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Abstract

Endothelial cells are a primary site of leukocyte recruitment during inflammation. An

increase in tumor necrosis factor-alpha (TNFa) levels as a result of infection or some auto-

immune diseases can trigger this process. Several autoimmune diseases are now treated

with TNFa inhibitors. However, genomic alterations that occur as a result of TNF-mediated

inflammation are not well understood. To investigate molecular targets and networks result-

ing from increased TNFa, we measured DNA methylation and gene expression in 40 human

umbilical vein endothelial cell primary cell lines before and 24 hours after stimulation with

TNFa via microarray. Weighted gene co-expression network analysis identified 15 gene

groups (modules) with similar expression correlation patterns; four modules showed a

strong association with TNFa treatment. Genes in the top TNFa-associated module were all

up-regulated, had the highest proportion of hypomethylated regions, and were associated

with 136 Disease Ontology terms, including autoimmune/inflammatory, infectious and car-

diovascular diseases, and cancers. They included chemokines CXCL1, CXCL10 and

CXCL8, and genes associated with autoimmune diseases including HLA-C, DDX58, IL4,

NFKBIA and TNFAIP3. Cardiovascular and metabolic disease genes, including APOC1,

ACLY, ELOVL6, FASN and SCD, were overrepresented in a module that was not associ-

ated with TNFa treatment. Of 223 hypomethylated regions identified, several were in pro-

moters of autoimmune disease GWAS loci (ARID5B, CD69, HDAC9, IL7R, TNIP1 and

TRAF1). Results reveal specific gene groups acting in concert in endothelial cells, delineate

those driven by TNFa, and establish their relationship to DNA methylation changes, which

has strong implications for understanding disease etiology and precision medicine

approaches.
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Introduction

TNFα is an inflammatory cytokine that is dysregulated in many autoimmune diseases and is

generally found at increased levels in disease-relevant tissues. TNFa inhibitors are a major

class of treatment for autoimmune diseases, including rheumatoid arthritis, psoriasis, psoriatic

arthritis, inflammatory bowel disease, ulcerative colitis, Crohn’s disease, and ankylosing spon-

dylitis.[1] However, TNFa inhibitors are imperfect treatments with several side effects, such as

increased risk of infections and non-melanoma skin cancers, and they can even induce auto-

immune disease, including lupus, psoriasis, and CNS demyelination.[2–6] TNFa has a range

of biological functions that can be either homeostatic, e.g., defense against pathogens, tissue

regeneration, immunoregulation, and inhibition of tumor formation, or pathogenic, e.g.,

recruitment of inflammatory cells, inhibition of T regulatory cells, necroptosis, and tissue

degeneration.[7] Because so many (sometimes contradictory) biological processes are acti-

vated by TNFa and disrupted by TNFa inhibitors, there is a need to move from therapies that

globally influence TNFa toward therapies that can pinpoint its pathogenic processes while

leaving homeostatic processes undisturbed.

TNFa plays different roles in different cell types. Endothelial cells, found in the lining of

blood vessels, are of particular interest in autoimmune disease because they directly interact

with leukocytes to bring them to sites of inflammation or infection.[8] Endothelial cells are

also of interest because dysfunction of these cells is more common in those with autoimmune

disease, causing accelerated atherosclerosis and other cardiovascular disease, making it a lead-

ing cause of mortality among patients, especially in rheumatic autoimmune diseases.[9–11]

In this study, DNA methylation and gene expression changes were characterized in human

umbilical vein endothelial cell (HUVEC) primary cell lines before and after treatment with

TNFα in order to help identify new therapeutic targets and to provide information that can be

used to help predict possible side effects. A systems biology approach, weighted gene co-

expression network analysis (WGCNA), was used to construct a gene expression network and

find groups of genes that not only have a high correlation of expression but high topological

overlap, meaning that to be considered members of the same group, genes need to show simi-

lar correlation patterns to other genes outside of the group. Each group, or module, was then

tested to determine whether expression was associated with TNFa treatment. This strategy

greatly reduces the multiple hypothesis testing burden, allows the identification groups of

genes that act in a coordinated fashion, and reveals groups of transcripts that are differentially

expressed in response to TNFa stimulation.

