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Abstract: The maintenance of proper cytosolic Ca2+ level is crucial for neuronal survival, and dysregulation
of Ca2+ homeostasis is found in a variety of neurological disorders, including Alzheimer’s disease.
According to the “Ca2+ hypothesis of aging”, Ca2+ disturbances precede the onset of AD symptoms
and lead to neurodegeneration. STIM and ORAI proteins are involved in neuronal physiological and
pathological processes as essential components of the store-operated Ca2+ entry. Our previous data
suggested that overexpression of STIM2 and ORAI1 might increase basal neuronal cytosolic Ca2+

level. We generated double transgenic mice overexpressing these two genes in neurons, expecting
that the increased basal Ca2+ concentration will lead to premature neurodegeneration. We observed
changes in Ca2+ homeostasis and electrophysiological properties in acute brain slices of STIM2/ORAI1
neurons. However, we did not observe any augmentation of neurodegenerative processes, as tested
by Fluoro-Jade® C staining and assessment of amyloidogenesis. The battery of behavioral tests did
not show any signs of accelerated aging. We conclude that changes of calcium homeostasis induced
by overexpression of STIM2 and ORAI1 had no substantial adverse effects on neurons and did not
lead to early neurodegeneration.

Keywords: STIM2; ORAI1; SOCE; Alzheimer’s disease; neurodegeneration; electrophysiology; Ca2+
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1. Introduction

Store-operated Ca2+ entry (SOCE) is a canonical Ca2+ entry pathway that is activated in
non-excitable cells when the ER Ca2+ is depleted. SOCE plays an essential role in the maintenance of
cellular Ca2+ homeostasis and regulates a variety of processes, such as Ca2+ oscillations, gene expression,
mitochondrial function, and apoptosis. We have shown that proteins of the SOCE pathway are expressed
and functionally active also in neurons [1,2]. The Ca2+ sensors that convey information about the Ca2+

load of the ER lumen are Stromal Interaction Molecules (STIM1, STIM2). STIMs sense luminal Ca2+

concentration via an EF hand Ca2+-binding domain. In response to store depletion, they rearrange
into punctate structures close to the plasma membrane, where they activate store-operated channels
(SOCs), including members of the ORAI family (ORAI1-3) of Ca2+-influx channels [3,4]. This results in
Ca2+ entry into the cell.
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STIMs are essential players in maintaining neuronal Ca2+ homeostasis (reviewed in [5–7]).
The SOCE-related function of STIMs in neurons has previously been shown by [8,9]. In EGFP-STIM1-
expressing hippocampal neurons, thapsigargin caused a rapid aggregation of STIM1 in soma and
dendrites [9]. Upon such STIM1 activation, a dramatic reduction in its mobility was observed by
fluorescence recovery after photobleaching (FRAP) [8]. By triggering release of ER Ca2+ with DHPG or
carbachol, agonists of metabotropic glutamate and muscarinic acetylcholine receptors, respectively,
STIM1 was activated and Ca2+ entry occurred in dendrites. This allowed the authors to postulate that
neuronal SOCE can be activated by physiological stimuli, some of which may alter the postsynaptic
Ca2+ signaling properties [8]. Besides the regulation of SOCE, an additional role of STIM1 in inhibiting
L-type voltage gated Ca2+ channels was demonstrated [10,11].

A second isoform of STIM proteins, STIM2, also plays a role in neuronal physiology. Notably,
neurons from STIM2 knockout mice showed significantly increased survival under hypoxic conditions
compared to neurons from wild-type controls [10]. The authors demonstrated that STIM2, but not
STIM1, was essential for SOCE and ischemia-induced cytosolic Ca2+ accumulation in neurons. STIM2
knockout mice were markedly protected from neurological damage in a model of focal cerebral
ischemia. Moreover, it was found that STIM2 knockout neurons had lower basal Ca2+ than wild-type
controls. The results of Gruszczynska-Biegała et al. suggest that STIM2 regulates resting Ca2+ levels in
the ER in rat primary cortical neurons [2,9].

