% sensitivity (i.e., predict all 
people from the sick group as sick) and 100% speci fi city (i.e., not predict anyone 
from the healthy group as sick). 

 ROC is a plot between (1 − speci fi city) on  x -axis and sensitivity on  y -axis. The 
AUC is a measure of overall performance of the algorithm. The accuracy of the 
decision tree algorithms can be evaluated using the AUC measure as given in 
Table  1.5 .  

 The trade-off between the sensitivity and speci fi city is better captured by an ROC 
curve, which shows how sensitivity and speci fi city of a model vary with some tun-
able parameter, is related in a direct and natural way to cost/bene fi t analysis (Pepe 
 2003 ; Zweig and Campbell  1993  )  of diagnostic decision making. ROC curves allow 
one to distinguish among different models, depending on what model characteris-
tics we need, and to determine which parameter values will give us the best perfor-
mance for a given application. 

 By measuring the area under the ROC curve (AUC) (Hanley and McNeil  1982 ; 
Liu and Wu  2003  )  one can obtain the accuracy of the test. The larger the area, the 
better the diagnostic test is. If the area is 1.0, we have an ideal test because test 
achieves 100% sensitivity and 100% speci fi city. If the area is 0.5, we have a test 

   Table 1.5    AUC-based classi fi cation for 
assessing accuracy of the test results   
 Range  Class 

 0.9 < AUC < 1.0  Excellent 
 0.8 < AUC < 0.9  Good 
 0.7 < AUC < 0.8  Worthless 
 0.6 < AUC < 0.7  Not good 
 0.5 < AUC < 0.6  Failed 
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which has effectively 50% sensitivity and 50% speci fi city. In short the area measures 
the ability of the test to correctly classify those with and without the disease.

     
1

0
AUC = ò ROC ( )t dt

   (1.3)  

where  t  = 1 − speci fi city (false positive rate) and ROC( t ) is sensitivity (true positive 
rate). We can establish the following classi fi cation for the test. 

 Generally two approaches are employed for computing AUC. A nonparametric 
method based on constructing trapezoids under the curve as an approximation of 
area and a parametric method using a maximum likelihood estimator to  fi t a smooth 
curve to the data points. Huang and Ling  (  2005  )  demonstrated that AUC is a better 
evaluation measure than accuracy or error rate. A nonparametric method based on 
Mann–Whitney  U  statistic (actually the  p  statistic from the  U  statistic) has been 
applied for evaluating the classi fi ers (Sree Hari Rao and Naresh Kumar  2011d  ) .  

    5.11   Data Set 

 We  fi rst propose to identify early clinical features in both children and adults having 
known clinical diagnosis. This would enable one to determine the suspected dengue 
individuals in the community. To accomplish this task the authors (Sree Hari Rao 
and Naresh Kumar  2011d  )  have considered clinical features from a data set (see 
Table  1.6 ) consisting of 1,044 individuals belonging to central and western States of 
India. The patient records were segregated into children (5–15 years) and adults 

   Table 1.6    Clinical and laboratory features of dengue pertaining to 1,044 
individuals   

 Attribute  Type 

 Vomiting/nausea 
 Myalgia 
 Rashes 
 Bleeding site 
 Headache 
 Restlessness 
 Abdominal pain 
 Retro-orbital pain 
 Arthralgia 
 Fever 
 Fever duration 
 Pulse 
 Hemoglobin (Hb) 
 White blood cell(WBC) count 
 Platelet 
 Packed cell volume (PCV) 
 Diagnosis 

 No, yes 
 Yes, no 
 No, yes 
 No, yes 
 Yes, no 
 No, yes 
 No, yes 
 No, yes 
 No, yes 
 Real 
 Integer 
 Integer 
 Real 
 Real 
 Real 
 Real 
 Negative,   Positive 
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( ³ 16 years) as the clinical symptoms presented by them are not similar (Pongsumpun 
and Tang  2001 ; Ramos et al.  2009  ) . The data records included the demographic 
attributes age, gender in addition to clinical symptoms fever, fever duration, 
 headache, retro-orbital pain (eye pain), myalgia (body pain), arthralgia (joint pain), 
nausea or vomiting, rashes, bleeding sites, restlessness, and abdominal pain.  

 Later, we develop a method to handle the clinical and laboratory features for 
more accurate diagnosis and identi fi cation of operating range of numeric attributes 
that can aid in detecting the severity of the infection in suspected dengue individuals 
(Sree Hari Rao and Naresh Kumar  2011a  ) . The laboratory features hemoglobin 
(Hb), white blood cell count (WBC), packed cell volume (PCV), platelets were 
considered for analysis.   

    6   A Predictive Modeling Strategy 

 Our predictive modeling strategy is as follows: we have considered data records 
containing both clinical and laboratory features and known diagnosis of 1,044 
individuals. As a  fi rst step we consider all these records with clinical features only 
and utilizing the known diagnosis we apply our RNIADT methodology to determine 
the essential clinical features that would help identify the suspected dengue indi-
viduals. In the next step we use both clinical and laboratory features and the deci-
sion to build a predictive ADTree which has the capability of yielding the decision 
rules that con fi rm the diagnosis. The machine knowledge obtained by studying 
these 1,044 data records will be useful to diagnose other individuals (based on clinical 
and laboratory features) where the clinical decision is unavailable. 

