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Simple Summary: In this study, we established four convolutional neural network (DCNN) models
(AlexNet, ResNet101, DenseNet201, and InceptionV3) to predict drug-sensitive mutations from
images of tissues with gastrointestinal stromal tumors. The treatment of these tumors depends on
the mutational subtype of the KIT/PDGFRA genes. Previous studies rarely focused on mesenchymal
tumors and mutational subtypes. More than 5000 images of 365 GISTs from three independent
laboratories were used to generate the model. DenseNet201 achieved an accuracy of 87% while the
accuracies of AlexNet, InceptionV3, and ResNet101 were 75%, 81%, and 86%, respectively. Cross-
institutional inconsistency and the contributions of image color and subcellular components were
studied and analyzed.

Abstract: Gastrointestinal stromal tumors (GIST) are common mesenchymal tumors, and their effec-
tive treatment depends upon the mutational subtype of the KIT/PDGFRA genes. We established deep
convolutional neural network (DCNN) models to rapidly predict drug-sensitive mutation subtypes
from images of pathological tissue. A total of 5153 pathological images of 365 different GISTs from
three different laboratories were collected and divided into training and validation sets. A transfer
learning mechanism based on DCNN was used with four different network architectures, to identify
cases with drug-sensitive mutations. The accuracy ranged from 87% to 75%. Cross-institutional
inconsistency, however, was observed. Using gray-scale images resulted in a 7% drop in accuracy
(accuracy 80%, sensitivity 87%, specificity 73%). Using images containing only nuclei (accuracy
81%, sensitivity 87%, specificity 73%) or cytoplasm (accuracy 79%, sensitivity 88%, specificity 67%)
produced 6% and 8% drops in accuracy rate, respectively, suggesting buffering effects across subcel-
lular components in DCNN interpretation. The proposed DCNN model successfully inferred cases
with drug-sensitive mutations with high accuracy. The contribution of image color and subcellular
components was also revealed. These results will help to generate a cheaper and quicker screening
method for tumor gene testing.

Keywords: gastrointestinal stromal tumor; KIT; PDGFRA; deep convolutional neural network;
machine learning

1. Introduction

Mutational analysis of cancer cells is a key, and usually rate-determining, step in
targeted therapy. In most circumstances, pathologists diagnose cancers using microscopic
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examination of histopathology slides, to assess tumor morphology, followed by the se-
lection of representative tumor areas for subsequent nucleic acid extraction and genetic
analysis of drug-sensitive mutations. While morphology is the basis for diagnosis, genes are
usually the major determinant of treatment. The acquisition of mutational data, however,
is usually time consuming, especially in local hospitals where the necessary equipment for
gene sequencing is not available. One approach to reducing the time required to diagnose
drug-sensitive mutation is the use of deep learning algorithms to provide a suggestion
of mutations directly from tumor features. Several studies have addressed this issue of
morphology–genotype correlation in cancers [1–6]. However, in these studies, researchers
primarily focused on identifying the presence of specific mutations within carcinomas,
without taking into account the knowledge that, in some circumstances, the mutational
subtype, not merely the presence or absence of a mutation, is the main determinant of
effective treatment.

In this study gastrointestinal stromal tumors (GISTs) were chosen to be the subject
because: (1) GIST is the most common mesenchymal malignancy of the gastrointestinal
tract, and reducing the patients’ waiting time has significant clinical impact. (2) The target
gene of this tumor, KIT or the PDGFRA receptor tyrosine kinase gene, has a complex
pattern of mutation, which makes morphology–genotype correlation extremely difficult for
human perception. (3) Most of the GISTs show consistent morphological features across
the whole tumor, making it easy to obtain representative microscopic images. This exempts
pathologists from the need for submitting whole-slide images and greatly enhances the
efficiency of data transmission. (4) The target gene, KIT/PDGFRA, is the major protein-
producing gene in GIST, and mutation of this gene is expected to generate considerable
morphological variation, which may facilitate detection. (5) Deep learning studies into
mesenchymal tumors are rare [2], and mesenchymal tumors arise from an extremely
heterogenous group of diseases, with a few cases in each category in open image databases.
(6) In GISTs, the subtype of mutations present is more important than the presence of
mutation itself. For example, mutations in exon 11 of the KIT gene are usually drug-
sensitive, while mutations in exon 9 are usually drug-resistant [7]. Genotype–phenotype
studies relating mutational subtypes to histology have rarely been performed.

