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Abstract

This report describes an ongoing R03 grant that explores the links between trait reward sensitivity, 

substance use, and neural responses to social and nonsocial reward. Although previous research 

has shown that trait reward sensitivity and neural responses to reward are linked to substance use, 

whether this relationship is impacted by how people process social stimuli remains unclear. We are 

investigating these questions via a neuroimaging study with college-aged participants, using 

individual difference measures that examine the relation between substance use, social context, 

and trait reward sensitivity with tasks that measure reward anticipation, strategic behavior, social 

reward consumption, and the influence of social context on reward processing. We predict that 

substance use will be tied to distinct patterns of striatal dysfunction. Specifically, reward 

hyposensitive individuals will exhibit blunted striatal responses to social and non-social reward 

and enhanced connectivity with the orbitofrontal cortex; in contrast, reward hypersensitive 

individuals will exhibit enhanced striatal responses to social and non-social reward and blunted 

connectivity with the orbitofrontal cortex. We also will examine the relation between self-reported 

reward sensitivity, substance use, and striatal responses to social reward and social context. We 

predict that individuals reporting the highest levels of substance use will show exaggerated striatal 

responses to social reward and social context, independent of self-reported reward sensitivity. 

Examining corticostriatal responses to reward processing will help characterize the relation 

between reward sensitivity, social context and substance use while providing a foundation for 

understanding risk factors and isolating neurocognitive mechanisms that may be targeted to 

increase the efficacy of interventions.
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INTRODUCTION

Substance Use Disorder (SUD) constitutes a major public health crisis. In 2018, it was 

estimated that 20.3 million people in the United States aged 12 years or older had a SUD in 

the preceding year [1]. Substance use can lead to maladaptive behavior and profound 

physiological and psychological changes [2,3]. Substance use is also highly comorbid with 

other disorders such as Major Depressive Disorder (MDD) [4]. One common observation 

among individuals with SUD or MDD is that they have abnormalities in reward processing 

[5]. People who are hyposensitive to reward may be predisposed to seek drugs to 

compensate and up-regulate their reward systems. However, people with a hypersensitive 

reward system tend to be more impulsive and risk-seeking, factors that may also contribute 

to substance use. These seemingly conflicting observations raise the possibility that 

disparate mechanisms may lead to a common clinical outcome [6,7].

Limits in our understanding of the relation between aberrant reward processing and SUD 

may be partially linked to the fact that reward sensitivity is often assessed using self-report 

measures, which may be insensitive to subtle patterns of pathophysiology. Moreover, other 

factors may mediate or modulate the relationship between reward sensitivity and SUD. 

Recent studies suggest that the pathophysiology underlying addiction may be tied to 

reactivity of and connectivity between the striatum and orbitofrontal cortex (OFC) [8]. 

Substance use may also be moderated by large-scale neural networks, including the DMN 

(Default Mode Network) [9–13]. Importantly, corticostriatal function is highly sensitive to 

social context (i.e., the presence of a peer) [14,15], and the social environment plays a 

critical and complex role in the etiology of SUD. Next, since OFC responses have been 

associated with social information [16,17], it may play an important role mediating or 

modulating corticostriatal connectivity. OFC connectivity with frontostriatal regions may 

affect striatal responses to reward [18], with altered striatal connectivity and putamen OFC 

connectivity in chronic ketamine users being associated with impulsivity and duration of 

ketamine use [19]. Despite this overlap, addiction neuroscience has rarely tested relations 

between social context and reward processing [20]. Moreover, individual differences and 

personality factors such as impulsivity and emotional intelligence may affect how people 

process social situations and may mediate substance use behavior.

To investigate these issues, we were awarded a National Institutes of Health (NIH) R03 grant 

that will allow us to conduct a pilot study that quantifies how reward-dependent 

corticostriatal connectivity, striatal responses to social reward, and social context relate to 

substance use (Figure 1). We believe that responses to social reward and social context may 

serve as key, understudied factors in SUD—ones that shape our understanding of how 

hypersensitivity and hyposensitivity to reward predict risk of SUD. At this stage, we have 

submitted pre-registrations for every experiment proposed in the grant, started data 

collection, and initiated preliminary data analysis. In this grant report, we describe the 

significance and background of this project, our specific aims, methods, anticipated results, 

and the implications of this research.
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SIGNIFICANCE

Reward Hyposensitivity Model

One of the leading theories of addiction is the Reward Deficiency Model of Addiction. This 

model proposes that addictive substances evoke activation in brain regions that receive 

dopaminergic inputs, particularly the striatum and ventromedial prefrontal cortex [21,22]. 