Exact control of Ca2+ cytosolic level is necessary for cell survival and its abnormal regulation is
found in a variety of disorders, including age-related diseases [11,12]. According to the most widely
accepted theory, aging is a result of life-long accumulation of stochastic damages to the genomic DNA
as well as to proteins and lipids, which results in the disturbance of protein expression and in an altered
function of key cellular molecules (reviewed in [13]). It is justified to hypothesize that this damage
is the first step that leads to the perturbation of Ca2+ homeostasis in aged cells. There is compelling
evidence supporting an early and central role for Ca2+ dysregulation in the pathogenesis of Alzheimer’s
disease (AD), including sporadic AD, whose etiology is not related to mutations in presenilins or
APP (reviewed in [14–17]). Importantly, Ca2+ disturbances precede the onset of AD symptoms [18,19].
Elevated basal Ca2+ concentration results in excessive tau phosphorylation [20,21] and in pathological
APP processing that leads to overproduction of Aβ [22]. Disturbances in Ca2+ signaling are found
before any obvious extracellular Aβ deposition in patients with sporadic AD [23] and it has been shown
that Ca2+ dysfunction augments Aβ formation and tau hyperphosphorylation. Elevating cytosolic
Ca2+ level increases Aβ formation in human embryonic kidney cells [24], whereas reducing the Ca2+

content of the ER with thapsigargin reduces Aβ release [22]. Increased level of Ca2+ is observed in cells
with APP knockdown or mutated presenilin [10,13]. The major change in Ca2+ signaling that occurs
during AD appears to be an increase in the amount of Ca2+ released from the internal stores [25–27].
Even though neurons possess efficient Ca2+-buffering mechanisms, age-associated phenomena lead to
discrete impairment of Ca2+ homeostasis. This, in turn, results in a decreased capacity of neurons to
counteract stress, including Ca2+ overload. In old neurons, enhanced Ca2+ release from the ER or its
impaired buffering function is associated with excitotoxicity and increased vulnerability to apoptosis
(reviewed in [28,29]). Thus, the AD Ca2+ hypothesis encompasses two related phenomena (reviewed
in [14,30]). The first one is that a sustained up-regulation of Ca2+ has pathological consequences for
neurons [11,30]. The second one is that the histopathological features of AD, such as deposition of Aβ,
further increase Ca2+ levels, thus accelerating the disease progression [14,31].

Recent results by Jadiya and colleagues demonstrate that neuronal deletion of the mitochondrial
Na+/Ca2+ exchanger in 3xTg-AD mutant mice (NCLX, Slc8b1 gene) accelerated memory decline and
increased amyloidosis and tau pathology [31]. The downregulation of NCLX protein levels was also
observed in postmortem brain of patients with non-familial, sporadic AD. These results provide a
functional link between Ca2+ dyshomeostasis and AD development. It was suggested that the factors
which trigger initial Ca2+ dysregulation, such as aging and metabolic dysfunction, in turn lead to
mitochondrial dysfunction, Ca2+ overload and AD pathology. NCLX is known to be required for
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maintenance of SOCE by controlling the redox-dependent inactivation of ORAI1 [32]. On the other
hand, it was shown that STIM2 was downregulated in brains of AD patients, whereas its presence was
critical for the maintenance of mushroom spines in mouse models of AD [33,34].

Based on our earlier results [2] we hypothesized that mice that overexpress STIM2 and ORAI1
in neurons might exhibit early signs of neurodegeneration because of the increased basal Ca2+

levels. The mice with such features would confirm Khachaturian’s hypothesis of sporadic AD [19,35]
and be a suitable model to study mechanisms of this disorder. In this paper we describe a new
transgenic mouse line overproducing STIM2/ORAI1 in neurons. Despite the lack of obvious signs of
accelerated neurodegeneration, the mice exhibit some changes in behavior and their neurons show
minor impairments in basal synaptic transmission. These results highlight the importance of SOCE
machinery in neuronal cells.

2. Results

2.1. Overexpression of ORAI1 and STIM2 in Neurons Leads to Altered Ca2+ Response in a Modified Ca2+

Addback Assay in CA1 Hippocampal Region

We generated double transgenic mice overproducing ORAI1 and STIM2 in neurons as described
in Materials and Methods. Real-time quantitative PCR (qPCR) analysis was performed to check the
expression levels of human transgenes in the brain of these mice and compared the level of transcripts
with that of endogenous Stim2 and Orai1. The results show a robust overexpression of human STIM2
and ORAI1 in the cortex and hippocampus of mice of both sexes (Figure 1A,B).

Acute brain slices of hippocampi that were isolated from 5-week-old wildtype and transgenic
STIM2/ORAI1 mice were analyzed by fluorescent imaging. Calcium measurements and Fura-2
acetomethyl ester (AM) indicator loading were performed as described before [36]. To assess
Ca2+ homeostasis in the STIM2/ORAI1 overproducing neurons, we used a Ca2+ addback assay
that was modified to enable the measurement of Ca2+ release from the ER [37]. As shown in
Figure 1C,F, stimulation by glutamate led to similar peaks in both variants tested. However, the signal
decay following the pulse of glutamate tended to be slower in transgenic neurons (Figure 1D).
The resulting difference in Ca2+ cytosolic concentration persisted during the subsequent application of
a Ca2+ chelating agent, ethylene glycol-bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid (EGTA)
(Figure 1C,E). Also, a moderately increased influx of calcium ions upon Ca2+ addback was observed
in neurons overproducing ORAI1 and STIM2. Recently, we have found similar results in neurons of
single transgenic line with overproduction of ORAI1 [36]. This suggests that incorporation of STIM2
did not significantly change the Ca2+ dynamics of neurons overproducing ORAI1 channels.

