CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 14 April 2016
Accepted 22 April 2016

Edited by M. Weil, Vienna University of Technology, Austria
\neq Deceased.

Keywords: crystal structure; μ_{4}-oxido ligand; cobalt; inverse crown ether.

CCDC reference: 1476068

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of the inverse crown ether tetrakis $\left[\mu_{2}\right.$-bis(trimethylsilyl)amido]- μ_{4}-oxidodicobalt(II)disodium, $\left[\mathrm{Co}_{2} \mathrm{Na}_{2}\left\{\mu_{2}-\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right\}_{4}\right]$ ($\mu_{4}-\mathrm{O}$)

Christopher B. Hansen,* Alexander S. Filatov and Gregory L. Hillhouse \ddagger

The University of Chicago, Department of Chemistry, 5735 S Ellis Ave., Chicago, IL 60637, USA. *Correspondence e-mail: chansen6@uchicago.edu

The title compound, $\left[\mathrm{Co}_{2} \mathrm{Na}_{2}\left\{\mu_{2}-\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right\}_{4}\right]\left(\mu_{4}-\mathrm{O}\right)$, (I), represents a new entry in the class of inverse crown ethers. In the molecule, each Co atom is formally in the oxidation state +II . The structure contains one half of a unique molecule per asymmetric unit with the central μ_{4}-oxido ligand residing on an inversion center, leading to a planar coordination to the Na and Co atoms. In the crystal, bulky trimethylsilyl substituents prevent additional interactions with cobalt. However, weak intermolecular $\mathrm{Na} \cdots \mathrm{H}_{3} \mathrm{C}-\mathrm{Si}$ interactions form an infinite chain along [010]. The structure is isotypic with its Mg, Mn and Zn analogues.

1. Chemical context

Compounds that feature oxido-bridged cobalt clusters have been of great interest in recent years as active homogeneous (Blakemore et al., 2015) and heterogeneous (Kärkäs et al., 2014) oxygen-evolution catalysts. Bridging cobalt-oxido species also find applications in magnetic materials (Heering et al., 2013) and in hydrocarbon oxidation (Sumner \& Steinmetz, 1985). In the course of studies of compounds with low-coordinate cobalt atoms (Hansen et al., 2015), we have isolated and structurally characterized a cobalt-containing tetranuclear compound featuring a central μ_{4}-bridging oxido ligand, $\left[\mathrm{Co}_{2} \mathrm{Na}_{2}\left(\mu_{2}-\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right)_{4}\right]\left(\mu_{4}-\mathrm{O}\right)$ (I). Compound (I) fits into the larger class of 'inverse crown ethers' illustrated in Fig. 1 (Mulvey, 2006).

$$
\begin{aligned}
M & =\mathrm{Li}, \mathrm{Na}, \mathrm{~K} \\
M^{\prime} & =\mathrm{Mg}, \mathrm{Al}, \mathrm{Zn}, \mathrm{Yb}, \mathrm{Mn} \\
E R_{n} & =\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}, \text { tmp, phenoxides } \\
\text { (tmp } & =2,2,6,6 \text {-tetramethylpiperidine) }
\end{aligned}
$$

Figure 1
Schematic representation of inverse crown ethers that have previously been structurally characterized.

Compound (I) is the first cobalt-based inverse crown ether. The majority of examples contain magnesium or zinc as M^{\prime}, though manganese (Kennedy et al., 2008; Mulvey et al., 2010), aluminum (Wu et al., 2010), and ytterbium (Lu et al., 2010) complexes have been reported as well.

2. Structural commentary

Crystals of (I) suitable for X-ray diffraction were obtained as reaction by-products via crystallization from toluene at 238 K . Attempts at a rational synthesis were not successful. The molecular structure of compound (I) is shown in Fig. $2 a$ and relevant bond lengths and angles are presented in Table 1. The

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

Co1-O1	$1.8398(9)$	$\mathrm{Na} 1-\mathrm{O} 1$	$2.314(2)$
$\mathrm{Co} 1-\mathrm{N} 1$	$1.977(4)$	$\mathrm{Na} 1-\mathrm{N} 1$	$2.579(4)$
$\mathrm{Co} 1-\mathrm{N} 2$	$1.980(4)$	$\mathrm{Na} 1-\mathrm{N} 2^{\mathrm{i}}$	$2.523(4)$
$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{N} 2$	$141.35(17)$	$\mathrm{Co} 1-\mathrm{O} 1-\mathrm{Co}^{\mathrm{i}}$	180.0
$\mathrm{~N} 2^{\mathrm{i}}-\mathrm{Na} 1-\mathrm{N} 1$	$155.82(15)$	$\mathrm{Na} 1-\mathrm{O} 1-\mathrm{Na} 1^{\mathrm{i}}$	$180.00(3)$

Symmetry code: (i) $-x+1,-y+1,-z+1$.
asymmetric unit contains half of a unique molecule comprised of an oxygen atom located on an inversion center, one cobalt atom, one sodium atom, and two $-\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}$ ligands with the remainder of the molecule being completed by application of inversion symmetry. Consequently, all opposing $M-\mathrm{O}-M$ angles ($M=\mathrm{Co}, \mathrm{Na}$) are crystallographically imposed to 180°. The four bridging nitrogen atoms lie slightly out of plane from the four metal atoms, exhibiting a dihedral angle of $8.1(2)^{\circ}$ between their respective planes as shown in Fig. $2 b$.