Conventional computer-aided diagnosis systems are based on communication be-
tween physicians and computer scientists. Details of the findings useful for diagnosis
are passed from physicians to computer scientists, who generate formulas and metrics.
Quantitative features are extracted from medical images and analyzed using machine
learning algorithms, an approach known as artificial intelligence (AI). Recently, deep con-
volutional neural networks (DCNNs) have been widely used to automatically generate
and combine image features [8] and have successfully improved decision making in areas
such as tumor and microorganism detection, evaluation of malignancy, and prediction of
prognosis [9–12]. Instead of using handcrafted features, relevant features can be extracted
using multiple convolutional layers. A previous study using a DCNN model achieved
an accuracy of 95.3%, a sensitivity of 93.5%, and a specificity of 96.3% for the detection of
Bacillus in whole-slide pathology images [9]. With this high accuracy, the diagnostic process
can be accelerated, and the efficiency enhanced. Quantification of the rich information
embedded in histopathology images using DCNNs permits genomic-based correlation and
measurement for the prediction of disease prognosis [8].

Furthermore, using multiple convolutional, max pooling, and fully connected layers,
the underlying patterns used for classification tasks can be identified and interpreted.
Large numbers of features are extracted and combined to represent features ranging
from the edges of objects to meaningful interpretations. Using this approach, the manual
manipulation of image features can be minimized. One of the requirements for deep
learning is the availability of a large number of training images for the neural network.
When establishing a model for a new task, the collection of data and training of the
network is time consuming. Transfer learning can be helpful in addressing this problem.
Especially for medical images, considering the time and cost involved in obtaining data and
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agreements from patients and the institutional review board, the use of transfer learning to
train a target task from a pre-trained model is valuable. This process involves transferring
knowledge from numerous natural images from a source such as ImageNet to obtain
substantial image features [13,14], and transferring pre-trained weights to the target task to
accelerate the learning process.

In this study, GIST histopathology slides were collected from three different labo-
ratories, with images registered by two independent pathologists. A prediction model
was constructed using DCNNs. The deep learning system could identify drug-sensitive
mutations from tumor cell morphology with an accuracy of more than 85%. Subsequent
subcellular studies involving nuclear or cytoplasmic subtraction demonstrated that the
cellular alterations were not confined to the nucleus or cytoplasm. We also investigated
the impact of the use of color images versus gray-scale images on the accuracy of model
prediction. Our study expands the application of AI in daily medical practice.

2. Materials and Methods

GIST histopathology sections, 4 µm thick and stained with hematoxylin and eosin
(H&E), were collected from three independent laboratories: Lab 1 (Dr. C.W.L), Lab 2
(Dr. H.Y.H), and Lab 3 (Dr. P.W.F). A total of 5153 H&E sections from 365 tumors were col-
lected, including cases with KIT exon 11 mutations (drug-sensitive), KIT exon 9 mutations
(drug-insensitive), other KIT mutations (variable drug sensitivity), PDGFRA mutations
(variable drug sensitivity), and KIT/PDGFRA wild type (WT) mutations (drug-insensitive)
(Figure 1A–D). The breakdown of each mutational pattern and the number of cases are
listed in Table 1. The overall workflow chart is shown in Figure 1. For each tumor, an
average of 15 representative high-power field (400×) images were selected and registered
by two pathologists. Areas of necrosis, heavy inflammation, and section artifacts were
avoided. Representative images were taken from the tumor region, not including adjacent
normal tissue. The images were then uploaded to a Cloud server for subsequent analysis.
The study has been approved by the Institute Review Board of Fu Jen Catholic University
(No. C107134, approved on 20 June 2019).

Table 1. Breakdown of mutational patterns and number of cases in each data set.

Mutational
Pattern

Dataset 1 (Lab 1) Dataset 2 (Lab 2) Dataset 3 (Lab 3) Sum
(Case)

Sum
(Image)Case No. Image No. Case No. Image No. Case No. Image No.