2.2. Impairment of Basal Synaptic Transmission in Adult Female Mice Overexpressing STIM2 and ORAI1

To check basic electrophysiological properties of neurons that overproduced STIM2 and ORAI1,
we recorded local field potentials in the CA3-CA1 hippocampal projection using acute brain slices.
The comparison of input-output curves with those in wildtype animals revealed a modest decrease
in basal synaptic transmission in slices that were isolated from transgenic females (Figure 2A, upper
row). However, population spike amplitudes were virtually identical in both tested groups (Figure 2B,
upper row). Similarly, we did not detect significant changes in short-term plasticity (measured by
paired-pulse ratio, Figure 2C, upper row). An identical set of experiments that was performed on
age-matched male mice revealed no changes in the tested parameters (Figure 2, lower row). Our results
suggest that neuronal excitability is similar in STIM2/ORAI1 and wildtype hippocampi and that the
minor impairments in synaptic function are specific to female mice. Following our observation of a
modest impairment in synaptic transmission, we checked the phosphorylation state of GluR1, an AMPA
receptor subunit, and found no major differences between the two genetic variants (Figure 2D).
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Figure 1. Altered Ca2+ response in a modified Ca2+ addback assay in CA1 hippocampal region
from Tg(STIM2/ORAI1)Ibd line. (A,B) Expression levels of isoforms of STIM2 and ORAI1 in the
cortex and hippocampus of male and female mice. (C) Averaged time-course of fluorescence signal.
The measurements were performed using Fura-2 AM dye that was loaded into the CA1 neurons of the
acute hippocampal brain slices. About 20 pyramidal neurons per slice (n) were analyzed; 1–2 slices from
one animal were analyzed. The total number of analyzed slices was equal to 9 and 12 for wildtype and
transgenic variants, respectively. (D) Time-course of signal decay following stimulation by glutamate
that was fit by a logarithmic function. Student’s t-test was used to check statistical significance of the
observed differences; p-values are provided above the respective charts. (E) Quantification of baseline
F340/F380 values and following the application of Ca2+ chelator, EGTA; at 13th and 25th min of the
measurement, a.u. (F) Quantification of signal amplitudes that were observed following treatment by
glutamate and cyclopiazonic acid (CPA), and Ca2+ addition; arbitrary units (a.u.).
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Figure 2. Basic electrophysiological properties of hippocampal neurons measured by local field potential
recordings from acute brain slices that were isolated from 11-month-old female and male wildtype
and STIM2/ORAI1 mice, upper panel: females; lower panel: males. (A) Input–output curves reflecting
basal synaptic transmission in CA3-CA1 projection recorded from stratum radiatum. (B) Input–output
curves of population spike responses recorded from stratum pyramidale in CA1 region. (C) Paired-pulse
ratios of fEPSP slopes measured at different interstimulus intervals. Student’s t-test was used to check
statistical significance of the observed differences; p-values are displayed above the respective charts.
n = 16 wildtype and n = 19 STIM2/ORAI1 slices (females); n = 9 wildtype and STIM2/ORAI1 slices
(males). (D) The level of GluR1 phosphorylation was analyzed by Western blot in tissue homogenates
from wild type and transgenic mice of both sexes. Three mice per sex and genetic variant were analyzed.