The majority of cobalt-bridging oxido compounds possess bent angles, so the μ_{4}-oxido ligand in (I) is unusual in that it coordinates linearly to the opposing metal atoms. With a central oxido ligand, by charge balance each cobalt atom has formally an oxidation state of +II . While the paramagnetic nature of (I) prevents confirmation by NMR studies, it is unlikely that the central O atom is actually a hydroxido ligand. The structurally related anionic compound $\left[\mathrm{Na}_{4}\left(\mu_{2}-\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right)_{4}\left(\mu_{4}-\mathrm{OH}\right)\right]^{-}$, which bears a central $\mu_{4}-\mathrm{OH}$ ligand, is noticeably pyramidalized, possessing $\mathrm{Na}-\mathrm{O}-\mathrm{Na}$ angles of 140.1 (2) and 142.4 (2) ${ }^{\circ}$ (Clark et al., 2009). Additionally, the Co1-O1 bond length of 1.8398 (9) \AA in (I) is significantly shorter than those of other structurally characterized complexes of $\mathrm{Co}^{\mathrm{II}}$ bearing approximately linear

Figure 2
(a) The molecular structure of (I), showing displacement ellipsoids at the 50% probability level. (b) An alternate view of (I) down the $\mathrm{Na}-\mathrm{O}-\mathrm{Na}$ axis displaying ring offsets. H and C atoms were truncated for clarity. [Symmetry code: (i) $-x+1,-y+1,-z+1$.]

Figure 3
(a) Top view of a space-filling model of (I), showing the sterically shielded $\mathrm{Co}^{\mathrm{II}}$ atoms. (b) Side-on view, displaying the open pocket around sodium that allows for weak interactions. [Color scheme: cobalt (green), sodium (violet), silicon (yellow), oxygen (red), carbon (gray), hydrogen (white)].
bridging hydroxido ligands, which display bond lengths ranging from 1.975 (2) to 2.3766 (6) Å (Li et al., 2014; Reger et al., 2014; Wendelstorf \& Krämer, 1997).

The structure of compound (I) is isotypic with magnesium-, manganese-, and zinc-containing analogues of the general formula $\left[M_{2}^{\prime} \mathrm{Na}_{2}\left(\mu_{2}-\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right)_{4}\right]\left(\mu_{4}-\mathrm{O}\right)$, all of which contain planar linear bridging oxido ligands. Among the four compounds, (I) has comparatively short bonds. For instance, (I) displays the shortest $M^{\prime}-\mathrm{O}[1.8398$ (9) \AA in (I) versus 1.8575 (4), 1.9272 (2), 1.8733 (9) \AA in magnesium, manganese, zinc representatives, respectively] and shortest $M^{\prime}-\mathrm{N}$, [1.977 (4) and 1.980 (4) \AA in (I) versus 2.054 (1) and 2.049 (1) $\AA \quad$ (magnesium), 2.0909 (12) and 2.0884 (12) \AA
(manganese), and 1.986 (2) and 1.983 (2) \AA (zinc)] bond lengths. The short bond lengths and acute bond angles may enhance the torsion of the metal plane from the nitrogen plane.

3. Supramolecular features

In the solid state, the steric bulk of the trimethylsilylamide ligands prevents further intermolecular interactions of either the cobalt atoms or the oxido ligand, as can be observed in the space filling model of (I) presented in Fig. 3a. Some weak interactions can be noted for sodium, however, which is consistent with the open site around sodium visible in Fig. $3 b$.

Figure 4
Packing diagram of (I), showing $\mathrm{Na} \cdots \mathrm{H}$ contacts forming an infinite chain that extends along [010]. (Symmetry code: $-x+1,-y+1,-z+1$.)

The sodium atoms and one $-\mathrm{Si}-\mathrm{CH}_{3}$ group from each molecule coordinate to a neighboring $-\mathrm{Si}-\mathrm{CH}_{3}$ group and sodium atom, respectively, forming an infinite chain extending along [010], as illustrated in Fig. 4. The two close Na••H contact distances of 2.961 and $2.886 \AA$ fall within the range of previously structurally characterized literature examples of various molecules containing sodium bis(trimethylsilyl)amide moieties (2.55-3.0 £). For selected examples, see: Driess et al. (1997); Sarazin et al. (2006); Kennedy et al. (2008). This type of intermolecular interaction has been previously noted in the solid state for related potassium-based inverse crown ethers bearing bridging peroxido ligands (Kennedy et al., 1999), and in related sodium-containing precursors (Kennedy et al., 2008).

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.37, last update Nov. 2015; Groom et al., 2016) reveals that structurally characterized oxido-centered inverse crown ethers are rare. The first examples were prepared from magnesium [CSD refcodes: EJEKEJ (Kennedy et al., 2003); SUJQOD, SUJQUJ (Kennedy et al., 1998)]. Further examples focused on zinc [CSD refcode: WOQTIF (Forbes et al., 2000)], manganese [CSD refcodes: CIVRAB, CIVRIJ (Kennedy et al., 2008); WUVROV (Mulvey et al., 2010)], aluminum [CSD refcode: BABMEY (Wu et al., 2010)] and ytterbium [CSD refcodes: IMIBUC, IMICUJ (Lu et al., 2010)] complexes.

5. Synthesis and crystallization

Compound (I) was obtained as single crystals on multiple occasions as a side product of two different reactions; however, attempts at a rational synthesis were not successful. These reactions used conditions and reagents that were nominally free of oxygen and water. Nonetheless, trace oxygen or water are the likely sources of the bridging oxido ligand. Adventitious water (Lu et al., 2010) and oxygen (Kennedy et al., 2008) have both been shown to be potential oxygen-atom sources, and have been previously utilized to generate this type of structure. Additionally, fragmentation of tetrahydrofuran has also been identified as a potential oxygen-atom source in one case (Mulvey et al., 2010).