To further understand how TNFa affects endothelial cells, differentially methylated regions

(DMRs) were identified. DNA methylation affects gene transcription in different ways

depending on where it is located, though the relationship between methylation and expression

is still not entirely understood. Increased methylation in promoter regions is the most well

studied and generally induces stable repression of gene expression, while increased methyla-

tion in gene bodies frequently coincides with increased expression. Decreased methylation in

enhancers is mostly associated with increased transcription factor binding.[12,13] DMRs were

related to genes in WGCNA modules by identifying DMRs within genes. GeneHancer (GH), a

database of promoters and enhancers and their inferred target genes[14] was used to reveal

DMRs in promoter and enhancer regions.

The transcription factor NF-kappa-B (NF-κB) was of particular interest in this study

because its activation is one of the major mechanisms by which TNFa exerts its effects. TNFa

enhances the NF-κB signaling pathway, which in turn regulates a host of genes involved in

inflammation and immune responses.[15] The GH elements for genes in WGCNA modules

were overlaid with known HUVEC-specific NF-κB transcription factor binding sites (TFBSs)
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to identify genes that are likely to be regulated by this transcription factor in endothelial cells

and to gauge whether NF-κB is a master regulator of specific modules.

Finally, Disease Ontology enrichment analysis was performed on genes in each WGCNA

module to elucidate the known associations of genes to disease.

Results

Differential expression and identification of gene modules

WGCNA based on a signed network identified 15 gene modules with high topological overlap;

i.e., 15 clusters of genes with similar patterns of connection to other genes (Fig 1). Each module

is designated by a color, and the expression pattern of each module is summarized by the

“module eigengene,” which is the first principal component of expression for all genes in the

module. The relationship of module eigengenes to one another is shown in Fig 2. This relation-

ship shows that, for example, expression of genes in the green module is positively correlated

with those in the black module, but uncorrelated with those in the cyan module. The number

of genes per module ranged from 34 to 2,570, and roughly 10% of genes were not part of any

module, but collected in the grey “module” (Table 1). To understand the effect of TNFa on

genes in each module, two approaches were used: (1) genes that were significantly up- or

down-regulated according to moderated paired t-tests were identified for each module, and

(2) each of the 15 module eigengenes (MEs) was tested for association with TNFa treatment in

linear mixed regression models. Of 14,019 genes detected in HUVEC cell lines, 3,060 were

upregulated with TNFa and 5,089 were downregulated (S1 File). The green, purple, black, and

brown modules were highly associated with TNFa treatment, with Bonferroni-adjusted

p< 10−15. Genes in the green and black modules nearly all showed increased expression with

TNFa, while the purple and brown genes showed decreased expression. Six modules, tur-

quoise, greenyellow, tan, red, salmon, and yellow, were moderately negatively associated with

TNFa treatment (0.05< adjusted p> 10−15) and contained more down-regulated than up-reg-

ulated genes. The remaining five modules were unassociated with TNFa. Reassuringly, the

grey module, which contains the collection of unassigned genes, was not associated with TNFa

treatment. In all cases, the sign of the ME regression coefficient corresponded with whether

the majority of genes was up- or down-regulated (i.e., a positive regression coefficient corre-

sponded with majority up-regulated genes). The full list of genes and module assignments is

available in S1 File.

Comparison of module genes to methylation changes and TFBSs

Bumphunter identified 223 differentially methylated regions associated with TNFa treatment,

all hypomethylated (S2 File). Of these, 131 DMRs were located within a gene and 186 were

located in GeneHancer (GH) regulatory elements (categories are not mutually exclusive; 109

DMRs were in both), with 28 located specifically in GH promoters and 159 in GH enhancers