2.3. Modest Changes in Behavior of STIM2/ORAI1 Animals

To check whether the observed alterations in Ca2+ homeostasis and the moderate impairment in
synaptic transmission translates into changes in behavior of adult mice (6-month-old), we performed
a battery of tests. Female transgenic mice exhibited enhanced willingness to explore the arena in
Open Field test, which could indicate increased exploratory drive or decreased anxiety (Figure 3B).
Transgenic males spent less time on the rotating cylinder in the RotaRod test (Figure 3A,B). Also,
male transgenic animals tended to spend more time in the open arms during the elevated-plus maze
(EPM) test (Figure 3C), which suggests lower anxiety. Interestingly, whereas cued and contextual
learning abilities were comparable across sexes and genetic variants (Figure 3D,E), male transgenic
mice exhibited less freezing during the first 2 min of the cued conditioning protocol, before the stimulus
was applied. This observation may correspond to the observed lower anxiety levels in the EPM test.
In the Novel Object Recognition test, we observed differences in the discrimination of the old and
novel objects in the case of male mice, but not in females (Figure 3F). Altogether, our results suggest
that overproduction of STIM2 and ORAI1 had a modest effect on the behavior of animals. Apparently,
the observed changes in Ca2+ homeostasis and electrophysiological properties did not have a significant
impact on learning and memory of transgenic mice and did not trigger premature pathology.
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Figure 3. Results of the battery of behavioral tests for male and female transgenic and wildtype animals.
(A) rotarod test (RR), mean and maximal time spent on the rotating rod; (B) open field test (OF),
average distance moved; (C) elevated plus maze (EPM), ratio of entry into open vs closed arms; (D,E)
fear conditioning test: cued and contextual learning, respectively; (F) novel object recognition (NOR)
test, time spent sniffing the old and new object. Sample size: wildtype mice: nmale = 12; nfemale =12;
Tg(STIM2/ORAI1)Ibd mice: nmale = 13; nfemale = 15.

2.4. No Features of Neurodegeneration in Tg(STIM2/ORAI1)Ibd Mice

Following the initial idea of the project, we wondered whether overexpression of STIM2 and
ORAI1 genes would trigger accelerated neurodegenerative processes because of the expected changes
in Ca2+ homeostasis. To evaluate this hypothesis, we performed staining with the Fluoro-Jade® C
dye that specifically labels degenerating neurons (Figure 4A). Additionally, potential deposition of
amyloid plaques was checked by immunostaining (Figure 4B). No differences between wildtypes and
STIM2/ORAI1 mice were observed, which suggests that overproduction of these two proteins had no
effect on neurodegenerative processes.
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Figure 4. Results of immunostaining against markers of neurodegeneration. (A) Fluoro-Jade® C and
(B) Amylo-Glo RTD immunostaining of brain slices from wild type and transgenic mice of both sexes.
We observed no signs of neurodegeneration; three mice per sex and genetic variant were analyzed,
shown is only one set of data. The scale bars show 50 µm.

3. Discussion

Accumulating evidence suggests that STIMs and ORAIs, the key proteins responsible for SOCE,
play an important role in neuronal physiology. To explore further the role of neuronal SOCE (nSOCE),
we have recently created several transgenic mouse lines that overproduce SOCE proteins specifically
in brain neurons. Using these mice, we have shown that the activities of ORAI1 and STIM1 may
regulate basal synaptic transmission and synaptic plasticity [38,39]. Together with studies by other
groups [40–44], our results show that SOCE proteins play a role in fundamental neuronal processes.
The proper functioning of synaptic transmission and plasticity is in part conveyed through intricate
control of Ca2+ dynamics in neurons [45]. We have previously found that in cultured cortical neurons,
the overproduction of STIM2 together with ORAI1 resulted in an increased basal cytoplasmic Ca2+

concentration [2]. Along the lines of so-called ‘Ca2+ hypothesis of aging’, this observation prompted
us to create a transgenic mouse line with neuronal-specific overproduction of these two proteins.
This could serve as a useful model to validate whether the expected elevated Ca2+ level in neurons
facilitated premature neurodegeneration, a hallmark of AD and other neurological disorders [19].

In contrast to our findings in cultured neurons [2], Ca2+ imaging that was performed on
hippocampal slices isolated from double transgenic STIM2/ORAI1 mice did not reveal significant
changes in basal cytosolic Ca2+ level (Figure 1C,E). This may result from the differences between
biological models that were used in the original and the current study (neuronal cultures [2] vs ex
vivo tissue—this study) or from the existence of compensatory mechanisms that are often observed in
transgenic animals [46]. Nevertheless, our Ca2+ imaging experiments showed an altered Ca2+ response
in neurons following a strong physiological stimulus (the application of glutamate). The changes
were akin to the ones that we have recently observed in single transgenic ORAI1 mice [36]—a slower
relaxation of the signal following glutamate peak and the persistence of increased cytosolic Ca2+

level in Ca2+ chelating conditions. Based on the mechanism proposed by Chen Engerer at al [47],
this supports our hypothesis that overproduction of ORAI1 may have altered the refilling of ER Ca2+