Method 1: In a glovebox $\left[(\mathrm{IPr}) \mathrm{CoCl}_{2}\right]_{2}$ (Matsubara et al., 2012; Przyojski et al., 2013) [$\mathrm{IPr}=1,3-\mathrm{di}(2,6-$ diisopropyl-phenyl)imidazolin-2-ylidene] ($50 \mathrm{mg}, 0.048 \mathrm{mmol}, 1$ equiv.) was dissolved in 3 ml toluene and cooled to 238 K . A 238 K solution of $\mathrm{NaN}\left(\mathrm{SiMe}_{3}\right)_{2}$ (Sigma-Aldrich, titrated to 0.844 M in THF) ($22.9 \mu \mathrm{~L}, 0.193 \mathrm{mmol}, 4$ equiv.) was added dropwise to the solution of $\left[(\mathrm{IPr}) \mathrm{CoCl}_{2}\right]_{2}$ with stirring. The reaction mixture rapidly changed color from blue to turquoise to green and became turbid. The solution was allowed to warm to ambient temperature and stirred for 1 h . The reaction was filtered through Celite and the filtrate reduced to dryness under vacuum. The resulting green solid was dissolved in a minimal volume of toluene, passed through a Pasteur pipette filter, and stored at 238 K for several days. The resulting

Table 2
Experimental details.
Crystal data

Chemical formula	$\left[\mathrm{Co}_{2} \mathrm{Na}_{2} \mathrm{O}\left(\mathrm{C}_{6} \mathrm{H}_{18} \mathrm{NSi}_{2}\right)_{4}\right]$
$M_{\text {r }}$	821.41
Crystal system, space group	Triclinic, $P \overline{1}$
Temperature (K)	100
$a, b, c(\AA)$	8.8839 (18), 10.591 (2), 12.700 (3)
$\alpha, \beta, \gamma\left({ }^{\circ}\right)$	96.75 (4), 108.93 (3), 99.15 (3)
$V\left(\mathrm{~A}^{3}\right)$	1097.4 (5)
Z	1
Radiation type	Mo $K \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	1.02
Crystal size (mm)	$0.30 \times 0.24 \times 0.20$
Data collection	
Diffractometer	Bruker SMART APEX CCD
Absorption correction	Multi-scan (TWINABS; Bruker,2012)
$T_{\text {min }}, T_{\text {max }}$	0.57, 0.75
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections	4421, 4421, 3107
$R_{\text {int }}$	0.089
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	0.627
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.065, 0.154, 1.03
No. of reflections	4421
No. of parameters	200
H -atom treatment	H -atom parameters constrained
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	1.08, -0.54

Computer programs: APEX2 (Bruker, 2014), SAINT (Bruker, 2013), APEX3 (Bruker, 2015), SHELXT (Sheldrick, 2015a), SHELXL2014 (Sheldrick, 2015b), Mercury (Macrae et al., 2006) and OLEX2 (Dolomanov et al., 2009).
precipitate primarily consisted of thin green plates of (IPr) $\mathrm{CoCl}\left(\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right)$ (Hansen et al., 2015), occasionally accompanied by a small number of dark green-blue blocks of (I).

Method 2: While attempting to prepare a compound of the type $\mathrm{Na}\left[\mathrm{Co}\left(\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right)_{3}\right]$, (I) was occasionally observed as a minor by-product during recrystallization attempts. In a typical reaction anhydrous $\mathrm{CoCl}_{2}(100 \mathrm{mg}, \quad 0.77 \mathrm{mmol}$, 1 equiv.) was suspended in 2 ml THF and cooled to 238 K . $\mathrm{NaN}\left(\mathrm{SiMe}_{3}\right)_{2}$ ($423.6 \mathrm{mg}, 2.31 \mathrm{mmol}, 3$ equiv.) was dissolved in 10 ml THF, cooled to 238 K , then added to the stirred slurry of CoCl_{2}. The reaction mixture was allowed to warm to ambient temperature and stir overnight, over which time it slowly turned green and turbid. The reaction mixture was filtered through Celite and rinsed with additional THF until washings were colorless, leaving a white solid remaining on the Celite pad. The combined THF fractions were combined and concentrated under vacuum to a yield a waxy green solid. The resulting solid was recrystallized from a solution in a minimal volume of toluene cooled to 238 K . The title compound (I) was occasionally observed as blue-green blocks.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were placed at idealized positions with $\mathrm{C}-\mathrm{H}=0.98 \AA, U_{\text {iso }}(\mathrm{H})$ set to $1.5 U_{\text {eq }}(\mathrm{C})$. The initial structure solution and refinements had a
goodness-of-fit of about 0.88 and many reflections with $F_{\mathrm{o}}>F_{\mathrm{c}}$ suggesting possible twinning. The data reduction was revisited and the structure was refined under consideration as a two-component twin by non-merohedry. The second domain is rotated from the first domain by 3.3° about reciprocal axis [1 $0 \frac{1}{2}$] as determined by CELL_NOW (Sheldrick, 2008). The twin ratio refined to a value of 0.88:0.12.

Acknowledgements

This work was supported by the National Science Foundation through grants CHE-0957816 and CHE-1266281 (to GLH). The authors thank Professor Michael D. Hopkins for helpful discussions and assistance in manuscript preparation.

References

Blakemore, J. D., Crabtree, R. H. \& Brudvig, G. W. (2015). Chem. Rev. 115, 12974-13005.
Bruker (2012). TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2014). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2015). APEX3. Bruker AXS Inc., Madison, Wisconsin, USA.
Clark, N. M., García-Álvarez, P., Kennedy, A. R., O’Hara, C. T. \& Robertson, G. M. (2009). Chem. Commun. pp. 5835-5837.
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. \& Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.
Driess, M., Pritzkow, H., Skipinski, M. \& Winkler, U. (1997). Organometallics, 16, 5108-5112.
Forbes, G. C., Kennedy, A. R., Mulvey, R. E., Rowlings, R. B., Clegg, W., Liddle, S. T. \& Wilson, C. C. (2000). Chem. Commun. pp. 17591760.

