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Clinical-pharmacogenetic models 
for personalized cancer treatment: 
application to malignant 
mesothelioma
Katja Goričar1, Viljem Kovač2 & Vita Dolžan1

Large interindividual differences in treatment outcome are observed in cancer patients undergoing 
chemotherapy. Our aim was to develop and validate clinical-pharmacogenetic prediction models 
of gemcitabine/cisplatin or pemetrexed/cisplatin treatment outcome and develop an algorithm for 
genotype-based treatment recommendations in malignant mesothelioma (MM). We genotyped 
189 MM patients for polymorphisms in gemcitabine, pemetrexed and cisplatin metabolism, transport 
and drug target genes and DNA repair pathways. To build respective clinical-pharmacogenetic models, 
pharmacogenetic scores were assigned by rounding regression coefficients. Gemcitabine/cisplatin 
model was based on training group of 71 patients and included CRP, histological type, performance 
status, RRM1 rs1042927, ERCC2 rs13181, ERCC1 rs3212986, and XRCC1 rs25487. Patients with higher 
score had shorter progression-free (PFS) and overall survival (P < 0.001). This model’s sensitivity was 
0.615 and specificity 0.812. In independent validation group of 66 patients the sensitivity and specificity 
were 0.667 and 0.641, respectively. Pemetrexed/cisplatin model was based on 57 patients and included 
CRP, MTHFD1 rs2236225, and ABCC2 rs2273697. Patients with higher score had worse response 
and shorter PFS (P < 0.001). This model’s sensitivity was 0.750 and specificity 0.607. In independent 
validation group of 20 patients the sensitivity and specificity were 0.889 and 0.500, respectively. The 
proposed algorithm based on these models could enable the choice of the most effective chemotherapy 
for 85.5% of patients and lead to improved treatment outcome in MM.

Research in the field of personalized medicine focuses on biomarkers that could help customize therapy for indi-
vidual patients, thus leading to more effective treatment with fewer adverse events. Especially in oncology, several 
tumor markers have been identified and it has been shown for example in lung cancer that personalized treatment 
approach could improve treatment outcome, therefore patient stratification based on tumor mutations is already 
required before targeted treatment1. It has been suggested that apart from somatic mutations, interindividual 
variability in genes coding for drug metabolizing enzymes, drug transporters, drug targets or proteins involved 
in DNA repair could be used as a blood biomarker for guiding treatment selection2. Personalized treatment 
approach based on genetic biomarkers could therefore improve the outcome of cancer treatment.

Malignant mesothelioma (MM) is an aggressive malignancy with poor prognosis, usually associated with 
exposure to asbestos3. Introduction of chemotherapy significantly improved survival of MM patients; in Slovenia 
median overall survival increased from 5.6 to 14.5 months3,4. A randomized clinical trial has shown that treat-
ment with pemetrexed/cisplatin combination improved outcome in MM patients, therefore, it became the stand-
ard treatment5. Comparable results were obtained for gemcitabine/cisplatin doublet3,6–8.

Despite improved survival, response rates to chemotherapy in MM are still only up to 40%3,9, and biomarkers 
that could improve response rate are needed. So far, no target mutations were identified in MM that could guide 
targeted treatment. MM treatment outcome was associated with clinical characteristics10 and genetic variability 
in drug transport, metabolism and target genes and DNA repair pathways11–14.

Gemcitabine is a nucleoside analog that inhibits ribonucleotide reductase M1 (RRM1) and decreases deoxyri-
bonucleotide pools for DNA synthesis, while its incorporation into DNA leads to accumulation of strand breaks15. 
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In our previous studies, single nucleotide polymorphisms (SNPs) in the target RRM1 gene, and in DNA repair 
genes ERCC1, ERCC2, and XRCC1 were associated with survival in MM patients11–13.

Pemetrexed is a folic acid analogue that inhibits several key folate pathway enzymes, leading to impaired 
DNA synthesis16. In our previous study, response to pemetrexed was associated with SNPs in folate pathway gene 
MTHFD1 and efflux transporter gene ABCC214.

Although we have previously identified pharmacogenetic markers that may influence MM treatment outcome, 
these results have not been used yet for treatment guidance11–14. Translation of pharmacogenetic results into 
clinical practice can be challenging, especially as they are seldom incorporated in actionable forms such as scores 
or dosing guidelines. Pharmacogenetic models including both clinical and genetic parameters could be a useful 
tool that would help guide treatment selection17,18. In addition to pharmacogenetic models, algorithms that would 
facilitate translation into clinical practice are needed.