stores. Interestingly, the co-expression of STIM2 together with ORAI1 seemed to have little effect
on the observed changes in Ca2+ homeostasis. Indeed, the previously described Ca2+ dynamics
in hippocampal neurons overexpressing STIM2 alone was similar to that of wild-type neurons,
with the exception of elevated Ca2+ influx in the ‘Ca2+ re-addition protocol’ that is used to assess the
magnitude of SOCE [36]. Field potential recordings have revealed minor impairments in basal synaptic
transmission of double transgenic female STIM2/ORAI1 mice (Figure 2A). This change was absent in
male STIM2/ORAI1 mice.
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In our transgenic model, STIM2/ORAI1 mice, the alterations in Ca2+ homeostasis that we have
observed did not correlate with detectable signs of neurodegeneration. Fluoro-Jade® C staining
(which specifically detects degenerating neurons) and immunostaining for Aβ revealed no detrimental
changes in hippocampal neurons from these mice (Figure 4). Despite modest impairments in synaptic
transmission, we did not observe any changes in the phosphorylation state of the Ser845 GluR1
subunit of the AMPA receptor (Figure 2D). Likewise, transgenic animals performed similarly in most
behavioral tests that assess cognitive skills. However, male animals of the transgenic lines were
more willing to enter open arms during elevated plus maze test, which could be a sign of decreased
anxiety. Also, transgenic males spent less time on the rotating cylinder in the RotaRod test. This may
indicate problems with motor coordination. Moreover, male mice of STIM2/ORAI1 manifested altered
recognition of the novel object. Together with our previous report [38], these findings provide further
indications that some actions of SOCE proteins may be sex-dependent.

Despite the lack of expected premature neurodegeneration in the STIM2/ORAI1 mice, our novel
model can be a useful tool for further studies of the role of SOCE proteins in neurons. This is especially
relevant in the context of conflicting evidence of STIM2 actions in neuronal pathophysiology [10,31,33,
48–52], the involvement of ORAI1 in neurotransmission [53] and the growing body of evidence that
links Ca2+ homeostasis to AD-related neurodegeneration.

4. Materials and Methods

4.1. Chemicals and Antibodies

Cyclopiazonic acid (CPA) was from Sigma (St. Louis, MO, USA) (catalog no. C1530). Fura-2 AM
was from Thermo Fisher Scientific (Waltham, MA, USA) (catalog no. F1221). Fluoro-Jade® C was
from Millipore (catalog no. AG325, lot 3170812). Amylo-Glo® RTD™ Amyloid Plaque Stain Reagent
was from Biosensis (Thebarton, Australia) (catalog no. T3-300-AG, lot BA01-30-300 AGTK120419).
Mounting medium Entellan® new was from Millipore (Burlington, MA, USA) (catalog no. 107961,
lot HX42534561). Polyclonal rabbit monoclonal antibody against phospo-GluR1 Ser845 was from
Millipore (catalog no. EPR2148; lot 2377032). Monoclonal antibody calcineurin (CaN) was from Sigma
(St. Louis, MO, USA) (catalog no. C1956; lot 094M4820V). The housekeeping protein monoclonal
mouse β-actin antibody was from Sigma (St. Louis, MO, USA) (catalog no. A54418, lot 122M4782).
Secondary anti-rabbit and anti-mouse antibodies were conjugated with horseradish peroxidase (HRP;
Sigma catalog no. A9169 lot 117M4808V and A9044 lot 055M4818V).

4.2. Animal Care

The mice were housed under standard conditions on a 12 h/12 h light/dark cycle with food and
water available ad libitum. All of the animal experiments were approved by the Local Commission
for the Ethics of Animal Experimentation no. 1 in Warsaw (approval no. 416/2017, 21 November
2017) and performed in accordance with the European Communities Council Directive (63/2010/EEC,
22 September 2010).

4.3. Generation of FVB/NJ–Tg(STIM2/ORAI1)Ibd Transgenic Mice

A coding sequence of human STIM2 from pEX-CMV-SP-STIM2(15-746) plasmid (a gift
from Tobias Meyer—Addgene plasmid # 18868) [54] was cloned to the Thy-1.2 expression
cassette [55,56]. The STIM2 coding region and flanking Thy1.2 sequence were sequenced to
confirm that no point mutations were introduced during the cloning steps. Next, the Thy1.2-STIM2
construct was digested with PvuI and NotI to excise plasmid sequences, and the linearized
fragment was gel-purified and used for standard pronuclear microinjection [57] and injected into
pronuclei of fertilized eggs that were derived from FVB/NJ. The procedure was performed in the
Laboratory of Animal Models at the Nencki Institute of Experimental Biology (Warsaw, Poland).
Quantitative Real-Time PCR confirmed specific expression of the transgene in the brain within



Int. J. Mol. Sci. 2020, 21, 842 9 of 15

the established FVB/NJ-Tg(STIM2)Ibd lines. Generation of the FVB/NJ-Tg(ORAI1)Ibd line was
described elsewhere [38]. Double transgenic mice were generated by crossing homozygotes of male
FVB/NJ-Tg(STIM2)Ibd with the female FVB/NJ-Tg(ORAI1)Ibd. To identify transgenes, genotyping was
performed with the following primers: Thy_Forw_genotype 5′-TCTGAGTGGCAAAGGACCTTAGG-3′,
ORAI1_Rev_genotype 5′-TGGTCCTGTAAGCGGGCAAAC-3′, STIM2_Rev_genotype 5′-GCTGCTT
ATTCTGGCAACACTTGG-3′.