Groom, C. R., Bruno, I. J., Lightfood, M. P. \& Ward, S. C. (2016). Acta Cryst. B72, 171-179.
Hansen, C. B., Jordan, R. F. \& Hillhouse, G. H. (2015). Inorg. Chem. 54, 4603-4610.

Heering, C., Boldog, I., Vasylyeva, V., Sanchiz, J. \& Janiak, C. (2013). CrystEngComm, 15, 9757-9768.
Kärkäs, M. D., Verho, O., Johnston, E. V. \& Åkermark, B. (2014). Chem. Rev. 114, 11863-12001.
Kennedy, A. R., Klett, J., Mulvey, R. E., Newton, S. \& Wright, D. S. (2008). Chem. Commun. pp. 308-310.

Kennedy, A. R., MacLellan, J. G. \& Mulvey, R. E. (2003). Acta Cryst. C59, m302-m303.
Kennedy, A. R., Mulvey, R. E., Roberts, B. A., Rowlings, R. B. \& Raston, C. L. (1999). Chem. Commun. pp. 353-354.
Kennedy, A. R., Mulvey, R. E. \& Rowlings, R. B. (1998). Angew. Chem. Int. Ed. 37, 3180-3183.
Li, Z.-Y., Dai, Y., Zhang, H., Zhu, J., Zhang, J.-J., Liu, S.-Q. \& Duan, C.-Y. (2014). Eur. J. Inorg. Chem. pp. 384-391.

Lu, X.-H., Ma, M.-T., Yao, Y.-M., Zhang, Y. \& Shen, Q. (2010). Inorg. Chem. Commun. 13, 1566-1568.
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. \& van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.
Matsubara, K., Sueyasu, T., Esaki, M., Kumamoto, A., Nagao, S., Yamamoto, H., Koga, Y., Kawata, S. \& Matsumoto, T. (2012). Eur. J. Inorg. Chem. pp. 3079-3086.

Mulvey, R. (2006). Organometallics, 25, 1060-1075.
Mulvey, R. E., Blair, V. L., Clegg, W., Kennedy, A. R., Klett, J. \& Russo, L. (2010). Nat. Chem. 2, 588-591.
Przyojski, J. A., Arman, H. D. \& Tonzetich, Z. J. (2013). Organometallics, 32, 723-732.
Reger, D. L., Pascui, A. E., Foley, E. A., Smith, M. D., Jezierska, J. \& Ozarowski, A. (2014). Inorg. Chem. 53, 1975-1988.
Sarazin, Y., Coles, S. J., Hughes, D. L., Hursthouse, M. B. \& Bochmann, M. (2006). Eur. J. Inorg. Chem. pp. 3211-3220.
Sheldrick, G. M. (2008). CELL_NOW. University of Göttingen, Germany.
Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
Sumner, C. E. \& Steinmetz, G. R. (1985). J. Am. Chem. Soc. 107, 6124-6126.
Wendelstorf, C. \& Krämer, R. (1997). Angew. Chem. Int. Ed. Engl. 36, 2791-2793.
Wu, J., Pan, X., Tang, N. \& Lin, C.-C. (2010). Inorg. Chem. 49, 53625364.

supporting information

Acta Cryst. (2016). E72, 780-784 [doi:10.1107/S2056989016006861]

Crystal structure of the inverse crown ether tetrakis[μ_{2}-bis(trimethyl-silyl)amido]- μ_{4}-oxido-dicobalt(II)disodium, $\left[\mathrm{Co}_{2} \mathrm{Na}_{2}\left\{\mu_{2}-\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right\}_{4}\right]\left(\mu_{4}-\mathrm{O}\right)$

Christopher B. Hansen, Alexander S. Filatov and Gregory L. Hillhouse

Computing details

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: APEX3 (Bruker, 2015) and OLEX2 (Dolomanov et al., 2009).

Tetrakis[μ_{2}-bis(trimethylsilyl)amido]- μ_{4}-oxido-dicobalt(II)disodium

Crystal data

$\left[\mathrm{Co}_{2} \mathrm{Na}_{2} \mathrm{O}\left(\mathrm{C}_{6} \mathrm{H}_{18} \mathrm{NSi}_{2}\right)_{4}\right]$
$M_{r}=821.41$
Triclinic, $P \overline{1}$
$a=8.8839$ (18) \AA
$b=10.591$ (2) \AA
$c=12.700(3) \AA$
$\alpha=96.75$ (4) ${ }^{\circ}$
$\beta=108.93(3)^{\circ}$
$\gamma=99.15(3)^{\circ}$
$V=1097.4$ (5) \AA^{3}

Data collection

Bruker SMART APEX CCD
diffractometer
Radiation source: sealed tube
Graphite monochromator
ω scans
Absorption correction: multi-scan
(TWINABS; Bruker,2012)
$T_{\text {min }}=0.57, T_{\text {max }}=0.75$

$$
Z=1
$$

$F(000)=440$
$D_{\mathrm{x}}=1.243 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1020 reflections
$\theta=2.8-24.6^{\circ}$
$\mu=1.02 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Block, green
$0.3 \times 0.24 \times 0.2 \mathrm{~mm}$

4421 measured reflections
4421 independent reflections
3107 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.089$
$\theta_{\text {max }}=26.5^{\circ}, \theta_{\text {min }}=1.7^{\circ}$
$h=-11 \rightarrow 10$
$k=-13 \rightarrow 13$
$l=0 \rightarrow 15$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.065$
$w R\left(F^{2}\right)=0.154$
$S=1.03$
4421 reflections
200 parameters
0 restraints