(S2 File). Of the genes with DMRs in their promoters, 17 also contained SNPs (131 unique)

associated in GWAS with several traits, including autoimmune, cardiovascular, and metabolic

diseases. GH enhancers with DMRs contained 40 unique GWAS SNPs, which included SNPs

related to cardiovascular disease, obesity-related traits, psoriasis and rheumatoid arthritis. The

relationship of WGCNA gene modules and DMRs is shown in Table 2. The most highly

TNFa-associated module, green, contained 34 genes (3.2%) with DMRs, which was more than

any other module. The green module also had one of the highest proportions (0.29%) of

DMRs in gene-related GH regulatory elements; cyan and midnightblue also had high propor-

tions, but of a much smaller number of GH elements. In general, more DMRs were present in

GH enhancers than in GH promoters.
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For most modules, about 10% of the mapped GH elements overlapped binding sites for the

NF-κB p65 subunit encoded by RELA (range: 7.7%-11.1%). The proportion of elements with

both a DMR and RELA TFBS was slightly less than the proportion of elements with only a

DMR, meaning that most GeneHancer elements with a DMR are known RELA TFBSs (S1

Table and S3 File).

Disease ontology of module genes

Module genes were overrepresented among genes assigned to Disease Ontology (DO) terms

for the green, black, and cyan modules. A total of 136 DO terms were enriched for genes in the

green module (up-regulated with TNFa), with infectious, respiratory, skin, connective tissue,

Fig 1. Visualization of the gene co-expression network modules and module relationships. The co-expression

network was built by considering all TNFa stimulated and unstimulated samples together. Hierarchical clustering

dendogram of 14,019 genes expressed in HUVEC cell lines, along with colors representing module assignments. Genes

that are not assigned to any module are colored grey. The heatmap shows the topological overlap matrix, and darker

coloring indicates higher topological overlap.

https://doi.org/10.1371/journal.pone.0230884.g001
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and hypersensitivity reaction diseases being among the most statistically significant, but sev-

eral autoimmune diseases, including systemic lupus erythematosus, rheumatoid arthritis,

Graves’ disease, psoriasis, and multiple sclerosis were also enriched for green module genes, as

were diabetes, coronary artery disease, and atherosclerosis (Fig 3, S1 Fig, and S4 File). Lupus

genes were overrepresented in the black module (up-regulated with TNFa), along with skin

and pleural cancers, nephritis, and purpura (S2 Fig and S4 File). Cardiovascular and metabolic

diseases, including coronary artery disease, atherosclerosis, diabetes, and obesity, were over-

represented in the cyan module, which was not significantly associated with TNFa treatment

(S3 Fig and S4 File).

Discussion

This is the first experimental study to characterize the gene expression network of TNFa-stim-

ulated endothelial cells. In this study, sets of genes related by similar expression patterns in

Fig 2. Adjacency heatmap showing the relationships among the module eigengenes. Module eigengenes can be thought of as the

weighted average gene expression of all genes in a module. For each pair of eigengenes EI, EJ, adjacency is calculated as (1 + cor(EI, EJ))/2.

Red represents positively correlated modules and blue represents negatively correlated modules.

https://doi.org/10.1371/journal.pone.0230884.g002
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Table 1. Description of gene modules identified by WGCNA and the relationship of genes in modules to TNFa.

Module Number of Genes Up-regulated with TNFa Down-regulated with TNFa Beta value for TNFa association P-value for TNFa association

Green 1,067 1,063 0 0.207 1.67E-31

Purple 491 0 490 -0.202 6.30E-28

Black 679 655 0 0.162 8.13E-20

Brown 1,633 0 1,487 -0.146 1.06E-15

Turquoise 2,570 132 1,203 -0.059 2.14E-07

Greenyellow 221 11 121 -0.054 1.76E-06

Tan 187 1 104 -0.062 7.66E-04

Red 828 29 431 -0.072 3.77E-03

Salmon 122 8 45 -0.037 5.78E-03

Yellow 1,252 100 386 -0.028 0.015

Cyan 37 16 0 0.046 0.090

Midnightblue 34 0 16 -0.052 0.119

Pink 673 263 14 0.042 0.339

Magenta 587 54 152 -0.026 0.363

Blue 2,202 587 421 0.013 1

Grey/unassigned 1,436 141 220 -0.005 1

Each gene module is assigned a color, with grey reserved for genes not assigned to any module. The number of genes in each module is given, followed by the number of

genes in that module that were significantly up- or down-regulated with TNFa according to individual gene tests in limma. The last two columns contain regression beta

values and Bonferroni-adjusted p-values from linear mixed models testing the association of module eigengenes (the first principal component of gene expression in

each module) and treatment with TNFa.

https://doi.org/10.1371/journal.pone.0230884.t001

Table 2. DMRs and their relationship to genes and GH elements in WGCNA modules.