4.4. Real-Time PCR Analysis for Neuronal Confirmation of Expression of Both Transgenes

Adult mouse (postnatal day 180 [PD180]) brain structures (i.e., hippocampus, cortex) were digested
using the RNeasy Lipid Tissue Mini Kit (Qiagen, Hilden, Germany) followed by DNase (Qiagen)
treatment according to the manufacturer’s protocols. RNA templates (500 ng) were used to synthesize
first-strand cDNA using a reverse transcription kit (iScript, Bio-Rad: 170–8841, USA). The real-time
PCR reactions were performed in duplicate for each sample using SsoAdvanced Universal SYBR
Green Supermix (Bio-Rad:1725274; Hercules, CA, USA) with the following specific gene primers for
human STIM2: 5′-TTGCTGGAGGAGTTGATGAC-3′; 5′-CTGCTGCTTCTGGCTAATG-3′ (Sigma),
human ORAI1 5′-CTCTCCGGCTTCGCCAT-3′; 5′-ACAGCCACCAGCACTGT-3′ (Sigma), mouse Orai1
5′-ATGAGCCTCAACGAGCACT-3′; 5′-GTGGGTAGTCATGGTCTG-3′ (Sigma), and mouse STIM2.2
5′-GGACGAGGCAGAAAAAATTAAAAAG-3′; 5′-CACGTGGTCAGCTCAGAGAG-3′ (Sigma). Uba-2
was used for normalization with the following primers: 5′-GGCTTGATAGTGTTGGAAGGA-3′;
5′-CTTGGGTTTGGCTGCTTATTC-3′ (Sigma). The specificity of the reactions was determined based
on dissociation curve analysis. Relative gene expression was calculated using the 2-∆∆Ct method using
Bio-Rad CFX Maestro 1.1 Software (Bio-Rad, Hercules, CA, USA), USA). The reactions were performed
using the CFX Connect™ Real-Time PCR Detection System (Bio-Rad). Three individuals per variant
per sex were analyzed.

4.5. Protein Isolation and Immunoblotting

Fresh brain tissues (PD 180) were homogenized in a buffer that contained 50 mM Tris (pH 7.5),
150 mM NaCl, 1% TX-100, 0.5% sodium deoxycholate, and 1 mM ethylenediaminetetraacetic acid
(EDTA) with protease inhibitor mixture (Roche Applied Science, Penzberg, Germany) and phosphatase
inhibitor mixtures 2 and 3 (Sigma) using a glass–glass homogenizer. Protein extracts were separated on
10% SDS-polyacrylamide gels, and proteins were detected by Western blot with anti-phospho-GluR1
Ser845 antibody (1:1000; Millipore, catalog no. EPR2148; lot 2377032), mouse anti-calcineurin antibody
(1:10000; Sigma, catalog no.C1956; lot 094M4820V), and anti-β-actin antibody (1:10000, Sigma; catalog
no. A54418, lot 122M4782). Secondary anti-rabbit and anti-mouse antibodies were conjugated with
HRP (1:10000; 1:5000 respectively, Sigma; catalog no. A9169 lot 117M4808V and A9044 lot 055M4818V).
Three individuals per variant per sex were analyzed.

4.6. Perfusion of Mice and Brain Sectioning

Adult mice (postnatal day 180 (PD180)) were deeply anesthetized with an intraperitoneal
injection of ketamine (Biowet, Poland) with xylazine (Vetoquinol Biowet, Poland) and transcardially
perfused with a 0.1 M phosphate-buffered (PB) solution (pH 7.4), followed by 4% paraformaldehyde
(PFA) in 0.1 M PB (pH 7.4). Dissected brains were postfixed overnight in 4% PFA and further
cryoprotected overnight with 30% sucrose. The brains were coronally sectioned at 20 µm with
vibratome Compresstome (Precisionary Instruments, Greenville, SC, USA).