 Of the 1,044 individuals with suspected dengue, 398 were children and 646 were 
adults. Out of the 398 children, 93 (23.3%) were dengue positive and 305 (76.7%) 
were dengue negative. Of the 646 adults, 256 (39.6%) were dengue positive and 390 
(60.4%) were dengue negative. 

    6.1   Predictive Clinical Features in Children 

 It was observed in Sree Hari Rao and Naresh Kumar  (  2011d  )  that dengue-positive 
children (average age 11.7 years) were likely to be younger than dengue-negative 
children (average age 12.9 years) ( p  < 0.05). No signi fi cant difference in the propor-
tions of male or female children between the dengue-positive and dengue-negative 
children was observed. The average fever duration for dengue positive was higher 
by 2 days when compared to dengue-negative ( p  < 0.05) children. Arthralgia was 
reported as the common clinical symptom among dengue-positive children 
(Table  1.7 ). Retro-orbital pain was reported 90% among dengue-positive children 
and 64% among dengue-negative children. Rashes were reported 78% and 83% 
among dengue-positive and dengue-negative children, respectively. The attributes 
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bleeding site and restlessness were reported least number of times among dengue-
positive and negative children; however, rashes and bleeding site have odds of 0.72 
times higher in dengue-positive children than in dengue-negative children.  

 The multivariate analysis revealed that dengue-positive children were 47 times 
more likely to present with arthralgia than dengue-negative children. Children with 
myalgia were found to be  fi ve times more likely to have dengue positive than den-
gue negative. 

 The alternating decision tree algorithm generated a model having clinical features 
arthralgia, headache, retro-orbital pain, and myalgia with a predictive value of 98.8% 
for dengue positive and 96.8% for dengue negative with an AUC of 0.98 (Table  1.8 ). 
The alternating decision tree for children between 5 and 15 is shown in Fig.  1.7 .   

   Table 1.7    Reported clinical features of suspected dengue-positive children   

 Clinical feature 
 Dengue positive 
( n  = 93),  n  (%) 

 Dengue negative 
( n  = 305),  n  (%) 

 Crude odds ratio 
(95% CI) 

 Classic dengue 
 Myalgia  33/93 (35.48)  114/305 (37.38)  0.92 (0.57–1.50) 
 Rashes  73/93 (78.49)  255/305 (83.61)  0.72 (0.40–1.28) 
 Bleeding site  2/93 (2.15)  0/305 (0.00)  0.72 (0.40–1.28) 
 Headache  11/93 (11.83)  197/305 (64.59)  0.07 (0.04–0.14) 
 Restlessness  2/93 (2.15)  0/305 (0.00)  0.07 (0.04–0.14) 
 Abdominal pain  14/93 (15.05)  93/305 (30.49)  0.40 (0.22–0.75) 
 Retro-orbital pain  84/93 (90.32)  196/305 (64.26)  5.19 (2.51–10.73) 
 Arthralgia  85/93 (91.40)  56/305 (18.36)  47.24 (21.64–103.13) 
 Gastrointestinal

Nausea or Vomiting  60/93 (64.52)  245/305 (80.33)  0.45 (0.27–0.74) 

   Table 1.8    Early clinical features selected by RNIADT for predicting dengue   

 Decision attribute 
 Accuracy 
(%) 

 Sensitivity 
(%) 

 Speci fi city 
(%) 

 Predictive value 

 AUC 
 Positive 
(%) 

 Negative 
(%) 

 Children 
 Arthralgia  83.91  91.4  81.6  60.2  96.8  0.83 
 Arthralgia, headache  95.22  79.5  100  100  94.14  0.95 
 Arthralgia, headache, 

retro-orbital pain, 
myalgia 

 96.48  86.02  99.67  98.77  95.9  0.98 

 Arthralgia, headache, 
retro-orbital pain, 
myalgia, 
abdominal pain 

 97.27  89.2  99.67  98.8  96.8  0.98 

 Adults 
 Arthralgia  82.2  83.9  81.0  74.3  88.5  0.79 
 Arthralgia, myalgia, 

rashes, headache, 
vomiting or nausea, 
abdominal pain 

 84.98  75.3  91.3  85.0  84.9  0.88 
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-0.59 (-ve = Negative, +ve = Positive)

1: Arthralgia 2: Headache 5: retro-orbitalPain 8: Myalgia

0.786

= yes

-1.099

= no

4: Myalgia 6: retro-orbitalPain 7: AbdominalPain

0.244

= yes

-0.825

= no

-0.765

= yes

0.376

= no

-0.988

= yes

0.16

= no

9: Headache

-0.816

= yes

0.205

= no

-1.124

= yes

0.807

= no

3: Arthralgia

1.669

= yes

-0.405

= no

0.794

= yes

-0.489

= no

-0.25

= yes

0.339

= no

  Fig. 1.7    Alternating decision tree generated based on clinical features in children       