Our aim was to construct clinical-pharmacogenetic models for gemcitabine/cisplatin or pemetrexed/cispla-
tin treatment outcome and to develop an algorithm for genotype-based treatment recommendations that could 
facilitate individualization of MM treatment.

Materials and Methods
Patients.  All patients with histologically proven MM, that started treatment with gemcitabine/cisplatin or 
pemetrexed/cisplatin based chemotherapy at the Institute of Oncology Ljubljana, Slovenia between March 2002 
and September 2013, as well as patients that started with pemetrexed/cisplatin treatment between 2014 and 2016, 
were included in the study.

Most of the patients were diagnosed at the University Clinic of Pulmonary and Allergic Diseases in Golnik, 
Slovenia. Patient data were obtained from medical records or assessed during clinical interview. Written informed 
consent was obtained for all patients. The study was approved by the Slovenian Ethics Committee for Research in 
Medicine and was carried out according to the Declaration of Helsinki.

Survival and response assessment.  Primary endpoint evaluated in the study was progression-free sur-
vival (PFS), defined as time from the beginning of first or second line chemotherapy with a particular drug to the 
progression or death of any cause. Tumor response was evaluated using modified Response Evaluation Criteria 
in Solid Tumors (RECIST)19. Response rate was defined as percentage of patients achieving partial or complete 
response. Overall survival (OS) was defined as time from the beginning of first or second line chemotherapy with 
a particular drug to death of any cause. Patients without progression or death at the time of the analysis were 
censored at the date of the last follow-up.

DNA extraction and genotyping.  EDTA-stabilized blood samples for DNA extraction were collected at 
the time of diagnosis. Extraction of genomic DNA was performed using Qiagen FlexiGene kit (Qiagen, Hilden, 
Germany) according to the manufacturer’s instructions.

The selection of genetic and clinical variables was based on results of our previous studies where 
pathway-based approach was used to identify factors influencing tumor response, PFS or OS in Slovenian MM 
patients11–14. In this study genotyping for all polymorphisms in gemcitabine, pemetrexed and cisplatin metabo-
lism, transport and drug target genes and DNA repair pathways significantly associated with treatment outcome 
in previous studies was extended to all patients. MTHFD1 rs2236225 (p.Arg653Gln) and XRCC1 rs25487 (p.Ar-
g399Gln) polymorphisms were determined using TaqMan SNP Genotyping assays according to the manufac-
turer’s instructions (Applied Biosystems, Foster City, CA). ABCC2 rs2273697 (p.Val417Ile), RRM1 rs1042927 (3′​ 
untranslated region), ERCC2 rs13181 (p.Lys751Gln), and ERCC1 rs3212986 (3′​ untranslated region) polymor-
phisms were genotyped using KASPar assays according to the manufacturer’s instructions (KBiosciences, Herts, 
UK). Genotyping was performed blinded regarding the study endpoints and repeated in 20% samples to check 
for genotyping accuracy.

Model building and statistical analyses.  For building a gemcitabine/cisplatin clinical-pharmacogenetic 
model, 71 patients with complete genetic information on the investigated pharmacogenes available from our 
previously published studies were included in the training group11–13. The gemcitabine/cisplatin validation group 
consisted of 66 patients from previously published studies that required additional genotyping as well as patients 
diagnosed and treated after the completion of previous studies. Because pemetrexed/cisplatin is not frequently 
used in Slovenia, all 57 patients treated with this combination as first or second line regimen between 2002 and 
2013 were included in the training group used for building a clinical-pharmacogenetic model. More specifically, 
we included patients participating in a randomized clinical trial (Trial registration ID: NCT01281800) from our 
previous study14, and more recently included patients from the trial as well as patients treated outside the clinical 
trial. The pemetrexed/cisplatin validation group consisted of twenty patients starting treatment after September 
2013.