KIT E11 125 1959 92 893 15 198 232 3050
KIT E9 34 684 2 14 5 104 41 802

KIT Non-E9
non-E11 5 130 0 0 1 16 6 146

PDGFRA 15 271 6 68 0 0 21 339
KIT/PDGFRA WT 29 473 35 320 1 23 65 816

Sum 208 3517
(3495) * 135 1295

(1293) * 22 341
(341) * 365 5153

(5129) *

* Real image numbers entering DCNN calculation after excluding images with artifacts.

Mutational data for each tumor were obtained by Sanger sequencing as previously
described [15,16]. The tumors were separated into two groups: the “drug-sensitive” group
(KIT exon 11 mutations) (Figure 1A,C) and the “other” group (KIT exon 9 mutations,
KIT other mutations, PDGFRA mutations, and WT cases) (Figure 1B,D). The aim of this
study was to determine whether cases with drug-sensitive KIT exon 11 mutations could be
predicted by the deep learning system directly from tumor cell morphology.

In the experiment, data from each laboratory were used as a training set (Lab 1),
a validation 1 set (Lab 2), and a validation 2 set (Lab 3). Different DCNNs, including
AlexNet [17], Inception V3 [18], ResNet101 [19], and DenseNet201 [20] were used with
transfer learning, and their performances were evaluated. The parameters trained from
ImageNet were transferred into AlexNet, Inception V3, Res-Net101, and DenseNet201 for
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the task of GIST mutation. Training settings used in MATLAB (MathWorks Inc.) include
initial learning rate = 0.001 to achieve the optima weight smoothly, max epochs = 4 as the
learning curve is converged, and mini batch size = 64 for the balance between memory
and computation. The transferred DCNN model generated the probability that each
image contained a drug-sensitive mutation. A probability higher than 0.5 was regarded as
positive. To evaluate the generalization ability of the networks, 10-fold cross validation
was used [21]. The dataset was randomly separated into 10 equal-sized subsets. In each
iteration, one subset was picked and used to test the trained model on the remaining
nine subsets. Original color and corresponding gray-scale images were prepared as input
sources, as well as images with only cell nuclei and without cell nuclei [2].
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Figure 1. Flowchart of the implemented deep convolutional neural network. Images were collected from 3 independent
laboratories (Lab 1, Lab 2, and Lab 3) using 4 µm thick, hematoxylin-and-eosin slides. (A) An example image of a GIST with
a KIT exon 11 mutation from Lab 1 (400×). (B) An example image of a GIST with a KIT exon 11 mutation from Lab 3 (400×).
(C) An example image of a GIST with a KIT exon 9 mutation from Lab 3 (400×). (D) An example image of a GIST with
a PDGFRA exon 18 mutation from Lab 1 (400×). Although similar staining protocols were used, the overall hue differs
between laboratories. A total of 5129 images were enrolled in the study. Four different DCNNs, AlexNet, InceptionV3,
ResNet, and DenseNet, were used with transfer learning from ImageNet. The transferred DCNN model generated the
probability that each image contained a drug-sensitive mutation. A probability higher than 0.5 was regarded as positive.
The dataset was randomly separated into 10 equal-sized subsets. In each iteration, one subset was picked and used to test
the trained model on the remaining nine subsets.
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3. Results

Sample GIST images with different mutations from different laboratories are presented
in Figure 1A–D. Although similar staining protocols were used, the images from different
laboratories had slightly different color hues.

Table 2 shows the prediction accuracies of the different DCNN models with transfer
learning on a combination of all three datasets (70–85%) and of the Lab 1 on the largest
dataset. Of the four DCNN models, DenseNet201 produced the best results. Overall,
the Lab 1 model established by DenseNet201 provided the best accuracy of prediction
(87%). Testing the best Lab 1 DenseNet model on the datasets from the Lab 2 and Lab 3
produced a testing accuracy ranging from 65% to 66%, and the model accuracy trained
individually on datasets from the Lab 2 and Lab 3 ranged from 79% to 94% (Table 3). This
drop (from 87% to 65% and 66%) and recovery (to 79% and 94%) of accuracies in model
cross-applying and processing between different laboratories indicated the presence of
cross-institutional inconsistency.