 The C4.5 decision tree classi fi er had identi fi ed arthralgia, retro-orbital pain, 
headache, rashes, and abdominal pain as in fl uential attributes with an accuracy of 
90.7% and predictive positive value of 100% and negative predictive value of 89.2%. 
The logistic regression method when applied on the data set identi fi ed arthralgia, 
retro-orbital pain, bleeding site, and restlessness as having higher odds for identify-
ing dengue positive and negative in children as compared to the other attributes. 
The authors have found that RNIADT has identi fi ed myalgia as an in fl uential attri-
bute resulting in a more accurate classi fi er than C4.5 and logistic regression. The 
authors refer the readers to Sree Hari Rao and Naresh Kumar  (  2011d  )  for a more 
detailed analysis and comparisons. 

 The decision rules extracted from an alternating decision tree for suspected 
 dengue in children are as follows:

   (a)    The dominant clinical features identi fi ed are arthralgia, myalgia, retro-orbital 
pain.  

   (b)    If the patient is suffering from arthralgia, retro-orbital pain, myalgia, and does 
not have a headache and abdominal pain then the diagnosis is positive. The 
predictive score is computed as (0.786 + 0.807 + 1.669 + 0.244 + 0.794 + (−0.765) 
+ 0.16 + (−0.25) = 3.445).  

   (c)    If the patient is not suffering from arthralgia, retro-orbital pain, myalgia and if 
headache and abdominal pain are present then the diagnosis is negative. The 
score is computed as ((−1.099) + (−1.124) + (−0.405) + (−0.825) + (−0.489) + 0.3
76 + (−0.988) + 0.339 = −4.215).      
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    6.2   Predictive Clinical Features in Adults 

 It has been observed that the dengue-positive adults were likely older by 3 years 
when compared to dengue-negative adults (average of 28.99 years vs. 25.14 years 
respectively) ( p  < 0.05). The proportion of patients of both the male and female 
population did not differ between dengue-positive and dengue-negative adults. The 
classic dengue symptoms most commonly reported were arthralgia, retro-orbital 
pain followed by myalgia and rashes (Table  1.9 ). Arthralgia was reported most in 
dengue-positive patients than in dengue-negative patients.  

 The multivariate analysis revealed that the dengue-positive adults were more 
likely to report arthralgia than dengue-negative adults. They were also likely to 
report myalgia than dengue-negative adults. Nausea or vomiting was found to be 
more likely among dengue-positive than dengue-negative adults. The odds of  fi nding 
bleeding sites and retro-orbital pain are 1.8 and 1.75 times, respectively, in dengue-
positive adults than in dengue-negative adults. 

 The RNIADT generated a model with clinical attributes arthralgia, myalgia, 
rashes, abdominal pain, headache, and nausea or vomiting with an accuracy of 
86.2% and predictive value for positive cases as 87% and for negative is 85.7% with 
AUC of 0.91 (Table  1.8 ). The RNIADT generated for adults is shown in Fig.  1.8 . 
The In fl uential attributes identi fi ed by C4.5 decision tree are arthralgia, myalgia, 
rashes, bleeding site, vomiting or nausea, and restlessness with an accuracy of 
80.2% and predictive value of 85.2% for positives and 78.2% for dengue negatives 
with an AUC of 0.84. The logistic regression identi fi ed clinical features arthralgia, 
myalgia, retro-orbital pain, restlessness, and vomiting or nausea having higher odds 
with an accuracy of 77.7%, predictive value of 79.2% for positives and 77.1% for 
dengue negatives with an AUC of 0.78.  

 The following decision rules were extracted from the alternating decision tree for 
suspected dengue in adults:

   (a)    The dominant clinical features identi fi ed for positive diagnosis of dengue in 
adults are arthralgia and myalgia.  

   Table 1.9    Reported clinical features of dengue in adult patients   

 Clinical feature 
 Dengue positive 
( n  = 256),  n  (%) 

 Dengue negative 
( n  = 390),  n  (%) 

 Crude odds ratio 
(95% CI) 

 Classic dengue 
 Myalgia 
 Rashes 
 Bleeding site 
 Headache 
 Restlessness 
 Abdominal pain 
 Retro-orbital pain 
 Arthralgia 

 197/256 (76.95) 
 213/256 (83.20) 
 15/256 (5.86) 
 77/256 (30.08) 
 10/256 (3.91) 
 18/256 (7.03) 
 231/256 (90.23) 
 215/256 (83.98) 

 227/390 (58.21) 
 345/390 (88.46) 
 13/390 (3.33) 
 136/390 (34.87) 
 32/390 (8.21) 
 50/390 (12.82) 
 328/390 (84.10) 
 74/390 (18.97) 

 2.40 (1.68–3.41) 
 0.65 (0.41–1.01) 
 1.80 (0.84–3.86) 
 0.80 (0.57–1.13) 
 0.45 (0.22–0.94) 
 0.51 (0.29–0.90) 
 1.75 (1.07–2.86) 