Pharmacogenetic scores for the clinical-pharmacogenetic model were assigned by rounding the absolute val-
ues of regression coefficients from PFS analysis. For each patient, the combined pharmacogenetic score was cal-
culated by summing up all individual scores of variables included in the model. Higher scores indicated shorter 
survival. To evaluate the discriminative performance of the model, we compared how many patients had PFS 
above or below the median in each group. A receiver operating characteristic (ROC) curve was derived to eval-
uate the discriminative performance of the model and area under the curve (AUC) was determined. Specificity, 
sensitivity, positive predictive value (PPV) and negative predictive value (NPV) were calculated. In survival anal-
ysis, Cox proportional hazards model was used and hazard ratio (HR) with 95% confidence interval (CI) was 
determined. All statistical tests were two-sided and the level of significance was set to 0.05. All statistical analyses 
were carried out using IBM SPSS Statistics, version 19.0 (IBM Corporation, Armonk, NY, USA).
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Results
Patients’ characteristics.  We included 189 MM patients. The training and validation groups of gemcit-
abine/cisplatin treated patients included 71 and 66 patients, respectively. Among gemcitabine/cisplatin treated 
patients, those in the validation group tended to be older (P =​ 0.050) and had significantly worse performance sta-
tus (P =​ 0.005) than patients in the training group. In the validation group, patients also has higher CRP, but the 
difference was not statistically significant (P =​ 0.084). In the training group, 11 (15.5%) patients received surgical 
treatment and had significantly longer PFS (P =​ 0.006; HR =​ 0.35; 95% CI =​ 0.16–0.74), but not OS (P =​ 0.123; 
HR =​ 0.54; 95% CI =​ 0.24–1.18). However, eligibility for surgical treatment significantly correlated with low CRP 
(P =​ 0.015) and epithelioid histological type (P =​ 0.021), therefore it did not contribute to the clinical-pharmaco-
genetic model. Significantly less patients in the validation group received surgical treatment (P =​ 0.004).

The training and validation groups of pemetrexed/cisplatin treated patients included 57 and 20 patients, 
respectively. In the training group, 32 (56.1%) patients received pemetrexed as first line treatment (Table 1). There 
were no statistically significant differences between training and validation group regarding their demographic 
and clinical characteristics (Table 1). In the training group, only 3 (5.3%) patients received surgical treatment, 
and there was no significant association with PFS (P =​ 0.105; HR =​ 0.19; 95% CI =​ 0.03–1.42) or OS (P =​ 0.349; 
HR =​ 0.39; 95% CI =​ 0.05–2.84), but it again correlated with low CRP (P =​ 0.016).

Gemcitabine/cisplatin clinical-pharmacogenetic model.  In the training group longer survival was 
associated with CRP below 23 mg/l, better performance status or non-sarcomatoid histology and four of the 
investigated polymorphisms. Among them RRM1 rs1042927 AA, ERCC2 rs13181 AA, ERCC1 rs3212986 CC, 
and XRCC1 rs25487 CC genotypes were associated with longer PFS and OS. The final clinical-pharmacogenetic 
model had scores between 0 and 3.4, with higher scores indicating shorter survival (Table 2).

This clinical-pharmacogenetic model had better predictive value compared to the clinical model that 
included only clinical characteristics. The AUC for predicting PFS above or below 8 months was 0.732 (95% 

Characteristic

Treatment with gemcitabine Treatment with pemetrexed

Training 
group 

(N = 71); N 
(%)

Validation group 
(N = 66); N (%) Pa

Training 
group 

(N = 57); N 
(%)

Validation group 
(N = 20); N (%) Pa

Gender
Male 52 (73.2) 52 (78.8) 0.448b 46 (80.7) 13 (65.0) 0.153b

Female 19 (26.8) 14 (21.2) 11 (19.3) 7 (35.0)

Age Median (25–75%) 61 (54–69) 65.5 (57.5–71.3) 0.050c 63 (59–69) 62.5 (56–70) 0.653c

Stage

I 6 (8.5) 3 (4.5) 4 (7.0) 1 (5.0)

II 18 (25.4) 15 (22.7) 17 (29.8) 5 (25.0)

III 20 (28.2) 21 (31.8) 0.826b 18 (31.6) 9 (45.0) 0.839b

IV 21 (29.6) 19 (28.8) 16 (28.1) 4 (20.0)

Peritoneal 6 (8.5) 8 (12.1) 2 (3.5) 1 (5.0)

Histological type

Epitheloid 49 (69.0) 50 (75.8) 45 (78.9) 16 (80.0)

Biphasic 15 (21.1) 7 (10.6) 6 (10.5) 1 (5.0)

Sarcomatoid 5 (7.0) 7 (10.6) 0.380b 3 (5.3) 3 (15.0) 0.340b

Not characterized 2 (2.8) 2 (3.0) 3 (5.3) 0 (0.0)