4.7. Immunohistochemistry

Fluoro-Jade® C (staining of degenerating neurons) and Amylo-Glo® RTD™ (staining of amyloid
plaques in tissue sections) procedures were performed according to the manufacturer’s protocols.
Briefly, the brain sections were mounted on Super Frost Ultra Plus slides (Thermo Scientific, Hungary),
dried at 50–60 ◦C on a slide warmer for at least 30 min to 1hr for good adhesion. Next, in case of
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Fluoro-Jade® C staining, slides were immersed in a basic alcohol solution comprising 1% sodium
hydroxide in 80% ethanol for 5 min. They were then transferred to a new Coplin jar containing
freshly prepared 70% ethanol for 2 min and next rinsed for 2 min with 0.1M PB (phosphate buffer).
Following incubation in 0.06% potassium permanganate solution for 10 min for fluorescent background
blocking and contrast optimization, the slides were transferred for 10 min to a 0.0001% solution of
the Fluoro-Jade® C dissolved in 0.1% acetic acid. The slides were then rinsed three times in 0.1 M
PB for 1 min, air dried on slide warmer at 50 ◦C for at least 5 min. Next, dry slides were cleared by
brief immersion in xylen (POCH, Poland) and coverslipped with non-aqueous mounting medium
Entellan® new (Millipore, Germany). In case of Amylo-Glo® RTD™ procedure, the dried slides were
transferred into a 70% solution of ethanol for 5 min, then rinsed in 0.1 M PB for 2 min and incubated
for 10 min in the prepared 1× Amylo-Glo® RTD™ staining solution. Next the slides were transferred
into 0.9% saline solution for 5 min, briefly rinsed in 0.1 M PB, air dried, dehydrated through a graded
series of ethanol concentrations, cleared in xylene (POCH, Poland) and coverslipped with Entellan®

new (Millipore, Germany). Images were acquired with a 10× objective on Zeiss Airyscan detector.
Three individuals per variant per sex were analyzed.

4.8. Behavioral Analysis

Behavioral experiments were performed with a group of 25 males (12 wild-types, 13 transgenes)
and 27 females (12 wild-types, 15 transgenes, age PD180) according to the following protocol: Rotarod
test (RR), open field test (OF), elevated plus maze (EPM), fear conditioning, and novel object recognition
test (NOR).

The tests were described extensively elsewhere [38,39]. In brief, in the rotarod test the mice were
forced to maintain their balance on a rotating rod (30 mm diameter) that was placed 20 cm above the
apparatus floor. The time (latency) it took for the mouse to fall from the rod (0–40 rotations per minute
(rpm)) in a 300 s session was recorded. In the open-field test, the animals were placed in the middle of
a circular arena (64 cm diameter, 30 cm high walls) and their activity was recorded for 10 consecutive
minutes. In EPM, testing was performed using an apparatus that consisted of two opposing open
arms and two opposing closed arms, (both 35 cm × 5 cm). The open and closed arms were arranged
perpendicular to each other, with a central platform at the intersection of the arms. Animal movements
were recorded for 5 consecutive minutes.

In fear conditioning test, a speaker was used to deliver the acoustic conditioned stimulus (CS).
Sensory stimuli were adjusted to generate two contexts (context A and context B). For context A,
a house light that was mounted on the ceiling of the cage was illuminated, and the room lights
remained on. For context B, the room and chamber house lights were turned off. The ventilation fans
were turned off and a 60 W red light provided illumination. The animals underwent three phases of
training: fear conditioning, cue testing, and context testing. For fear conditioning, the animals were
placed in the conditioning chambers in context A. They were exposed to five tones followed by foot
shocks, with a 60 s interval. Twenty-four hours after the conditioning session, the mice underwent cue
testing in a novel context (context B). Two minutes after being placed in context B, a tone was delivered.
Twenty-four hours after cue testing, the animals were subjected to context testing. They were placed in
the same context as in the fear conditioning phase (context A) for 300 s. Fear-related behavior (i.e.,
freezing) in response to the tone and context stimuli during training and testing was assessed by an
automated video-based analysis system [58].

The novel-object recognition test was conducted in boxes (40 cm × 40 cm × 30 cm) with even
lighting conditions (70 lux). Two laboratory glass bottles (6 cm diameter, 8 cm height) were used as
Objects A, and a door stopper (6 cm diameter, 7 cm height, round in shape, stainless steel) was used as
Object B. On day 1 of the tests, a habituation trial was performed. The mice were allowed to explore
the empty test box for 5 min. The learning trial was conducted twenty-four hours after the habituation
trial. The animals were placed in the test box with two identical Objects A that were positioned in
opposite corners. The mouse was allowed to explore both for 5 min before it was placed back into its
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home cage. After 24 h, the mouse was placed in the test box with familiar Object A and novel Object B.
The mouse was allowed to explore the objects for 5 min. The videos were recorded and analyzed using
a video-tracking system (EthoVision, Noldus) to extract the behavioral data.