 22.39 (14.73–34.05) 
 Gastrointestinal 

Nausea or Vomiting  87/256 (33.98)  111/390 (28.46)  1.29 (0.92–1.82) 
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-0.21 (-ve = Negative, +ve = Positive)

1: Arthralgia 2: Myalgia 4: Rashes 8: Headache

0.975

= yes

-0.937

= no

0.246

= yes

-0.521

= no

3: AbdominalPain

-0.471

= yes

0.037

= no

-0.048

= yes

0.342

= no

5: AbdominalPain

-0.541

= yes

0.016

= no

6: VomNau

0.234

= yes

-0.056

= no

7: Headache

0.393

= yes

-0.076

= no

9: Arthralgia

-0.286

= yes

0.097

= no

-0.259

= yes

0.096

= no

  Fig. 1.8    Alternating decision tree based on clinical features in adults       
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  Fig. 1.9    ROC curves for evaluating the models in the prediction of dengue-positive cases in 
children       

   (b)    The presence of abdominal pain is contributing for identifying negative cases of 
dengue.  

   (c)    If the patient is suffering from arthralgia and myalgia and does not show signs 
of abdominal pain, headache, vomiting or nausea, and rashes, then he or she is 
dengue positive. The predictive score can be computed from the alternating 
decision tree as (0.975 + 0.246 + 0.037 + 0.342 + 0.016 − 0.056 −0.076 + 0.096 − 0
.286 = 1.294).  

   (d)    If the patient is not suffering from arthralgia and myalgia but has symptoms 
such as abdominal pain, rashes, headache, and vomiting or nausea, then the 
diagnosis is negative. The predictive score is computed as (−0.937 − 0.521 − 0.4
71 − 0.048 − 0.541 + 0.234 + 0.393 − 0.259 + 0.097 = −2.053).     

 The receiver operator characteristic curves for RNIADT, C4.5 and logistic 
regression for children and adults are shown in Figs.  1.9  and  1.10 , respectively. The 
different performance metrics suggest that RNIADT algorithm has outperformed 
C4.5 and logistic regression methodologies.    

 



271 Predictive Dynamics: Modeling for Virological Surveillance…

    6.3   Predictive Clinical and Laboratory Features in Children 

 The alternating decision tree identi fi ed laboratory features platelet, WBC, and Hb 
having 100% positive predictive value and 99.67% negative predictive value with an 
AUC of 0.99 (see Table  1.10 ). The alternating decision tree generated using the labo-
ratory and clinical features for predicting dengue in children is shown in Fig.  1.11 . 
Further, the laboratory attributes with platelet count less than or equal to 140, WBC 
over and above 8.8 and Hb less than 12.5 contributed for positive diagnosis of den-
gue. The clinical attributes such as fever over and above 100.5°F, pulse over and 
above 81.5, and the presence of arthralgia contributed for positive diagnosis.    

    6.4   Predictive Clinical and Laboratory Features in Adults 

 The alternating decision tree identi fi ed laboratory features platelet, WBC, and Hb 
having 100% positive predictive value and 99.24% negative predictive value with 
AUC of 1.0 (see Table  1.11 ). In adults, arthralgia (positive prediction value of 1.37) 
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  Fig. 1.10    ROC curves for evaluating the models in the prediction of dengue-positive cases in 
adults       
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was found to be effective in diagnosis dengue. The alternating decision tree gener-
ated using the laboratory and clinical features for predicting dengue in adults is 
shown in Fig.  1.12 . Further, the laboratory attributes with platelet less than 167.5, 
WBC over and above 8.9, and Hb less than 12.5 contributed for positive diagnosis 

   Table 1.10    Accuracies obtained using clinical and laboratory features dengue in children   

 Method 
attribute 

 Accuracy 
(%)  Sensitivity  Speci fi city 

 Predictive value 

 AUC  Positive  Negative 

 RNIADT 
 ADT 
 BNT 
 C4.5 
 LOR 
 NIB 
 RBF 

 99.75 
 97.74 
 98.74 
 96.73 
 94.97 
 96.48 
 97.99 

 98.92 
 91.40 
 94.62 
 86.02 
 86.02 
 84.95 
 95.70 

 100.00 
 99.67 

 100.00 
 100.00 
 97.70 

 100.00 
 98.69 

 100.00 
 98.84 

 100.00 
 100.00 
 91.95 

 100.00 
 95.70 

 99.67 
 97.44 
 98.39 
 95.91 
 95.82 
 95.61 
 98.69 

 0.99 
 0.99 
 0.99 
 0.99 
 0.95 
 0.99 
 0.98 

-0.59 (-ve = Negative, +ve = Positive)

1: WBC 4: HB 5: Headache 6: Pulse

-0.715

< 8.8

2.43

>= 8.8

2: Arthralgia 8: Platelet 10: WBC

0.957

= yes

-2.142

= no

3: Fever

-1.65

< 100.5

1.065

>= 100.5

0.295

< 140

-0.738

>= 140

0.285

< 7.9

-0.562

>= 7.9

0.741

< 12.5

-1.456

>= 12.5

7: Arthralgia

0.695

= yes

-0.697

= no

9: Fever

-0.274

< 100.5

0.715

>= 100.5

-0.655

= yes

0.63

= no

-0.646

< 81.5

0.496

>= 81.5

  Fig. 1.11    RNIADT decision trees with predictive clinical and laboratory features of dengue in 
children       