Primary atom site location: dual
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}{ }^{2}\right)+(0.0577 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$

supporting information

$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=1.08 \mathrm{e}_{\AA^{-3}}$

$$
\Delta \rho_{\min }=-0.54 \mathrm{e} \AA^{-3}
$$

Special details

Experimental. Absorption correction: TWINABS2012/1 (Bruker, 2012) was used for absorption correction. For component 1: wR2(int) was 0.0813 before and 0.0454 after correction. The Ratio of minimum to maximum transmission is 0.77 . Final HKLF 4 output contains 11962 reflections, $\operatorname{Rint}=0.0892(2973$ with $\mathrm{I}>3 \operatorname{sig}(\mathrm{I})$, $\operatorname{Rint}=0.0335)$
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refined as a 2-component twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Col	0.61239 (8)	0.48208 (7)	0.64530 (5)	0.0137 (2)
Si1	0.40656 (17)	0.25144 (14)	0.70655 (12)	0.0174 (3)
Si2	0.71315 (17)	0.21357 (14)	0.66099 (12)	0.0167 (3)
Si3	0.94365 (16)	0.68550 (14)	0.74896 (11)	0.0165 (3)
Si4	0.68061 (16)	0.70994 (14)	0.84538 (11)	0.0165 (3)
Na1	0.4185 (2)	0.27679 (19)	0.44187 (16)	0.0222 (5)
O1	0.5000	0.5000	0.5000	0.0187 (11)
N1	0.5621 (5)	0.2967 (4)	0.6570 (3)	0.0165 (9)
N2	0.7424 (5)	0.6528 (4)	0.7365 (3)	0.0162 (9)
C1	0.3045 (6)	0.3891 (5)	0.7230 (4)	0.0248 (13)
H1A	0.2812	0.4278	0.6546	0.037*
H1B	0.3762	0.4550	0.7884	0.037*
H1C	0.2026	0.3571	0.7348	0.037*
C2	0.4707 (7)	0.1928 (6)	0.8440 (5)	0.0312 (14)
H2A	0.5074	0.1113	0.8336	0.047*
H2B	0.3784	0.1780	0.8705	0.047*
H2C	0.5600	0.2583	0.9001	0.047*
C3	0.2418 (6)	0.1205 (5)	0.6018 (5)	0.0300 (14)
H3A	0.1989	0.1514	0.5304	0.045*
H3B	0.1540	0.0979	0.6315	0.045*
H3C	0.2861	0.0435	0.5886	0.045*
C4	0.6502 (7)	0.0351 (5)	0.6561 (5)	0.0255 (13)
H4A	0.6269	0.0212	0.7247	0.038*
H4B	0.7383	-0.0080	0.6517	0.038*
H4C	0.5523	-0.0014	0.5895	0.038*
C5	0.8974 (6)	0.2721 (6)	0.7914 (4)	0.0272 (14)
H5A	0.9424	0.3638	0.7950	0.041*
H5B	0.9791	0.2206	0.7893	0.041*
H5C	0.8674	0.2625	0.8582	0.041*
C6	0.7720 (6)	0.2294 (5)	0.5334 (4)	0.0233 (13)
H6A	0.6872	0.1745	0.4663	0.035*
H6B	0.8754	0.2018	0.5441	0.035*
H6C	0.7843	0.3203	0.5232	0.035*

C7	$0.9702(6)$	$0.5853(5)$	$0.6277(4)$	$0.0239(13)$
H7A	0.9660	0.4953	0.6399	0.036^{*}
H7B	1.0758	0.6205	0.6222	0.036^{*}
H7C	0.8830	0.5874	0.5574	0.036^{*}
C8	$1.0834(6)$	$0.6525(5)$	$0.8841(4)$	$0.0249(13)$
H8A	1.1074	0.7271	0.9448	0.037^{*}
H8B	1.1849	0.6385	0.8744	0.037^{*}
H8C	1.0310	0.5747	0.9038	0.037^{*}
C9	$1.0216(6)$	$0.8588(5)$	$0.7425(5)$	$0.0248(13)$
H9A	0.9589	0.8788	0.6697	0.037^{*}
H9B	1.1367	0.8712	0.7503	0.037^{*}
H9C	1.0100	0.9168	0.8041	0.037^{*}
C10	$0.6827(6)$	$0.5923(5)$	$0.9438(4)$	$0.0242(13)$
H10A	0.6380	0.5039	0.9000	0.036^{*}
H10B	0.6165	0.6131	0.9893	0.036^{*}
H10C	0.7949	0.5982	0.9939	0.036^{*}
C11	$0.4724(6)$	$0.7420(5)$	$0.7848(4)$	$0.0237(13)$
H11A	0.4780	0.8203	0.7508	0.036^{*}
H11B	0.4269	0.7550	0.8450	0.036^{*}
H11C	0.4027	0.6677	0.7267	0.036^{*}
C12	$0.8079(6)$	$0.8685(5)$	$0.9344(4)$	$0.0232(13)$
H12A	0.9202	0.8588	0.9700	0.035^{*}
H12B	0.7642	0.8948	0.9933	0.035^{*}
H12C	0.8060	0.9350	0.8868	0.035^{*}