ECOG 
performance status

0 38 (53.5) 20 (30.3) 26 (45.6) 5 (25.0)

1 25 (35.2) 26 (39.4) 0.005b 23 (40.4) 13 (65.0) 0.159b

2 8 (11.3) 20 (30.3) 8 (14.0) 2 (10.0)

Line of treatment
First line 71 (100) 66 (100) 32 (56.1) 20 (100)

Second line 25 (43.9)

C-reactive protein Median (25–75%) 21 (5–65) 29 (12.3–101) 0.084c 22 (6–62) 18.5 (11.5–36.8) 0.728c

Surgical treatment
No 60 (84.5) 65 (98.5) 54 (94.7) 19 (95.0)

Yes 11 (15.5) 1 (1.5) 3 (5.3) 1 (5.0)

Response rate
CR or PR 40 (56.3) 18 (28.1) 14 (25.5) 10 (55.6)

SD or progress 27 (38.0)d 46 (71.9)e 41 (74.5)e 8 (44.4)

Overall survival Median (25–75%) 16 (10–28) 10.5 (6.2–15.1) 9.4 (4.7–16.2)f 8.2 (4.5–12.7)

Progression-free 
survival Median (25–75%) 8 (6–13) 6.4 (4.8–9.5) 6.1 (2.9–9.6)f 5.8 (4.5–11.3)

Follow-up Mean (95% CI) 62.3 (49.4–
75.2) 21.1 (18.0–24.3) 19.8 (15.8–

23.9) 11.3 (8.0–14.6)

Table 1.   Characteristics of malignant mesothelioma patients receiving gemcitabine/cisplatin or 
pemetrexed/cisplatin chemotherapy. acomparison of clinical and demographic characteristics at diagnosis. 
bcalculated using chi square test. ccalculated using Mann-Whitney test. ddata missing for four patients. edata 
missing for two patients. fcalculated from the beginning of pemetrexed-based chemotherapy. CI, confidence 
interval; CR, complete response; ECOG, Eastern Cooperative Oncology Group; N, number of patients; PR, 
partial response; SD, stable disease.
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CI =​ 0.614–0.849; P =​ 0.001) for the clinical-pharmacogenetic model and 0.581 (95% CI =​ 0.446–0.716, 
P =​ 0.243) for the clinical model (Fig. 1A). In the clinical-pharmacogenetic model, cutoff score of 0.75 had sensi-
tivity of 0.615 and specificity of 0.812, with PPV 0.800 and NPV 0.634 (Table 3). Patients with scores above cutoff 
had significantly shorter PFS (P <​ 0.001; HR =​ 2.75; 95% CI =​ 1.75–4.32; Fig. 2A) and OS (P <​ 0.001; HR =​ 2.77; 
95% CI =​ 1.73–4.44) compared to patients with lower scores. Median PFS and OS for patients with scores below 
0.75 were 13.0 (8.0–24.5) and 26.0 (16.0–41.3) months, respectively, compared to 7.0 (5.0–9.0) and 14.0 (9.0–19.5) 
months for patients with scores above 0.75.

In the validation group, PPV of the clinical-pharmacogenetic model for PFS above or below 6 months was 
0.735, while NPV was 0.563 (Table 3). Sensitivity was 0.667 and specificity was 0.641. Patients with scores above 
the cutoff value of 0.75 had significantly shorter PFS (P =​ 0.020; HR =​ 1.52; 95% CI =​ 1.07–2.17; Fig. 2B) and OS 
(P =​ 0.036; HR =​ 1.57; 95% CI =​ 1.03–2.38) compared to patients with lower scores. For example, median PFS 
and OS were 11.7 (3.5–11.7) and 12.8 (6.9–12.8) months in patients who scored 0, but only 3 (1.9–6.9) and 4.7 
(2.1–10.3) months in patients who scored above 1.65.