   Table 1.11    Accuracies obtained using clinical and laboratory features dengue in adults   

 Method 
attribute 

 Accuracy 
(%)  Sensitivity  Speci fi city 

 Predictive value 

 AUC  Positive  Negative 

 RNIADT 
 ADT 
 BNT 
 C4.5 
 LOR 
 NIB 
 RBF 

 99.54 
 97.99 
 95.67 
 95.82 
 90.87 
 86.22 
 92.11 

 98.83 
 96.88 
 89.45 
 92.19 
 86.72 
 82.03 
 90.63 

 100.00 
 98.72 
 99.74 
 98.21 
 93.59 
 88.97 
 93.08 

 100.00 
 98.02 
 99.57 
 97.12 
 89.88 
 83.00 
 89.58 

 99.24 
 97.96 
 93.51 
 95.04 
 91.48 
 88.30 
 93.80 

 1.00 
 1.00 
 0.99 
 0.99 
 0.96 
 0.93 
 0.97 
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  Fig. 1.13    ROC curves for evaluating the models in the prediction of dengue in children using 
laboratory and clinical features       

of dengue. The presence of arthralgia in adults is contributed for positive predictions 
of dengue with a predictive value of 1.37. The clinical features such as fever over 
and above 101.5°F and fever duration over and above 5 days have high predictive 
scores for positive diagnosis of dengue.   

 The receiver operator characteristic curves for RNIADT, C4.5 and logistic regres-
sion for children and adults generated using clinical and laboratory features are 
shown in Figs.  1.13  and  1.14 , respectively.   

 It is quite evident from ROC curves that RNIADT has outperformed C4.5 and 
the logistic regression methods.  

    6.5   Identifying Predictive Clinical and Laboratory Features 
Using Feature Selection Methods 

 A dengue data set consisting of both laboratory and clinical features has been 
 considered in Sree Hari Rao and Naresh Kumar  (  2011a  )  (see Table  1.6 ) to establish 
more accurate and simpli fi ed decision rules. The data set had missing values up to 
20% in each of the attributes. The decision tree algorithm presented in  Appendix A  
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  Fig. 1.14    ROC curves for evaluating the models in the prediction of dengue in adults using 
laboratory and clinical features       

Sree Hari Rao and Naresh Kumar  (  2011a,   d  )  has been employed for generating the 
RNIADT and its accuracies are compared with other popular classi fi ers. 

 The authors in Sree Hari Rao and Naresh Kumar  (  2011a  )  have applied GA search 
algorithm for features extraction using wrapper subset evaluation procedure. These 
techniques were applied on dengue data set to obtain a more accurate predictive 
model (see Table  1.12 ). In Sree Hari Rao and Naresh Kumar  (  2011b  )  PSO search 
algorithm on dengue data set has been applied and the accuracies obtained are pre-
sented in (see Table  1.13 ). For a more detailed comparison of different classi fi ers 
and search algorithms the readers are referred to Sree Hari Rao and Naresh Kumar 
 (  2011a,   b  ) .   

   Table 1.12    Classi fi cation accuracies of different classi fi ers using GA search wrapper subset method   
 Method  RNIADT  BNT  NIB  RBF  LOR  C4.5  ADT 

 GA + ADT  99.71  95.40  87.07  92.34  90.23  97.03  98.75 
 GA + BNT  99.71  96.55  85.44  93.10  91.28  97.03  97.89 
 GA + NIB  99.81  93.01  86.49  91.57  90.61  96.55  97.22 
 GA + RBF  99.71  95.21  85.82  91.57  89.46  96.65  97.70 
 GA + C4.5  99.04  94.06  77.30  84.87  84.00  97.32  96.46 
 GA + LOR  99.90  94.16  87.07  90.13  92.05  97.03  98.37 
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   Table 1.13    Classi fi cation accuracies of different classi fi ers using a PSO search wrapper subset method   
 Method  RNIADT  BNT  NIB  RBF  LOR  C4.5  ADT 

 PSO + ADT  99.71  96.26  87.36  92.62  90.23  97.13  98.75 
 PSO + BNT  99.52  96.46  85.82  93.10  90.61  96.74  97.99 
 PSO + NIB  99.81  94.64  86.69  91.67  91.00  96.93  98.18 
 PSO + RBF  99.71  95.21  85.82  91.57  89.46  96.65  97.70 
 PSO + C4.5  99.71  94.16  81.23  87.16  87.26  97.32  96.74 
 PSO + LOR  99.71  94.25  87.36  92.15  92.24  97.03  98.37 

   Table 1.14    Classi fi cation accuracies of different classi fi ers using wrapper subset method and PKI 
discretization   