Module Genes with

DMRs

Percent of module

genes

Total GH

elements

GH elements with DMRs (promoter,

enhancer)

Percent of module GH

elements

Green 34 3.2% 29,456 85 (14, 71) 0.29%

Purple 0 0.0% 13,144 9 (0, 9) 0.07%

Black 7 1.0% 18,924 29 (2, 27) 0.15%

Brown 8 0.5% 44,637 43 (4, 39) 0.10%

Turquoise 9 0.4% 55,670 63 (9, 54) 0.11%

Greenyellow 3 1.4% 5,538 3 (0, 3) 0.05%

Tan 0 0.0% 3,918 2 (0, 2) 0.05%

Red 7 0.8% 20,300 20 (4,16) 0.10%

Salmon 2 1.6% 3,581 3 (1, 2) 0.08%

Yellow 5 0.4% 18,503 23 (7, 16) 0.12%

Cyan 0 0.0% 672 2 (0, 2) 0.30%

Midnightblue 0 0.0% 396 1 (0,1) 0.25%

Pink 0 0.1% 12,661 19 (3, 16) 0.15%

Magenta 2 0.3% 13,906 21 (7, 14) 0.15%

Blue 13 0.6% 59,406 68 (14, 54) 0.11%

Grey/

unassigned

4 0.3% 30,967 28 (8, 20) 0.09%

The number of genes overlapping a DMR in each module is given, followed by the percent of genes containing a DMR among all genes in the module, the total number

of GH elements mapped to genes in the module, the number of GH elements overlapping a DMR (further broken down into the number of promoters and number of

enhancers overlapping a DMR), and the percent of GH elements containing a DMR among all GH elements mapped to the module. DMR = Differentially methylated

region. GH = GeneHancer.

https://doi.org/10.1371/journal.pone.0230884.t002
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endothelial cells were identified, and the extent to which expression and DNA methylation

changed as a result of TNFa stimulation was estimated. Three sets of genes identified by

WGCNA were overrepresented among established Disease Ontology genes, and two of those

sets, green and black, were associated with response to TNFa stimulation. Specific genes asso-

ciated with each disease may be used to help explain the mechanisms by which global changes

to TNFa levels affect many phenotypes and risk for multiple diseases. Autoimmune, cardiovas-

cular, metabolic, and cancer disease processes occurring in endothelial cells as a result of

increased TNFa are likely to be driven by the genes in the green and black modules. Interest-

ingly, the cyan module genes, which were associated with obesity, diabetes, coronary artery

disease, and atherosclerosis, were not associated with TNFa stimulation, suggesting that while

the genes in the cyan list are acting together, they are probably not being driven by TNFa

stimulation.

Fig 3. Disease Ontology categories for the 136 diseases that showed overrepresentation of green module genes. Boxes are colored according to the top-level disease

categories and labels show the second-level categories. The size of each box is proportional to the number of disease terms in that category with significant

overrepresentation of green module genes. Some disease terms belong to more than one category (e.g., multiple sclerosis is both a “nervous system disease” and an

“immune system disease”), but each term is only represented once. For “disease of anatomical entity” terms, squares are shaded by the proportion of terms that

represent autoimmune/inflammatory diseases (e.g., 3 of 16 “gastrointestinal system disease”terms are autoimmune/inflammatory, while 9 of 11 “immune system

disease” terms are). The full list of disease terms, with (manually curated) autoimmune/inflammatory terms highlighted, is given in S3 File.