Table 2. Accuracies of using different DCNNs on combination of three datasets (Lab 1, Lab 2, and
Lab 3) and the largest dataset (Lab 1).

DCNN Combination (Lab 1, Lab2 and Lab 3) Lab 1

AlexNet 70% 75%
Inception V3 77% 81%
ResNet101 84% 86%

DenseNet201 85% 87%

Table 3. Accuracies of the Lab 1 model (DenseNet201) on the Lab 2 and Lab 3 datasets, and model
building using the Lab 2 and Lab 3 dataset.

Dataset Testing Accuracy Model Accuracy

Lab 2 66% 79%
Lab 3 65% 94%

To address this issue and to test which element of the input images had the greatest
impact on the prediction accuracy, transformed gray-scale images were prepared to estimate
the differentiating power of the staining colors. There was a drop in prediction accuracy
from 87% to 80% when input color images were transformed into gray-scale images. Similar
approaches were applied to investigate the significance of the cell nuclei and cytoplasm in
segregation. There was a drop in prediction accuracy from 87% to 81% when nucleus-only
images were input, while a drop in prediction accuracy from 87% to 79% was observed
when the nuclei were extracted from the input images. The results are shown in Table 4.

Table 4. Performances of training DenseNet201 on the Lab 1 dataset with gray-scale, only cell nuclei, and without cell nuclei.

Dataset Accuracy Sensitivity Specificity Positive
Predictive Value

Negative
Predictive Value AUC

Gray-scale 80% 87% 73% 79% 83% 0.8645
Only cell nuclei 81% 87% 73% 80% 83% 0.8832

Without cell nuclei 79% 88% 67% 77% 83% 0.8562

4. Discussion

In this study, we aimed to use variable kinds of DCNNs to identify a direct link
between tumor cell morphology and the mutational status of specific genes. Several
recent studies have addressed a similar issue, that of phenotype–genotype correlation
in cancers, using deep learning systems [1–6]. However, in these studies, only a few
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cases of mesenchymal tumors were included [2]. The largest dataset to date, produced by
Fu et al. in their 2020 study [2], incorporated 200 malignant mesenchymal tumor (sarcoma)
cases. Sarcoma is an extremely heterogenous group of diseases, encompassing more than
50 entities. Although the sarcoma breakdown list was not provided in that study, from
the analytical result that MDM2, TP53, and RB1 were discriminative genes, one can expect
that a significant portion of the dataset comprised liposarcoma and complex karyotype
sarcomas such as leiomyosarcoma and osteosarcoma, which are currently not subjects of
targeted therapy. Xu et al. conducted a radiogenomic study on GISTs in 2018 and reported
that GISTs with and without KIT exon 11 mutations could be discriminated by AI texture
analysis of enhanced computed tomography images [22]. However, in that study, only
four cases of GIST without KIT exon 11 mutations were included in the validation cohort,
leaving room for discussion of the interpretation [22].

As mentioned in the Introduction, we chose GIST as the subject for several reasons.
Cancer tumorigenesis usually involves a stepwise accumulation of hundreds to thousands
of genetic mutations. It can be expected that some of these mutations contribute with
varying degrees to the morphological changes. Owing to the common intratumoral hetero-
geneity in cancers, there are usually different regions with different morphologies in the
same tumor. Given this diversity, if one wants to establish a link between certain mutations
of a gene and certain patterns of morphological changes, thousands of input images may
be needed. Submitting whole-slide images for analysis may be beneficial because several
morphological patterns can be included simultaneously, and thus exempt pathologists
from the need to select representative images of each pattern. However, submitting such
whole-slide images generates heavy loads in internet transmission, and the analysis of large
amounts of data is time consuming, making this approach less appealing in daily practice.
GISTs have the advantages of low mutational burden and low intratumoral heterogeneity,
making them suitable subjects for this pioneering study [23,24]. Clinicians can conveniently
upload representative .jpg high power field images, which are usually <1000 KB in size,
for analysis on a server. Because the drug-sensitive genes (KIT/PDGFRA) in GISTs are the
major protein-producing genes in these cells, based on their high transcription levels in the
gene expression profile [25], they are expected to have a major impact on morphological
alterations, and, therefore, the number of input images necessary to reach biological signifi-
cance may be reduced. The result of our study is encouraging, since, with ~5000 images, a
prediction rate with an accuracy of greater than 80% can be obtained.