 Method  RNIADT  BNT  NIB  RBF  LOR  C4.5  ADT 

 PKI + GA + ADT  99.04  89.46  90.90  93.39  97.22  97.32  98.66 
 PKI + GA + BNT  99.90  94.06  96.17  95.79  97.32  97.70  98.66 
 PKI + GA + NIB  100.00  94.06  96.07  95.88  98.08  96.93  98.28 
 PKI + GA + RBF  99.81  93.49  94.64  95.88  96.65  97.32  98.37 
 PKI + GA + C4.5  99.90  88.98  91.67  90.71  97.89  97.41  95.79 
 PKI + GA + LOR  99.23  88.22  89.56  91.48  97.70  95.98  96.65 
 PKI + PSO + ADT  99.81  94.16  95.79  97.41  96.65  96.65  98.66 
 PKI + PSO + BNT  99.71  94.35  96.93  95.88  98.75  97.22  97.03 
 PKI + PSO + NIB  99.52  95.11  97.13  97.22  97.89  97.41  97.41 
 PKI + PSO + C4.5  100.00  92.15  93.77  95.59  97.41  97.80  97.89 

 Discretization method based on PKI was employed as a preprocessing step in 
Sree Hari Rao and Naresh Kumar  (  2011a  )  before identifying the most in fl uential 
attributes. The accuracies obtained by different classi fi ers are shown in Table  1.14 .  

 A comparison of the classi fi cation accuracies tabulated in Tables  1.12  and  1.13  
suggests that discretization procedure improves the accuracies for the data set under 
consideration. It is observed in general that application of discretization method 
would generate user-friendly decision trees and more descriptive rules (see 
Fig.  1.15 ). The in fl uential features identi fi ed by different methods are tabulated in 
Table  1.15 . The RNIADT identi fi ed the attributes fever duration, pulse, WBC, and 
arthralgia as most in fl uential features classi fi ed instances with a classi fi cation accu-
racy of 100%.   

 The difference in the percentage accuracy when compared with other classi fi ers 
is shown in Fig.  1.16 . The RNIADT outperformed Naive Bayes, RBFNetworks, and 
logistic regression classi fi ers and the difference in accuracies were found to be 
greater than 7%.  

 The discretization method when applied on the dengue data set generated an 
RNIADT decision tree that outperformed Bayes Network, Naive Bayes, and RBF 
Network classi fi ers (see Fig.  1.17 ).  
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  Fig. 1.15    RNIADT decision tree generated after discretization and extraction of in fl uential 
attributes using a PSO search mechanism and C4.5 evaluation       

   Table 1.15    In fl uential features identi fi ed by different feature selection methods   

 Method 
 Features identi fi ed 
by ADT 

 Features identi fi ed 
by C4.5 

 Features identi fi ed 
by RNIADT 

 GA + ADT  WBC, arthralgia, 
Hb, fever, platelet, 
PCV 

 WBC, fever, Hb, 
platelets, arthralgia 

 Fever, platelet, 
arthralgia, 
fever duration, 
platelet 

 PKI + GA + C4.5  Hb, arthralgia, WBC, 
pulse, fever duration, 
platelet, pulse 

 Hb, WBC, arthralgia, 
platelet, pulse, fever 
duration, headache 

 WBC, arthralgia, 
pulse, fever 
duration, 
myalgia 

 PSO + C4.5  WBC, arthralgia, 
platelet 

 WBC, pulse, arthralgia, 
platelet, abdominalpain 

 WBC, arthralgia, 
pulse, fever 
duration 

 PKI + PSO + C4.5  WBC, arthralgia, 
Hb, platelet, 
bleeding site, pulse 

 WBC, Hb, arthralgia, 
bleeding site, 
platelet, pulse 

 WBC, arthralgia, 
pulse, fever 
duration 

 The ROC curves generated by different classi fi ers based on the dengue data set 
having both clinical and laboratory attributes is shown in Fig.  1.18 . Figure  1.18  
compares the performance of RNIADT with C4.5 and ADTree classi fi ers. From 
Fig.  1.18  we can conclude that RNIADT has outperformed the other classi fi ers and 
has a better AUC than C4.5 and ADTree.    
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  Fig. 1.16    Relative differences of other classi fi ers with RNIADT using different feature selection 
methods       
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  Fig. 1.17    Relative differences of other classi fi ers with RNIADT using different feature selection 
methods and PKI discretization       
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    7   Comparisons of Methodologies 

 The procedures suggested in (Chadwick et al.  2006 ; Ramos et al.  2009 ; Tanner et al. 
 2008  )  when applied on the data set (Sree Hari Rao and Naresh Kumar  2011d  )  (see 
Table  1.16 ) reveal the fact that the RNIADT algorithm rendered higher accuracies 
in terms of area under the curve and percentage predictive value for positive than 
those obtained by them.  