Atomic displacement parameters $\left(\hat{\AA}^{2}\right)$

	U^{11}	U^{22}	$U^{\beta 3}$	U^{12}	U^{13}	U^{23}
Co1	$0.0137(4)$	$0.0132(4)$	$0.0111(4)$	$0.0022(3)$	$0.0014(3)$	$0.0003(3)$
Si 1	$0.0189(8)$	$0.0167(8)$	$0.0177(8)$	$0.0036(6)$	$0.0077(6)$	$0.0030(6)$
Si 2	$0.0149(7)$	$0.0165(8)$	$0.0177(8)$	$0.0037(6)$	$0.0041(6)$	$0.0032(6)$
Si 3	$0.0142(7)$	$0.0180(8)$	$0.0137(7)$	$0.0021(6)$	$0.0015(6)$	$0.0007(6)$
Si 4	$0.0153(7)$	$0.0170(8)$	$0.0140(7)$	$0.0007(6)$	$0.0034(6)$	$-0.0014(6)$
Na 1	$0.0268(12)$	$0.0176(12)$	$0.0171(11)$	$0.0030(9)$	$0.0018(9)$	$0.0027(9)$
O 1	$0.022(3)$	$0.017(3)$	$0.014(3)$	$0.002(2)$	$0.003(2)$	$0.001(2)$
N 1	$0.015(2)$	$0.017(2)$	$0.015(2)$	$0.0014(18)$	$0.0044(18)$	$0.0006(18)$
N 2	$0.015(2)$	$0.020(3)$	$0.012(2)$	$0.0036(19)$	$0.0025(17)$	$0.0016(18)$
C 1	$0.024(3)$	$0.020(3)$	$0.028(3)$	$0.002(2)$	$0.012(2)$	$-0.004(2)$
C 2	$0.044(4)$	$0.028(4)$	$0.030(3)$	$0.011(3)$	$0.020(3)$	$0.010(3)$
C 3	$0.028(3)$	$0.024(3)$	$0.038(4)$	$0.002(3)$	$0.017(3)$	$-0.007(3)$
C 4	$0.028(3)$	$0.023(3)$	$0.030(3)$	$0.011(3)$	$0.013(3)$	$0.008(2)$
C 5	$0.023(3)$	$0.032(4)$	$0.022(3)$	$0.009(3)$	$0.002(2)$	$0.001(2)$
C 6	$0.025(3)$	$0.018(3)$	$0.021(3)$	$0.006(2)$	$0.002(2)$	$-0.002(2)$
C7	$0.021(3)$	$0.022(3)$	$0.027(3)$	$0.003(2)$	$0.009(2)$	$0.000(2)$
C8	$0.021(3)$	$0.031(4)$	$0.019(3)$	$0.006(3)$	$0.003(2)$	$0.002(2)$
C9	$0.018(3)$	$0.025(3)$	$0.027(3)$	$-0.003(2)$	$0.008(2)$	$-0.004(2)$
C10	$0.024(3)$	$0.022(3)$	$0.023(3)$	$0.002(2)$	$0.006(2)$	$0.000(2)$
C11	$0.027(3)$	$0.018(3)$	$0.027(3)$	$0.005(2)$	$0.009(2)$	$0.005(2)$

C 12	$0.024(3)$	$0.022(3)$	$0.023(3)$	$0.002(2)$	$0.012(2)$	$-0.003(2)$

Geometric parameters ($A,{ }^{\circ}$)

$\mathrm{Col-Na} 1^{\text {i }}$	2.918 (2)	C2-H2A	0.9800
Col-O1	1.8398 (9)	C2-H2B	0.9800
Col-N1	1.977 (4)	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	0.9800
$\mathrm{Col}-\mathrm{N} 2$	1.980 (4)	$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	0.9800
Si1-N1	1.721 (4)	С3-H3B	0.9800
Sil-C1	1.861 (5)	$\mathrm{C} 3-\mathrm{H} 3 \mathrm{C}$	0.9800
Si1-C2	1.865 (6)	C4-H4A	0.9800
Si1-C3	1.869 (5)	C4-H4B	0.9800
Si2-N1	1.709 (4)	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{C}$	0.9800
Si2-C4	1.872 (6)	C5-H5A	0.9800
Si2-C5	1.866 (5)	C5-H5B	0.9800
Si2-C6	1.874 (5)	C5-H5C	0.9800
$\mathrm{Si} 3-\mathrm{Na} 1^{\text {i }}$	3.458 (3)	C6-H6A	0.9800
Si3-N2	1.717 (4)	C6-H6B	0.9800
Si3-C7	1.867 (5)	C6-H6C	0.9800
Si3-C8	1.872 (5)	C7-H7A	0.9800
Si3-C9	1.877 (6)	C7-H7B	0.9800
$\mathrm{Si} 4-\mathrm{Na} 1^{\text {i }}$	3.490 (3)	C7-H7C	0.9800
Si4-N2	1.727 (4)	C8-H8A	0.9800
Si4-C10	1.863 (6)	С8-H8B	0.9800
Si4-C11	1.862 (5)	C8-H8C	0.9800
Si4-C12	1.870 (5)	C9-H9A	0.9800
$\mathrm{Na} 1-\mathrm{Col}^{\text {i }}$	2.918 (2)	C9-H9B	0.9800
$\mathrm{Na} 1-\mathrm{Si3}{ }^{\text {i }}$	3.458 (3)	C9-H9C	0.9800
Na1-Si4 ${ }^{\text {i }}$	3.490 (3)	C10-H10A	0.9800
$\mathrm{Na} 1-\mathrm{O} 1$	2.314 (2)	C10-H10B	0.9800
$\mathrm{Na} 1-\mathrm{N} 1$	2.579 (4)	C10-H10C	0.9800
$\mathrm{Na} 1-\mathrm{N} 2^{\text {i }}$	2.523 (4)	C11-H11A	0.9800
$\mathrm{O} 1-\mathrm{Col}^{\text {i }}$	1.8399 (9)	C11-H11B	0.9800
$\mathrm{O} 1-\mathrm{Na} 1^{\text {i }}$	2.314 (2)	C11-H11C	0.9800
$\mathrm{N} 2-\mathrm{Na} 1^{\text {i }}$	2.523 (4)	C12-H12A	0.9800
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	0.9800	C12-H12B	0.9800
C1-H1B	0.9800	C12-H12C	0.9800
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	0.9800		
$\mathrm{O} 1-\mathrm{Col}-\mathrm{Na} 1^{\mathrm{i}}$	52.46 (5)	Si1-C1-H1B	109.5
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{N} 1$	108.39 (12)	Sil- $\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{N} 2$	110.26 (13)	$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5
N1-Col-Na1 ${ }^{\text {i }}$	159.62 (12)	$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5
N1-Co1-N2	141.35 (17)	$\mathrm{H} 1 \mathrm{~B}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5
$\mathrm{N} 2-\mathrm{Col}-\mathrm{Na} 1^{\text {i }}$	58.31 (12)	Sil-C2-H2A	109.5
N1—Si1-C1	110.5 (2)	Si1-C2-H2B	109.5
N1-Si1-C2	114.4 (2)	$\mathrm{Si} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5
N1—Si1-C3	111.2 (2)	$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.5