The differences between the groups were evaluated using the nonparametric Mann–Whitney U
test. The data are expressed mean ± SEM. Data preparation and analysis were performed using R
software (https://www.r-project.org).

4.9. Brain Slice Preparation, Ca2+ Imaging, and Electrophysiology

12 ± 1 month-old and P25 ± 5 mice were used for electrophysiological experiments and Ca2+

imaging, respectively. Following cervical dislocation, hippocampi from the right hemisphere were
retrieved and 350 µm thick sections were prepared according to the protective recovery method and as
described previously [36]. For Ca2+ imaging experiments, CA1 pyramidal layer was labeled with the
use of Fura-2 AM indicator and a modified Ca2+-addback assay was performed as described before [36].
The concentration of glutamate, EGTA and CPA were 100 µM, 2.5 mM and 20 µM, respectively.
The authors wish to note that the imaging experiments that are described in the present paper and
in the paper [36] were performed simultaneously, but the results concerning the double transgenic
STIM2/ORAI1 line were not included in the latter work. The wildtype controls are the same for both
sets of data, therefore, they overlap with our previously published work.

Local field potential recordings were performed in a submerged chamber that was filled with
artificial cerebrospinal fluid (aCSF) that contained, in mM: 126 NaCl, 2.6 KCl, 20 glucose, 1.25 NaH2PO4,
25 NaHCO3, 1.5 MgSO4, and 2.5 CaCl2. The pH was adjusted to 7.3–4 at room temperature with
O2/CO2 95%/5% (v/v) mixture (carbogen) and HCl, and the osmolality was 315 ± 5 mOsm/kg H20. aCSF
was carbogenated throughout the recordings and heated with an in-line heater (catalog no. 64-0102,
controlled by a TC-324B temperature control unit, Warner Instruments) to maintain the temperature
in the recording chamber at 25 ± 1 ◦C. The rate of solution flow was 7 mL/min. To obtain synaptic
responses, Schaffer collaterals were stimulated with a bipolar electrode (catalog no. CBARC75, FHC,
USA). Stimuli of increasing intensity (0–100 µA, every 12.5 µA) were delivered with an ISO-200
stimulator (Circlelabs) at a frequency of 0.1 Hz. Field excitatory postsynaptic potentials (fEPSPs)
were recorded in the stratum radiatum and stratum pyramidale of the CA1 area of the hippocampus
using standard Ag/AgCl electrodes that were connected to CV-7B headstages (Molecular Devices).
Glass micropipettes that were mounted on the headstages were pulled from borosilicate glass (Warner
Instruments, 0.86 mm inner diameter, 1.50 mm outer diameter) with the use of a horizontal puller
(P-1000, Sutter Instruments). Resistance of the pipette tips was between 2 and 4 MΩ when filled
with aCSF.

The signals were amplified with Multiclamp 700B amplifier and acquired at 20 kHz with a Digidata
1550B acquisition card (Molecular Devices) using a 3 kHz low-pass filter. Prior to analysis, the signals
were filtered at 1 kHz. To calculate popspike activity, a built-in function of the AxoGraph program
(developed by John Clements) was used. To analyze synaptic activity, initial linear part of the slope
of fEPSP was calculated in Clampfit (Molecular Devices). Further data analyses were performed in
Microsoft Excel and GraphPad Prism 5 (USA).

5. Conclusions

Together with our previously published study, our data show that overproduction of SOCE
proteins influence neuronal activity and may exert sex-dependent effects. Despite the observed
impairments in synaptic transmission in transgenic female STIM2/ORAI1 mice and minor behavioral
alterations in transgenic male animals, we did not detect any signs of accelerated neurodegeneration.
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fEPSP field excitatory postsynaptic potentials
FRAP fluorescence recovery after photobleaching
GluR1 glutamate receptor 1
NCLX mitochondrial Na+/Ca2+ exchanger
NFAT nuclear factor of activated T-cells
NOR novel object recognition
nSOCE neuronal store-operated calcium entry
OF open field
PCR polymerase chain reaction
PB phosphate buffer
qPCR quantitative polymerase chain reaction
RR rotarod
sAD sporadic Alzheimer’s disease
SDS sodium dodecyl sulfate
SOCE store operated calcium entry
SOCs store-operated channels
STIM stromal interaction molecule
Tg transgenic
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