Chemotherapy Variable HR B Score

Gemcitabine

CRP 1.31 0.266
<​23 mg/l 0

>​23 mg/l 0.3

Histological type 2.97 1.088
Other 0

Sarcomatoid 1.1

RRM1 rs1042927 1.85 0.615 AA 0

AC +​ CC 0.6

ERCC2 rs13181 1.18 0.165 AA 0

AC +​ CC 0.2

XRCC1 rs25487 1.06 0.054 CC 0

CT +​ TT 0.1

ERCC1 rs3212986 2.33 0.846 CC 0

CA +​ AA 0.8

ECOG performance status 1.38 0.320  <​ 2 0

2 0.3

Pemetrexed

CRP 11.25 2.420  <​ 23 mg/l 0

 >​ 23 mg/l 2.4

MTHFD1 rs2236225 2.37 0.864 GG 0

GA +​ AA 0.9

ABCC2 rs2273697 0.54 −​0.623 GG 0.6

GA +​ AA 0

Table 2.   Pharmacogenetic scores for the variables included in clinical-pharmacogenetic model predicting 
outcome of gemcitabine/cisplatin or pemetrexed/cisplatin chemotherapy. B, regression coefficient; CRP, 
C-reactive protein; ECOG, Eastern Cooperative Oncology Group; HR, hazard ratio.

Figure 1.  Receiver operating characteristic curve for predicting gemcitabine (A) and pemetrexed (B) treatment 
outcome in the training group for clinical-pharmacogenetic model and clinical parameters.
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Pemetrexed/cisplatin clinical-pharmacogenetic model.  In this model CRP below 23 mg/l, MTHFD1 
rs2236225 GG genotype and ABCC2 rs2273697 GA +​ AA genotypes were associated with better response rate or 
PFS. The final clinical-pharmacogenetic model had values ranging between 0 and 3.9 (Table 2).

Also for this treatment regimen, the clinical-pharmacogenetic model improved predictive value as compared 
to the clinical model that included only CRP. AUC for predicting PFS longer or shorter than 6 months was 0.684 
(95% CI =​ 0.538–0.829; P =​ 0.018) for the clinical-pharmacogenetic model and 0.625 (0.477–0.773, P =​ 0.108) 
for CRP (Fig. 1B). Cutoff score of 2.7 had sensitivity of 0.750 and specificity of 0.607, PPV was 0.656 and NPV 
was 0.708. Patients with higher scores had significantly shorter PFS (P <​ 0.001, HR =​ 2.73; 95% CI =​ 1.86–4.00, 
Fig. 2C) and OS (P <​ 0.001, HR =​ 2.45; 95% CI =​ 1.64–3.65). Median PFS and OS for patients with scores below 
2.7 were 8.1 (4.5–15.9) and 11.3 (4.7–23.9) months, respectively, compared to 4.8 (1.5–6.2) and 7.6 (4.4–10.9) 
months for patients with scores above 2.7. Eleven out of twelve patients (91.7%) with maximal score of 3.9 had 
PFS below 6 months (Table 3).

Response rate was also worse in patients with higher scores. Eleven (78.6%) out of 14 patients that responded 
well to pemetrexed/cisplatin had scores below 2.7. NPV was 0.875, but PPV was only 0.367. This may be due to 
the fact that nearly half of patients received pemetrexed/cisplatin as second line treatment and among those only 
12.0% responded well.

The model performed better in first line treatment, showing highly significant association with both PFS 
and OS (P <​ 0.001, HR =​ 2.82; 95% CI =​ 1.74–4.58 and P <​ 0.001, HR =​ 3.01; 95% CI =​ 1.71–5.29, respectively). 
Median PFS and OS for patients in the first line treatment with scores below 2.7 were 10.4 (6.4–15.9) and 15.8 
(10.1–29.5) months, respectively, compared to 5.6 (1.8–6.8) and 10.0 (7.1–12.3) months for patients with scores 
above 2.7. PPV for prediction of response rate was 0.526, while NPV was 0.923. No patient with score 0 experi-
enced disease progression, while all thirteen patients with score above 2.7 progressed.

Survival times were shorter in second line treatment, but the model remained significantly associated with PFS 
(P =​ 0.009, HR =​ 2.15; 95% CI =​ 1.21–3.82) and OS (P =​ 0.048, HR =​ 1.89; 95% CI =​ 1.01–3.56). No patient with 
score of 0 experienced disease progression, while 9 out of 11 (81.8%) patients with score above 2.7 progressed.

In the validation group, the clinical-pharmacogenetic model for PFS above or below 6 months reached PPV 
0.615, while NPV was 0.833 (Table 3). Sensitivity of this model was 0.889 and specificity was 0.500. Patients with 
scores above the cutoff value of 2.7 had significantly shorter PFS (P =​ 0.030; HR =​ 4.81; 95% CI =​ 1.16–19.91; 
Fig. 2D). Median PFS was 4.2 (3.8–6.4) months in patients with scores above 2.7 and 6.6 (4.9–12.0) months in 
patients with scores below 2.7. Due to shorter follow-up and low number of events, we did not perform OS anal-
ysis in this group.