C1-Si1-C2
C1-Si1-C3
C2-Si1-C3
N1—Si2-C4
N1-Si2-C5
N1—Si2-C6
C4-Si2-C6
C5-Si2-C4
C5-Si2-C6
N2-Si3-Na $1^{\text {i }}$
N2-Si3-C7
N2-Si3-C8
N2-Si3-C9
C7-Si3-Na $1^{\text {i }}$
C7-Si3-C8
C7-Si3-C9
C8-Si3-Na $1^{\text {i }}$
C8-Si3-C9
C9-Si3-Na $1^{\text {i }}$
N2-Si4-Na $1^{\text {i }}$
N2-Si4-C10
N2-Si4-C11
N2-Si4-C12
$\mathrm{C} 10-\mathrm{Si4}-\mathrm{Na} 1^{\text {i }}$
C10-Si4-C12
C11-Si4-Na1 ${ }^{\text {i }}$
C11-Si4-C10
C11-Si4-C12
C12-Si4-Na1 ${ }^{\text {i }}$
Col ${ }^{\text {i }}$ - $\mathrm{Na} 1-\mathrm{Si}^{3}$
Col ${ }^{\text {i }}$ - $\mathrm{Na} 1-\mathrm{Si4}{ }^{\text {i }}$
$\mathrm{Si} 3{ }^{\text {i }}$ - $\mathrm{Na} 1-\mathrm{Si}_{4}{ }^{\text {i }}$
$\mathrm{O} 1-\mathrm{Na} 1-\mathrm{Col}^{\text {i }}$
$\mathrm{O} 1-\mathrm{Na} 1-\mathrm{Si}^{\text {i }}$
$\mathrm{O} 1-\mathrm{Na} 1-\mathrm{Si4} 4^{\text {i }}$
$\mathrm{O} 1-\mathrm{Na} 1-\mathrm{N} 1$
$\mathrm{O} 1-\mathrm{Na} 1-\mathrm{N} 2^{\text {i }}$
$\mathrm{N} 1-\mathrm{Na} 1-\mathrm{Col}^{\text {i }}$
N1-Na1-Si3 ${ }^{\text {i }}$
N1—Na1-Si4 ${ }^{\text {i }}$
N2 ${ }^{\text {i }}$ - $\mathrm{Na} 1-\mathrm{Col}^{1}$
N2 ${ }^{\text {i }}$ - $\mathrm{Na} 1-\mathrm{Si3}{ }^{\text {i }}$
N2 ${ }^{\text {i }}$ - $\mathrm{Na} 1-\mathrm{Si4}{ }^{\text {i }}$
N2 ${ }^{\text {i }}$ - $\mathrm{Na} 1-\mathrm{N} 1$
Col-O1-Col ${ }^{\text {i }}$
Col-O1-Na1 ${ }^{\text {i }}$
Col-O1-Na1
Col ${ }^{\text {i }}$ - $\mathrm{O} 1-\mathrm{Na} 1^{\text {i }}$

108.3 (2)
104.4 (2)
107.5 (3)
113.5 (2)
113.1 (2)
108.9 (2)
106.2 (2)
105.5 (3)
109.2 (3)
43.99 (14)
109.4 (2)
113.4 (2)
113.5 (2)
86.99 (17)
108.6 (2)
105.5 (3)
157.06 (18)
106.0 (3)
84.84 (18)
43.12 (14)
111.6 (2)
109.2 (2)
114.5 (2)
141.68 (18)
106.4 (2)
69.07 (18)
110.1 (2)
104.8 (2)
110.76 (19)
58.20 (6)
57.47 (6)
51.16 (5)
39.08 (4)
90.23 (8)
94.36 (8)
78.30 (12)
80.67 (12)
117.16 (12)
139.95 (12)
165.71 (12)
41.89 (10)
28.21 (10)
27.90 (9)
155.82 (15)
180.0
88.46 (7)
91.54 (7)
91.54 (7)