https://doi.org/10.1371/journal.pone.0230884.g003
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S1 File contains the full lists of genes in each module, along with measures of how con-

nected each gene is to other genes. These lists can be used to help predict, along with other

resources such as the STRING database,[16] whether targeting specific genes therapeutically is

likely to have an effect on many other genes or not. For instance, the top 10 most highly con-

nected genes within the green module are TAP1, CX3CL1, CXCL10, PSME2, EBI3, UBD,

TNFAIP3, PSMB9, SLC15A3, and TNFRSF9. Because expression of these “hub genes” is highly

correlated with many other genes, they are likely to be integral to the regulation of those other

genes, while genes with low connectivity are less likely to be tightly coupled to many other

genes. There are several gene measures reported in S1 File, each with slightly different mean-

ings and implications, though the gene measures tend to be highly correlated.[17] Connectiv-

ity refers to the sum of connection (correlation) strengths with other genes in the network.

The measure kWithin is the intramodular connectivity, or connectivity of a particular gene to

all other genes within its same module and kTotal is connectivity to all other genes regardless

of module (kOut is kTotal-kWithin, and kDiff is kWithin-kOut). A gene with a high kWithin

measure but a low kTotal measure is one that is connected mainly to genes only within its

module and could therefore reasonably be expected not to affect genes in other modules. Mod-

ule membership (MM) is the correlation of a gene’s expression to the module eigengene (the

first principal component of expression level of all genes in the module) and is an indicator of

how representative expression of that gene is to the other genes in the module. MM can be cal-

culated for both the module a gene belongs to and all other modules. Gene significance (GS) is

the association of a gene’s expression level with treatment with TNFa, and it is the only mea-

surement that is directly tied to TNFa. Ideally, candidate genes for future therapeutic research

would have a high GS measure and a low kTotal measure, indicating that the genes are affected

by TNFa fluctuations but that they are not likely to affect many other genes.

Genes in the green module are of particular interest for further study because they were the

most highly associated with response to TNFa stimulation, both individually (high GS values),

and as a group (strongest and most significant association of the module eigengene with TNFa

treatment), and genes in this module were by far the most overrepresented for diseases in the

Disease Ontology database. These included genes such as chemokines CXCL1, CXCL10 and

CXCL8 and genes associated with autoimmune diseases such as HLA-C, DDX58, IL4, NFKBIA
and TNFAIP3 which are associated with psoriasis susceptibility.[18] Moreover, NFKB1 from

this module mediates Th1/Th17 activation in the pathogenesis of psoriasis and probably other

autoimmune diseases.[19] Green genes also had more DMRs, either in the gene bodies or in

GH elements mapped to the genes, suggesting that TNFa stimulation causes more long-lasting

changes to gene expression to genes in the green set than to other sets.

It should also be pointed out that the WGCNA results were based on a signed network,

which treats strongly negatively correlated genes as unconnected and means that genes in each

group are generally positively correlated with one another. This also means that the genes in

the top TNFa-associated modules are almost all up-regulated with TNFa (e.g., green, black) or

down-regulated with TNFa (e.g., purple, brown). Genes that are strongly negatively correlated,

for instance, genes that inhibit the expression of other genes, are not captured in the same

module. The relationship of genes in different modules is captured by the MM measures for all

genes in all modules (see S1 File). These MM measures for genes in different modules can be

used to understand which genes in, e.g., the green module, are strongly negatively correlated

with most genes in, e.g., the purple module. Sets of genes in both the green and cyan modules

were overrepresented in cardiovascular and metabolic diseases. These sets may be useful in

future studies that aim to explain the overlap of obesity, autoimmune disease and cardiovascu-

lar disease.[20–22] The green module genes were overrepresented in all three types of disease,

were strongly associated as a set with TNFa, and were nearly all up-regulated by TNFa, while
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the cyan module genes were overrepresented in metabolic and cardiovascular disease but not

autoimmune disease, were not associated as a set with TNFa, and were mostly not up-regu-

lated by TNFa. It is therefore possible that it is the green module genes, and not the cyan mod-

ule genes, that are driving the overlap among these disease types, but further investigation is

needed.