Treatment stratification algorithm.  Based on the developed and validated clinical-pharmacogenetic 
models we proposed an algorithm for stratification of patients into distinct treatment groups (Fig. 3). Genotyping 
data for SNPs included in both models were available for 159 patients. Based on the algorithm, a more favorable 
chemotherapy regimen could be recommended in 64.2% of patients: gemcitabin/cisplatin in 28.3% and pem-
etrexed/cisplatin in 35.9%. The algorithm predicted that 21.4% of patients would respond equally well to both 
treatments, but 14.5% of patients would probably not respond well to either. Based on our algorithm altogether 
85.5% of patients could be treated using the most effective of the two chemotherapeutic regimens.

Observed 
outcomes

Clinical-pharmacogenetic model score category N (%)

GEM-score 0
GEM-score 

0–0.75
GEM-score 
0.75–1.65

GEM-score 
>1.65 P

Predicted PFS > median Predicted PFS < median

Gemcitabine training group

PFS >​ 8 
months 2 (100.0) 22 (78.6) 15 (44.1) 0 (0.0)  <​ 0.001

PFS <​ 8 
months 0 (0.0) 6 (21.4) 19 (55.9) 7 (100.0)

Gemcitabine validation group

PFS >​ 6 
months 2 (66.7) 23 (74.2) 12 (50.0) 2 (25.0) 0.042

PFS <​ 6 
months 1 (33.3) 8 (25.8) 12 (50.0) 6 (75.0)

Observed 
outcomes

PMX-score 0 PMX-score 
0–2.7

PMX-score 
2.7–3.3 PMX-score 3.9 P

Predicted PFS > median Predicted PFS < median

Pemetrexed training group

PFS >​ 6 
months 3 (50.0) 18 (69.2) 6 (50.0) 1 (8.3) 0.004

PFS <​ 6 
months 3 (50.0) 8 (30.8) 6 (50.0) 11 (91.7)

Pemetrexed validation groupa

PFS >​ 6 
months 0 (0.0) 8 (66.7) 1 (16.7) / 0.099

PFS <​ 6 
months 1 (100.0) 6 (33.3) 5 (83.3) /

Table 3.   Comparison of observed and predicted treatment outcomes based on the gemcitabine clinical-
pharmacogenetic model score (GEM-score) or the pemetrexed clinical-pharmacogenetic model score 
(PMX-score). N, number of patients; PFS, progression-free survival. aone patient censored before the earliest 
event was excluded from the analysis.
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Discussion
Based on the developed clinical-pharmacogenetic models for pemetrexed/cisplatin or gemcitabine/cisplatin 
chemotherapy outcomes we have proposed an algorithm that allows genotype-based treatment recommenda-
tions in MM patients.

Our gemcitabine/cisplatin clinical-pharmacogenetic model included CRP level, histological type, perfor-
mance status and four SNPs: RRM1 rs1042927, ERCC2 rs13181, ERCC1 rs3212986, and XRCC1 rs25487. The 
model was developed based on results of our previous studies11–13 as we were not aware of any studies inves-
tigating the influence of SNPs on outcome of gemcitabine/cisplatin treatment in MM, while ERCC1, RRM1, 
ERCC2 and XRCC1 were consistently identified as prediction factors in pancreatic or non-small cell lung cancer 
(NSCLC)20,21. Patients with higher scores had significantly shorter PFS and OS. Patients in the validation group 
were older, had worse performance status and higher CRP and were generally not amenable to surgery and con-
sequently also had worse treatment outcome. As patients were enrolled continuously, this difference occurred by 
chance and was not related to patient selection. Although this difference represents a limitation of our study, we 
confirmed the predictive value of the model with PPV of 0.800 in the training and 0.735 in the validation group 
even in patients with shorter survival.