$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5
$\mathrm{H} 2 \mathrm{~B}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{C}$	109.5
Si1-C3-H3A	109.5
Si1-C3-H3B	109.5
Si1-C3-H3C	109.5
H3A-C3-H3B	109.5
H3A-C3-H3C	109.5
H3B-C3-H3C	109.5
Si2-C4-H4A	109.5
Si2-C4-H4B	109.5
Si2-C4-H4C	109.5
H4A-C4-H4B	109.5
$\mathrm{H} 4 \mathrm{~A}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{C}$	109.5
H4B-C4-H4C	109.5
Si2-C5-H5A	109.5
Si2-C5-H5B	109.5
Si2-C5-H5C	109.5
H5A-C5-H5B	109.5
H5A-C5- H 5 C	109.5
H5B-C5-H5C	109.5
Si2-C6-H6A	109.5
Si2-C6-H6B	109.5
Si2-C6-H6C	109.5
H6A-C6-H6B	109.5
H6A-C6-H6C	109.5
H6B-C6-H6C	109.5
$\mathrm{Si} 3-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A}$	109.5
Si3-C7-H7B	109.5
Si3-C7-H7C	109.5
H7A-C7-H7B	109.5
H7A-C7- 77 C	109.5
H7B-C7-H7C	109.5
Si3-C8-H8A	109.5
Si3-C8-H8B	109.5
Si3-C8-H8C	109.5
H8A-C8-H8B	109.5
H8A-C8-H8C	109.5
H8B-C8-H8C	109.5
Si3-C9-H9A	109.5
Si3-C9-H9B	109.5
Si3-C9-H9C	109.5
H9A-C9-H9B	109.5
H9A-C9-H9C	109.5
H9B-C9-H9C	109.5
Si4-C10-H10A	109.5
Si4-C10-H10B	109.5
Si4-C10-H10C	109.5
H10A-C10-H10B	109.5

Col ${ }^{\text {i }}$ - $\mathrm{O} 1-\mathrm{Na} 1$	88.46 (7)
$\mathrm{Na} 1-\mathrm{O} 1-\mathrm{Na} 1^{\text {i }}$	180.00 (3)
$\mathrm{Co} 1-\mathrm{N} 1-\mathrm{Na} 1$	81.02 (15)
Si1-N1-Col	116.1 (2)
Si1-N1-Na1	104.36 (18)
Si2-N1-Col	115.7 (2)
Si2-N1—Si1	124.7 (3)
$\mathrm{Si} 2-\mathrm{N} 1-\mathrm{Na} 1$	101.38 (18)
$\mathrm{Co} 1-\mathrm{N} 2-\mathrm{Na} 1^{\mathrm{i}}$	79.79 (14)
$\mathrm{Si} 3-\mathrm{N} 2-\mathrm{Co} 1$	115.9 (2)
Si3-N2-Si4	121.2 (2)
Si3-N2-Na1 ${ }^{\text {i }}$	107.8 (2)
$\mathrm{Si4}-\mathrm{N} 2-\mathrm{Co} 1$	114.6 (2)
$\mathrm{Si4}-\mathrm{N} 2-\mathrm{Na} 1^{\text {i }}$	108.98 (19)
Si1-C1-H1A	109.5
$\mathrm{Na} 1{ }^{\text {i }}$ - $\mathrm{Co} 1-\mathrm{O} 1-\mathrm{Na} 1$	179.999 (1)
$\mathrm{Na} 1{ }^{\text {i }} \mathrm{Si} 3-\mathrm{N} 2-\mathrm{Co} 1$	87.1 (2)
$\mathrm{Na} 1{ }^{\text {i }}$ - $\mathrm{Si} 3-\mathrm{N} 2-\mathrm{Si} 4$	-126.4 (4)
$\mathrm{Na} 1{ }^{\text {i }} \mathrm{Si4}-\mathrm{N} 2-\mathrm{Co} 1$	-87.2 (2)
$\mathrm{Na} 1{ }^{\text {i }}$-Si4- $\mathrm{N} 2-\mathrm{Si} 3$	125.9 (4)
$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{O} 1-\mathrm{Na} 1^{\text {i }}$	172.03 (13)
$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{O} 1-\mathrm{Na} 1$	-7.97 (13)
N2-Co1-O1-Na1	171.82 (13)
$\mathrm{N} 2-\mathrm{Col}-\mathrm{O} 1-\mathrm{Na} 1^{\mathrm{i}}$	-8.18 (13)
C1-Si1-N1-Col	6.4 (3)
C1—Si1-N1—Si2	164.3 (3)
$\mathrm{C} 1-\mathrm{Si1}-\mathrm{N} 1-\mathrm{Na} 1$	-80.6 (2)
C2-Si1-N1-Co1	-116.1 (3)
C2—Si1-N1—Si2	41.8 (4)
C2-Si1-N1-Na1	157.0 (2)
C3-Si1-N1-Col	121.8 (3)
C3-Si1-N1—Si2	-80.3 (3)
C3-Si1-N1-Na1	34.9 (3)
C4-Si2-N1-Col	-173.7 (2)
C4—Si2-N1—Si1	28.3 (4)
C4-Si2-N1-Na1	-88.3 (2)
C5-Si2-N1-Co1	66.1 (3)
C5-Si2—N1—Si1	-92.0 (3)

H10A-C10-H10C	109.5
H10B-C10-H10C	109.5
Si4-C11-H11A	109.5
Si4-C11-H11B	109.5
Si4-C11-H11C	109.5
H11A-C11-H11B	109.5
H11A-C11-H11C	109.5
H11B-C11-H11C	109.5
Si4-C12-H12A	109.5
Si4-C12-H12B	109.5
Si4-C12-H12C	109.5
H12A-C12-H12B	109.5
H12A-C12-H12C	109.5
H12B-C12-H12C	109.5

151.5 (2)
-55.6 (3)
146.4 (3)
29.8 (2)
23.4 (3)
170.0 (3)
-63.6 (3)
-98.0 (3)
48.5 (4)
174.9 (2)
140.9 (2)
-72.6 (3)
53.8 (3)
57.1 (3)
-89.8 (3)
144.3 (2)
-64.8 (3)
148.2 (3)
22.4 (3)
178.0 (2)
31.1 (4)
-94.8 (3)

Symmetry code: (i) $-x+1,-y+1,-z+1$.