NF-κB binding sites were generally evenly distributed among the enhancers for genes all of

the WGCNA gene sets, suggesting that NF-κB is not a master regulator of any specific mod-

ules. It should be noted that NF-κB consists of a collection of different heterodimers of seven

proteins, but RELA/p65 is considered the prototypical form.[23] It is possible that if binding of

the other proteins were measured by ChIP-Seq, a slightly different picture of NF-κB in endo-

thelial cells would emerge.

This study had some limitations. In particular, several steps required relating data types to

one another based on gene symbols (common names), which is an imperfect process, as genes

may have multiple names and change over time. In addition, not all diseases and disease-gene

associations are captured by the Disease and Gene Annotations database, so some diseases

may have been missed in the Disease Ontology enrichment analysis. Most of the methods

employed, especially WGCNA, require selecting specific settings that, when adjusted, may

change the final results somewhat. It is also important to note that the findings represent asso-

ciations between TNFa and disease that are not necessarily causal. Finally, while this was a

well-powered study in primary endothelial cells, in vivo results may be somewhat different,

and other cell types would need to be evaluated to get a more complete picture of how these

genes are affected by TNFa.

In summary, this study utilized a comprehensive systems biology approach integrating

multiple data types and state of the art bioinformatics tools to reveal groups of correlated

genes with similar patterns of expression in endothelial cells. One of these groups of genes is

highly associated with TNFa and with cancers and infectious, autoimmune and cardiovascular

diseases. Another group is not responsive to TNFa but plays an important role in metabolic

and cardiovascular diseases. The detailed results provided in supplementary files can inform

future research on new drug targets for diseases that are currently treated with TNFa

inhibitors.

Materials and methods

Samples and data generation

Forty deidentified primary human umbilical vein endothelial cell (HUVEC) lines were

obtained from Promocell and were cultured until passage four. Each cell line was split in half,

and one half was treated with 20ng/mL TNFa for 24 hours while the other half was left

untreated. Cells were then pelleted, and DNA and RNA were isolated. Gene expression was

measured with Illumina HT-12 V4 expression BeadChip microarrays by Eurofins Genomics,

and DNA methylation was measured with Illumina Infinium MethylationEPIC BeadChip

microarrays.

Gene expression analysis

Gene expression data were processed with the limma R package.[24] Outlier samples were

detected with boxplots and classical multidimensional scaling (MDS) plots of the log2 probe

intensities and removed from analysis. The neqc function was used to perform background

correction and quantile normalization, log2 transformation of the probe intensities, and

removal of control probes. Probes with expression detected (detection p<0.05) in less than

half of the samples (n = 28,386) were removed from analysis. The remaining 18,937 probes
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were collapsed to 14,019 genes by selecting the probe with the maximum mean intensity value

for each gene using the collapseRows function. After quality control, 39 sample pairs (treated

and untreated) remained for analysis. Differential expression was determined with linear

regression models with log2 intensity as the outcome and treatment with TNFa and HUVEC

pair identifier as the predictors. A moderated paired t-test statistic for each gene was computed

with the empirical Bayes method in limma.

Weighted Gene Correlation Network Analysis (WGCNA)

The WGCNA R package was used to construct a correlation network of genes, identify gene

modules consisting of interconnected genes, study module relationships, and find the key driv-

ers of each module.[17] A signed co-expression network was constructed from all 14,019 genes

expressed in HUVEC cells, using data from all 78 treated and untreated samples together. A

soft-thresholding power of β = 16, a minimum module size of 30, and a merge cut height of

0.25 were used. Eigengenes (the first principal component of gene expression values) were

determined for each gene module. Because of the paired design of the study, linear mixed-

effect models were used to estimate the relationship of module eigengenes to TNFa treatment.

[25] Linear mixed effect models were used to estimate the relationship of each module eigen-

gene to TNFa treatment with the lmer function in the lme4 R package[26], considering treat-

ment as a fixed effect and HUVEC pair identifier as a random effect. Gene significance, the

association of each gene with TNFa treatment, was determined with the same linear mixed

effect models described above, using expression of individual genes as the outcomes instead of

the module eigengenes. Hub genes were selected based on connectivity calculated with

WGCNA, and module membership (the correlation of each gene with its module eigengene)

and gene significance were also reported.