Our pemetrexed/cisplatin clinical-pharmacogenetic model included two SNPs, MTHFD1 rs2236225 and 
ABCC2 rs2273697, and CRP level. Other clinical characteristics included in the gemcitabine/cisplatin model 
were not as important in pemetrexed-treated patients. Patients with higher scores in the final model had signifi-
cantly shorter PFS and OS, as well as worse response rate, especially if patients had all the markers associated with 
worse outcome. The effect was even more prominent in patients receiving pemetrexed/cisplatin in the first line 
of chemotherapy. Patients treated in the second line of chemotherapy had worse response and shorter survival in 

Figure 2.  Differences in progression-free survival of MM patients treated with gemcitabine based on clinical-
pharmacogenetic model in the training (A) and validation (B) cohort. Differences in progression-free survival 
of MM patients treated with pemetrexed based on clinical-pharmacogenetic model in the training (C) and 
validation (D) cohort.



www.nature.com/scientificreports/

7Scientific Reports | 7:46537 | DOI: 10.1038/srep46537

general, which was a limitation of this study. However, even in these patients the model was still significantly asso-
ciated with both PFS and OS. As pemetrexed/cisplatin combination started to be used only recently for treatment 
of MM in Slovenia, only twenty patients with shorter follow-up time could be included the validation group. The 
clinical-pharmacogenetic model remained significantly associated with PFS with PPV of 0.615 and NPV of 0.833. 
Higher number of false positives – patients with low scores but shorter PFS in this group could in part be due to 
shorter follow-up period in these patients. Therefore our results should be considered preliminary and further 
validation is necessary. Nevertheless, our model was valid even in patients with poor performance status and in 
second line treatment.

Another limitation of our study is the large contribution of CRP to the model, as increased CRP is required 
for unfavorable prognosis prediction. Therefore, inclusion of other genetic factors or molecular markers could 
help refine the current model. Most studies evaluating response to pemetrexed in MM focused on tumor markers. 
TYMS mRNA and protein expression levels in tumor were associated with response but similar to our results 
TYMS promoter polymorphisms did not play a role14,22,23. A deletion in TYMS 3′​ untranslated region has been 
associated with PMX treatment outcome in MM23, but studies in NSCLC gave inconsistent results, suggesting 
further studies are needed regarding the role of this polymorphism24,25.

Despite advances in cancer treatment, selection of the optimal treatment regimen for MM patients remains 
challenging, especially due to a lack of appropriate randomized clinical trials showing survival benefit. However, 
population-based studies on unselected populations have shown that overall survival increased significantly on 
national levels with the use of chemotherapy in Slovenia, the Netherlands, Norway and USA3,4,9,26. Even though 
other factors such as improved diagnostics and best supportive care could partly contribute to this improvement, 
these results suggest chemotherapy is beneficial for most MM patients. Different chemotherapy regimens are 
available for MM treatment, and several studies were performed to compare them. Among the randomized trials, 
Vogelzang et al. were the first to demonstrate that pemetrexed/cisplatin doublet chemotherapy is more effective 

Figure 3.  Algorithm for the prediction of outcome of gemcitabine/cisplatin or pemetrexed/cisplatin treatment 
based on the developed clinical-pharmacogenetic model (A) and algorithm-based treatment recommendations 
(B). CRP, C-reactive protein; ECOG, Eastern Cooperative Oncology Group; GEM, gemcitabine, PFS, 
progression-free survival; PMX, pemetrexed.
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in MM than cisplatin monotherapy5. A few other combinations were evaluated in randomized trials, but they did 
not show an important improvement of OS (reviewed in ref. 27), while several phase II or phase III clinical trials 
have shown some combinations are comparable to pemetrexed/cisplatin doublet regarding treatment outcome 
(reviewed in ref. 3). Studies consistently show that treatment with gemcitabine/cisplatin doublet achieves com-
parable results6–8,28. In Slovenian randomized phase II trial comparing pemetrexed/cisplatin and gemcitabine/
cisplatin, overall median OS reached 18.6 months and there were no significant differences between groups treat-
ment29. Still, more randomized trials are needed to further improve MM treatment, both first line and second line. 
Additionally, treatment guidelines should include biomarkers that could help guide treatment selection.