 Tanner et al.  (  2008  )  in their studies applied C4.5 algorithm on 1,200 patients 
records with data obtained in 72 h of illness. The algorithm has selected laboratory 
features such as platelet count, white cell count, lymphocyte, neutrophil, temperate 
and hematocrit as the in fl uential attributes. The studies in Tanner et al.  (  2008  )  have 
suggested a WBC  £  6.0 × 1,000 cells with an odds ratio of 8.7 and body tempera-
ture > 37.4°C mm 3  having an odds ratio of 7.2 playing a role in splitting the decision 
tree. Sree Hari Rao and Naresh Kumar  (  2011b  )  have identi fi ed WBC, Hb, rashes, 
and fever (body temperature) as the key attributes in fl uencing the diagnosis of den-
gue. The predictive value of WBC  ³  8.2 × 1,000 cells was found to be 1.3, pulse  ³  81 
has a predictive value of 0.91 mm 3  and fever duration  ³ 5.5 has a predictive value of 
2.03. The comparisons of the results are presented in Tables  1.17  and  1.18 . From 
these observations the authors have felt that the methodologies in Sree Hari Rao and 
Naresh Kumar  (  2011a,   b,   d  )  when applied on the data set (Chadwick et al.  2006 ; 
Ramos et al.  2009 ; Tanner et al.  2008  )  would yield more accurate results.    
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  Fig. 1.18    ROC curves for classi fi ers trained on features extracted after discretization and using a 
PSO search with C4.5 evaluation procedure       
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   Table 1.18    Comparison of performance measures of our methodology with Tanner et al.  (  2008  )    

 Measure  Tanner et al.  (  2008  )  
 Sree Hari Rao and 
Naresh Kumar  (  2011a  )  

 Sensitivity (%) 
 Speci fi city (%) 
 Positive predictive value (%) 
 Negative predictive value (%) 
 AUC 

 71 
 90 
 76 
 88 
 0.88 

 100 
 100 
 100 
 100 

 0.99 

   Table 1.17    Comparison of our results with (Tanner et al.  2008  )    
 Method  True positive  False positive  False negatives  True negatives 

 Tanner et al.  (  2008  )  
 Sree Hari Rao 

and Naresh Kumar 
 (  2011a  )  

 259 
 349 

 83 
 0 

 105 
 0 

 753 
 695 

   Table 1.16    Comparison of different methods for predicting early clinical features in children and 
adults   

 Method attribute  Accuracy 
 Sensitivity 
(%) 

 Speci fi city 
(%) 

 Predictive value (%) 

 AUC  Positive  Negative 

 Children 
 Logistic regression 
 C4.5 
 RNIADT 
 Adults 
 Logistic regression 
 C4.5 
 RNIADT 

 92.7 
 90.7 
 97.2 

 77.7 
 80.2 
 84.98 

 74.2 
 60.2 
 89.3 

 59.9 
 60.6 
 75.3 

 98.4 
 100 
 99.7 

 89.7 
 93.1 
 91.3 

 93.2 
 100 
 98.8 

 79.2 
 85.2 
 85.0 

 92.6 
 89.2 
 96.8 

 77.1 
 78.2 
 84.9 

 0.91 
 0.90 
 0.98 

 0.78 
 0.84 
 0.88 

    8   Conclusions and Discussion 

 In this chapter, we have presented several methodologies that help in the effective 
diagnosis of the dengue illness. A  fi rst level effort leads to the question of identify-
ing the suspected individuals in the community, which will have the major advan-
tage of reducing transmission risk of the disease. Laboratory investigations for the 
con fi rmation of the illness on the suspected individuals will certainly help in disease 
management and control by providing supportive care. A new alternate decision 
theoretic method designated as RNIADT (which is not followed in conventional 
clinical treatment procedures) developed in recent times is the subject of main dis-
cussion in this chapter. This methodology has been found extremely useful in iden-
tifying the most in fl uential clinical and laboratory characteristics of dengue illness. 
Further, this analysis helps one to conclude that the WHO de fi nitions for dengue 
fever hold good. To substantiate, a study has been performed on a data set consisting 
of 1,044 individuals both children and adults where in the original de fi nitions of 
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WHO are still valid. Though the methodology discussed in this chapter may be taken 
as a universal tool for the effective diagnosis of this disease it remains to see whether 
or not this methodology is geographically dependant. Though we are certain that the 
RNIADT methodology is universal, we could not establish the same due to lack of 
clinical and laboratory data pertaining to different parts of the globe. However, we 
are willing to share our predictive methodologies and strategies with the researchers 
working on dengue illness all over the globe. We hold the view that more intensive 
and introspective studies of this kind will pave the way for better clinical manage-
ment and virological surveillance of this illness.      
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    9   Algorithm 1:    The RNIADT Algorithm (Sree Hari Rao 
and Naresh Kumar  2011c  )     

 Input: (a)  Data sets for purpose of decision making  S ( m ,  n ) where  m  and  n  are number of 
records and attributes, respectively    and the members of  S  may have missing values 
in any of the attributes except in the decision attribute. 

  (b) The type of attribute  C  of the columns in the data set. 
  (c) The number of boosting iterations  T . 
  (d) The number of validation folds  k . 
 Output: (a) Classi fi cation accuracy of the RNIADT for a given data set  S . 
  (b) RNIADT consisting of a rule that is the sign of the sum of all the base rules in 

    

=

= å
1

class( ) sign( ( ))
T

t

x rt x    

 Algorithm 
 (1) Identify and collect all records in a data set  S  and split them into training and testing data 

sets using a  k  fold cross validation procedure. Denote the training and testing data sets by  T  
 k 
  

and  R  
 k 
 , respectively. 