DNA methylation analysis

The minfi R package was used for data preprocessing, normalization, and quality control of

DNA methylation data.[27] Background subtraction and dye bias correction was performed

using the preprocessNoob function, followed by quantile normalization with preprocessQuan-
tile. Samples with more than 5% poor detection p-values (>0.01) were removed from analysis.

CpG sites with poor detection p-values across samples were removed from analysis (n = 3,451

sites). Predicted sex based on X and Y chromosome methylation was checked against recorded

sex. CpG sites with probes predicted to cross-hybridize to other genomic locations were

removed from analysis (n = 44,032 sites).[28] The final dataset used for analysis consisted of

37 sample pairs and 818,391 CpG sites. Differentially methylated regions (DMRs) were identi-

fied using the bumphunter R package.[29] Bumphunter was run using the same linear regres-

sion models as the expression analysis, using methylation M-values as the outcome and TNFa

and HUVEC pair identifiers as predictors. CpG sites were considered to be part of a cluster if

they had no more than 1,000 bases between them. One thousand bootstrap samples were used

to generate a null distribution of regions. Candidate differentially methylated regions were

nominated with pickCutoff, using the 99% quantile of the null-distribution as a threshold

value, and a family-wise error rate (FWER) cutoff of 0.05 was used to determine statistical sig-

nificance. DMRs were mapped to RefSeq Genes by intersecting DMR positions with genes in

the ncbiRefSeq table using the UCSC Genome Browser (GRCh37/hg19 assembly coordinates).

[30,31]
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Comparison of microarray results and mapping to GeneHancer elements

and TFBSs

In order to compare gene expression results to methylation results, and to facilitate annotation,

each probe from the Illumina HT-12 V4 microarray was assigned a current gene name using

microarray probe mappings from Ensembl (Genebuild v96).[32] Of the 47,231 probes on the

microarray, 37,525 (79%) mapped to a stable Ensembl Gene identifier. After removing probes

that mapped to multiple genes and collapsing the coordinates of genes with multiple tran-

scripts by taking the minimum transcription start coordinate and maximum transcription end

coordinate, 34,094 probes remained, corresponding to 22,628 genes.

In addition to obtaining up-to-date gene names for the Illumina microarray, promoter and

enhancer elements were identified for most genes using the GeneHancer track on the UCSC

Genome Browser (GRCh37/hg19 assembly).[14] Genes were matched to GeneHancer ele-

ments using one of: (1) the Ensembl v96 gene symbol obtained from the Illumina probe map-

ping above, (2) the Ensembl v92 gene symbol (as the Ensembl v92 regulatory build was used to

generate the GeneHancer track), or (3) the Ensembl v92 stable gene identifier, for GeneHancer

elements with no gene symbol. In total, 31,625 Illumina expression probes and 20,712 genes

were successfully mapped to GeneHancer elements.

Finally, RELA TFBSs in TNFa-treated HUVEC cell lines were compared to both methyla-

tion and expression results. TFBSs from three Chip-Seq datasets deposited in GEO

(GSE53998, GSE34500, and GSE43070) and uniformly processed using ChiP-eat software and

the PWM peak caller were downloaded from the UniBind website, https://unibind.uio.no/.

[33]

DMRs within genes were compared to genes in WGCNA modules using gene symbols.

DMRs within GH elements and RELA TFBSs were identified by intersecting their positions

using BEDTools.[34] DMRs in GH promoters and enhancers were identified using the UCSC

Genome Browser, and GWAS information for genes with the closest (usually overlapping)

5’UTRs to the GH promoters was extracted using the UCSC Data Integrator tool and the

GWAS Catalog track.[31,35]

Disease ontology enrichment analysis

Disease Ontology enrichment analysis was performed on genes in each module using the XGR
R package,[36] which utilizes the Disease and Gene Annotations database to map genes to dis-

eases.[37] Gene symbols from the Ensembl Genebuild (v96) were used as input to XGR when

available; otherwise, original gene symbols from the Illumina HT-12 V4 expression microarray

manifest file were used. The list of 14,019 genes expressed in HUVEC cells was supplied as the

background gene list for enrichment tests. To be considered as an enriched disease term, at

least 10 and at most 2,000 genes were required to be annotated for that term, and at least 5

genes were required to overlap with the input gene list. Fisher’s exact test was used to deter-

mine significance, and parent-child relations were accounted for using the "lea" algorithm.