Our most important contribution is the proposed simple algorithm for treatment selection based on both 
gemcitabine/cisplatin and pemetrexed/cisplatin models that could be used for translation into clinical practice. 
Patients’ clinical characteristics and genotypes of six SNPs allowed prediction of PFS after gemcitabine/cisplatin 
or pemetrexed/cisplatin treatment. Our model predicted that if all the patients included in our study were treated 
with the standard pemetrexed/cisplatin chemotherapy, this therapy would be effective in 57.3% of patients. 
However, using the proposed algorithm, 85.5% of patients could be stratified into an effective chemotherapy 
regimen. In 14.5% of MM patients with predicted poor response to both chemotherapy regimens treatment could 
be guided based on clinical parameters as so far or based on pharmacogenetic markers of toxicity identified 
in our previous studies11–14. On the other hand such early information about the high risk of poor outcome of 
the standard treatment could be important to spare these patients the non-effective treatment with frequent 
adverse events decreasing the quality of life and to direct them into clinical trials of new treatment approaches. 
For example, these patients might benefit from new immunotherapy approaches that target immune checkpoints 
or mesothelin30,31. As MM is a polyclonal malignancy, there are no specific driver mutations involved in disease 
development or progression32. On the other hand, recent next-generation sequencing studies have shown that 
despite low number of mutations in individual tumors, mutations were more often present in some pathways such 
as p53/DNA repair pathway, cell cycle, or phosphatidylinositol 3-kinase-AKT pathway, or genes coding for epige-
netic modifiers32,33. Additionally, copy number variations, especially minute deletions, were commonly present in 
these pathways34, suggesting they are often impaired in MM and could potentially be targeted in novel treatment 
approaches developed for MM. Several approaches are currently being investigated as an option for improving 
MM treatment, but further studies are needed to select optimal combination therapies30,31, likely incorporating 
novel concepts such as network analysis or even drug repurposing35.

Although our results are promising, some issues apart from validation in an independent population should 
be addressed before implementation in the clinic, mainly the most appropriate methodology or availability of 
approved tests and cost-effectiveness of genotyping. The additional cost of genotyping was small compared to 
high costs of chemotherapy itself. Our model can be further improved by including additional clinical factors and 
biomarkers. Other clinical factors such as pain were also associated with disease prognosis previously10. Tumor 
stage is often associated with treatment outcome, however we did not include it in our model due to significant 
correlations with other clinical parameters and because stage is not determined in peritoneal mesothelioma. 
Some patients in our study were amenable to surgery and this was associated with longer survival, consistently 
with other studies23,26. However, surgical treatment was not an independent prognostic factor in our study, but 
rather a factor associated with CRP, histological type and generally favorable performance status. The role of sur-
gical treatment, especially extra-pleural pneumonectomy in MM is still debated36–38. Studies suggest selected pop-
ulation of MM patients benefits from surgery as part of multi-modal treatment, but further studies are needed to 
determine the optimal type of surgery and which patients should receive it37. Moreover, other genetic factors have 
been associated with differences in gemcitabine/cisplatin or pemetrexed/cisplatin treatment outcome in other 
malignancies and inclusion of more SNPs could perhaps improve the prediction of clinical-pharmacogenetic 
models23,39–41. Tumor mRNA expression of some DNA repair enzymes could also serve as an additional prognos-
tic marker42.

The advantage of DNA-based or other blood-based markers is that they do not require cyto- or histopatho-
logical material, are non-invasive, and their determination can be easier and faster compared to histopathological 
tumor markers. Importantly, SNP genotyping is also reliable and less expensive. Clinical-pharmacogenetic models 
combining different clinical and pharmacogenetics markers have several advantages over single markers, which 
are unlikely to be able to explain all the variability in response. Moreover, SNP-based clinical-pharmacogenetic 
models could be easily introduced into the clinic to help guide treatment selection: easily calculated scores would 
enable fast classification of patients into one of the recommended treatment groups and consequently a more 
personalized treatment approach.

Treatment stratification based on tumor markers is currently mostly used in treatment with targeted drugs. 
However, even in advanced NSCLC, where various biomarkers have already been described and the analysis of 
EGFR and ALK mutations is clinically available, most patients are stratified for chemotherapy based on histolog-
ical data only1,20,21,39,43–47. Studies have shown that patient stratification based on RRM1 and ERCC1 expression 
or SNPs could improve outcome in NSCLC, but these approaches are not routinely used yet44,45. As gemcitabine/
cisplatin or pemetrexed/cisplatin chemotherapy doublets are also used in advanced NSCLC, our SNP-based 
clinical-pharmacogenetic models could be extended to this treatment, if confirmed in this group of patients.

In conclusion, we have developed clinical-pharmacogenetic models for predicting gemcitabine/cisplatin and 
pemetrexed/cisplatin treatment outcome. Using the proposed algorithm, effective chemotherapy could be recom-
mended for 85.5% of MM patients, however this needs to be confirmed in a prospective study. Similar approach 
could be used for selecting the most favorable treatment option and thus improving outcomes of chemotherapy 
in other cancers where more treatment options are available.
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