In the choice of DCNNs for the clinical application, DenseNet201, which performed
the best, would be a good one for use. However, heavy computation was needed for
the model training and, meanwhile, a large amount of data needed to be collected for
the best fitting. These were the two main concerns compared with the conventional
image processing and feature extraction methods [26,27]. Nevertheless, automatic feature
extraction and combination in DCNN reduced the misunderstanding and time-consuming
communications between pathologists and computer scientists, especially for the gene
mutation task, where it is difficult to discover sophisticated information from pathological
im-ages with human eyes.

In this study, we found cross-institutional inconsistency when applying DCNN models.
The cause of this cross-institution reduction in model prediction accuracy may be caused
by different slide quality, different staining procedures/reagents, different batch effects
(such as humidity and pH value), and varying degrees of slide color fading in storage
between different institutions. To explore the cause of cross-institution inconsistency, we
assume that the colors in tissue images play an important role in DCNN interpretation,
since different laboratories usually have similar but slightly different staining protocols and
environments. Pathologists rely on H&E sections to make correct diagnoses. Hematoxylin
(H) is the major dye that gives nuclei a blue color, and eosin (E) is the major dye that gives
cytoplasm a red color [28]. Within this color spectrum (from deep to light, from blue to red,
and its mixture, purple) pathologists gain experience linking certain color combinations to
certain diagnoses. By transforming color images to gray-scale images, a drop in prediction
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rate was observed, indicating that image color did play a role in DCNN interpretation.
Paradoxically, an enhancement in the prediction rate was observed when combining all
the images for analysis after gray-scale transformation. This process addresses the issue
of color inconsistency between different laboratories, which is usually due to different
staining protocols and environmental factors, such as different humidity and temperature,
may play an even more important role in DCNN interpretation error. The importance of
color calibration in input images is therefore clear [29].

As previously mentioned, an importing factor affecting slide staining colors is stain
fading in archived and aged samples. Color fading may be asymmetric, uneven, or un-
proportionate, and the extent/severity of the fading may be affected by slide storage
condition (humidity, temperature, etc.), different staining protocols, quality of the staining
reagents, tissue intrinsic factors, and extrinsic artifacts. Most of the studies use de-identified
data of which the slide age is not known, as it is in this study. This limitation again stresses
the importance of color control in digital imaging, and the United States Food and Drug
Administration have released guidance in management of color reproducibility in digital
pathology images [30]. We are planning on using more image processing techniques to
analyze a future image database with time stamps to clarify this issue.

Surgical pathologists show great interest in knowing the major subcellular locations
of morphological changes caused by certain mutations. By segmenting out the nuclei, a
significant drop in prediction rate was observed in both nuclei-only and cytoplasm-only
images. However, the reduction was limited, leading to the hypothesis that both nuclei
and cytoplasm are major subcellular locations of morphological alterations, and combining
these two components generates synergic and buffering effects on accurate prediction.

Using state-of-the-art machine learning models keeps shaping our future scope of
medical application and can help mitigate technical gaps between different pathology
laboratories. In areas where local hospitals cannot afford molecular laboratories, the
implementation of prediction models can help doctors obtain tumor mutational data of
their patients in minutes, which greatly accelerates the treatment processes. Although the
result of this pioneering study is encouraging, there are still challenges. Larger studies
with more cases need to be conducted in the future to enhance the prediction accuracy, to
expand the classification subcategories, and to include cases with rare mutational patterns.
Novel mutations are hardly predicted by machine learning models and doctors should
always be aware of cases that are unusual in clinical or pathological presentation.

5. Conclusions

In summary, in this study, we demonstrated that a deep learning system can be used
to establish a link between cellular morphology and certain gene mutations. This approach
helps to reduce the waiting time for mutational analysis, and may benefit the patients by
facilitating targeted therapy in the future.
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