 (2) Consider records in the training data pertaining to a particular cross fold and impute the 
missing values using the following procedure. 

    (i) Identify and collect all records in the data record set  S  which have missing values in 
one or several attributes but not those with missing values in the decision attribute. 
Denote this set by  M  i.e.  M  ⊆  S . 

    (ii) Pick up a record  R  from the set  M  and compute its relative distances with all members 
of  S  using the procedure given in Sree Hari Rao and Naresh Kumar  (  2011c  ) . Denote 
this set by  D . 

    (iii)  Arrange the elements of set  D  in an ascending order and identify the nearest neighbors 
using the following procedure. 

    (iv)  (a)  Compute the score   a   de fi ned as follows: -
-= ( ( ))

( )
( ) k

i

x median x
k median x median x

xα  where {x
1
, x

2
, …, x

n
} 

denote the distances of  R  from  R  
 k 
 . 

     (b)  Collect the data records in set  S  whose distances from the record  R  satis fi es the 
condition   a  ( x  

 k 
 )  £  0. Denote this set by  P . 
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   (v)  If the type of the attribute to be imputed in  R  is nominal or categorical, then 
determine the frequent item set from  P  using the following procedure: 

  (a) Find the frequency of each categorical value of the categorical attribute. 
  (b)  The value to be imputed may be taken as the highest categorical value of the 

frequent item set obtained in Step (v) item (a). 
    (vi)  If the type of attribute is numeric and non-integer, then determine the value to be 

imputed using following procedure. 
  (a)  Identify and collect all non-zero elements in the set  D  computed in Step (ii). 

Denote this set by  B . 
  (b)  For each element in set  B  compute the quantity 1

( )( ) ,B jj j= " = 1,…b g    where g 
denotes the cardinality of the set B. 

  (c)  Compute the weight matrix as     

1

( )

( ) 1, ,g

=

b
= " = ¼

å
j

i

i

W j j
b g    

  (d) The value to be imputed may be taken as      
1

( ) · ( ) 1, ,
=

" = ¼å j

i
P j W j j g    

  (vii)  If the type of attribute is numeric and integer, the procedure given in Step (v) is 
followed. 

    (viii) Repeat Steps (2)(i)–(vi) for every record  R  in the set  M . 
 (3)  Build the ADTree on the records obtained in Step (2) as follows. 
  (i)  Initialize the rule set R 

1
  to consist of the single base rule whose precondition and 

condition are set to True  P  
1
  = True. The symbols  P  

 t 
  and  R  

 t 
  denote the set of precondi-

tions and rules, respectively. 
  (ii)  Initialize the weights of each training sample with 1 i.e.   
  (iii)  The prediction value of the root node is calculated as ( )1

2 ( )n +

-
= W True

W Truea I . W(c) represents the 
total weight of the training samples that satis fi es the base condition  c . W

+
(c) and W

–
(c) 

denote the weights of those examples that satisfy the condition  c  and are labeled +1 or 
−1. 

  (iv)  Pre-adjustment: re-weight the training instances using the formula     
-=,1 ,0 e tay

i iw w    
(for binary classi fi cation, the value of  y  

 t 
  is either +1 or −1). 

  (v) Perform the following steps for each boosting iteration  t . 
  (a)  For each base condition  c  

1
  ∈  P  

 t 
  and each condition  c  

2
  ∈  C  calculate 

    
+ - + -= Ù Ù + Ù Ù +1 2 1 2 1 2 1 2 1 2 2( , ) 2( ( ) ( ) ( ~ ) ( ~ ) (~ ).tZ c c W c c W c c W c c W c c W c    The 

set of base conditions (inequalities comparing a single feature and a constant) is 
denoted by  C.  

  (b)  Select  c  
1
 ,  c  

2
  which minimizes  Z  

 t 
 ( c  

1
 ,  c  

2
 ) and set  R  

 t 
  
+ 1

 to be  R  
 t 
  with addition 

of rules  r
t
  whose precondition is  c  

1
 , condition  c  

2
  and two prediction values are 

    + +
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  (c) Set  P  
 t + 1 

  to be  P  
 t 
  with the addition of  c  

1
  ∧  c  

2
  and  c  

1
  ∧ ~  c  

2
  

  (d)  Update the weights of each training example following the equation 
( )

, , exp+1 = t ir x yi
i t i tw w    

  
  

 (4) Consider the records in the testing data set pertaining to that cross fold and classify using 
the tree built in Step (3). 

 (5) Compute the percentage classi fi cation accuracy for a particular cross fold by identifying the 
number of correctly classi fi ed instances with the total number of instances in the testing 
data set. 

 (6) Repeat the Steps (2)–(5) for each cross fold. 
 (7) Compute the mean accuracy  A  by summing up the accuracies of each cross fold and 

dividing with the number of cross folds. 
 (8) RETURN  A  
 (9) END 
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