Disease terms enriched at an FDR-adjusted p<0.05 were reported.

Supporting information

S1 Table. Distribution of known HUVEC RELA transcription factor binding sites (TFBSs)

across the GH elements of genes in modules.

(DOCX)

S1 File. Names and WGCNA module assignments of 14,019 genes expressed in untreated

and TNFa-treated HUVEC cell lines, and measures of connectivity (kTotal, kWithin,
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kOut, kDiff), gene significance (GS), and module membership (MM). Gene annotations

from the PANTHER database (http://www.pantherdb.org/) have been added if available for

each Illumina gene symbol. A value of “0” in the PANTHER Protein Class or Family/Subfam-

ily column indicates that the gene symbol was found in the database but no annotation was

available, while an empty cell indicates that the gene symbol was not found in the database.

The second sheet shows the MM value of every gene for every module. The third sheet con-

tains the differential expression (DE) test results from limma.

(XLSX)

S2 File. Differentially methylated regions identified by bumphunter. Columns are: chromo-

some, start position, and end position of the region; value = average of the estimated regression

coefficient; area = the absolute value of the sum of estimated coefficients for the region; L = the

number of probes in the region; clusterL = the number of probes in the cluster (not all probes

in the cluster are necessarily included in the region); p.value = p value for differential methyla-

tion; fwer = p value for differential methylation corrected to account for the family-wise error

rate. The remaining columns identify genes that (1) contain a DMR in the gene body or (2)

have 5’ untranslated regions (5’ UTRs) within or near a GH promoter containing a DMR. The

second sheet shows traits associated with SNPs in genes with DMRs in their promoters (“pro-

moter DMRs,” or pDMRs).

(XLSX)

S3 File. Locations of geneHancer elements mapped to genes in each WGCNA module that

overlap a RELA TFBS (sheet 1), or that overlap a RELA TFBS and a DMR (sheet 2).

Table columns are the GH chromosome, start position, end position, WGCNA gene mapped,

and WGCNA module.

(XLSX)

S4 File. Complete disease ontology results for the green, black, and cyan modules. Columns

include Disease Ontology identifier; disease name; number of genes annotated for the disease;

number of genes in module that overlap the disease annotated genes; enrichment fold change,

z-score, p-value, FDR-adjusted p-value, odds ratio, 95% confidence interval upper and lower

bounds; list of annotated genes for the disease, and list of in module that overlap the disease

annotated genes.

(XLSX)

S1 Fig. Directed acyclic graph showing the disease ontology structure of the top 15 terms

(of 136 with FDR-adjusted p-value < 0.05) from the green module. Terms with significant

enrichment are in box-shaped nodes, and darker color indicates a more significant p-value.

The full list of diseases enriched for genes in the green module and associated gene names are

in S3 File. The relationships of green module Disease Ontology terms in not pictured can be

explored interactively at http://disease-ontology.org/.

(DOCX)

S2 Fig. Directed acyclic graph showing the disease ontology structure of all terms with

FDR-adjusted p-value < 0.05 (n = 11) from the black module. Terms with significant

enrichment are in box-shaped nodes, and darker color indicates a more significant p-value.

The full list of diseases enriched for genes in the black module and associated gene names are

in S3 File.

(DOCX)

S3 Fig. Directed acyclic graph showing the disease ontology structure of all terms with

FDR-adjusted p-value < 0.05 (n = 6) from the cyan module. Terms with significant
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enrichment are in box-shaped nodes, and darker color indicates a more significant p-value.

The full list of diseases enriched for genes in the cyan module and associated gene names are

in S3 File.

(DOCX)
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