Repeated use over time blunts activation, leading to a diminution of engagement associated 

with reward [23,24]. There are two ways in which the reward circuit can be downregulated. 

Individuals with insufficient DA receptors can develop abnormalities in their neural reward 

system that predispose them to substance use [25]. Alternately, reward hyposensitivity can 

arise due to substance use, which downregulates the reward system in the absence of the 

substance [26]. This may lead to a repeated and compulsive behavior due to enhanced 

sensitivity of memory circuits to drug cues [26]. Subsequently, the behavior devolves into 

compulsive drug use as circuits associated with inhibition are co-opted and weakened [27]. 

Finally, exposure to drug cues leads to hyperactivation of motivation circuitry towards drugs, 

resulting in addiction [28]. Paradoxically, initial hyposensitivity to reward leads to changes 

in reward circuitry that become more hyperactive with continued substance use.

Studies have shown that neural hyposensitivity to reward is associated with substance use. A 

meta-analysis of fMRI research assessing the relation between reward processing and 

addiction showed that the ventral striatum of individuals with a SUD exhibited 

hypoactivation during reward anticipation, but hyperactivation during reward outcome [29]. 

Moreover, a longitudinal study with novelty-seeking adolescents showed that blunted ventral 

striatal responses to anticipated rewards predicted drug use [30]. Finally, in young adults, 

blunted reward sensitivity and trait disinhibition interacted to predict substance use problems 

[31]. These recent studies provide evidence that suppressed reward sensitivity is associated 

with substance use.

Major Depressive Disorder (MDD) is highly comorbid with substance use [32], suggesting 

that there may be parallels in reward processing deficiencies that affect both disorders. One 

third of individuals diagnosed with MDD also are diagnosed with SUDs [4]. Thus, 

investigating reward processing in MDD may offer additional insight into how dysregulated 

reward networks may also contribute to substance use. Participants with MDD exhibit 

attenuated functional connectivity between the VS and cortical regions, such as the vmPFC 

and OFC [33,34]. A meta-analysis of fMRI research assessing reward processing in MDD 

revealed distinct abnormalities within reward circuitry, such as a hyporesponsive ventral 

striatum and hyperresponsive OFC [35]. This abnormalities may lead to impaired reward 

prediction error encoding and a dysregulated reward system [36]. Furthermore, specific 

depressive symptoms (i.e., anhedonia) have been associated with diminished reward 

sensitivity among first-degree family members of patients diagnosed with MDD [37], 

suggesting a possible genetic link between MDD and reward hyposensitivity. Together, this 

evidence provides support for the notion that attenuated responses to reward are associated 

with both substance use and with disorders that commonly co-occur with SUDs, problems 

that afflict millions of Americans.
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Reward Hypersensitivity Model

The Reward Hypersensitivity Model proposes that individuals with higher reward sensitivity 

are more likely to engage in behavior that has pleasurable, yet risky consequences, including 

substance use. This model is an outgrowth of Gray’s reinforcement sensitivity theory [38], 

which theorizes that there are two systems that guide motivated behavior in response to 

rewards: an approach and avoidance system. The approach system is associated with 

novelty-seeking, impulsivity, risk-taking, and otherwise goal-driven behavior [38]. The 

behavioral inhibition system (BIS) and the behavioral activation system (BAS) scales were 

developed as psychometric indices of these two systems in relation to reward and goal-

driven behavior [39] and is also assessed with the Sensitivity to Reward scale [40]. Elevated 

BAS scores (i.e., hypersensitivity to reward) have been correlated with substance use, 

bipolar disorder [41], and impulsivity [42]. Behavioral responsivity to appetitive stimuli has 

been associated with neural activity in the left orbitofrontal cortex, left insula, and right 

ventral striatum [43] and the dorsomedial striatum [44]. Substance Dependent Individuals 

(SDI) had higher BAS fun seeking scores, lower decision making performance, and elevated 

left OFC activity, indicating this region may play a role in reward-related decision making in 

SUD [45]. Taken together, these studies indicate that dysregulated reward processing can 

then result in faulty decision making such as substance use.

Studies have found that hypersensitivity to reward is also associated with substance use. 

High BAS scores are associated with alcohol use [46], cocaine drug addiction [47] and 

nicotine dependence [48]. Adolescents with higher BAS scores are more likely to have 

substance use disorders [49]. Finally, mood disorders, such as bipolar spectrum disorders, 

are associated with substance use, impulsivity, and an elevated response to reward [41]. 

These findings suggest that the reward hypersensitivity model gives insight into some of the 

mechanisms underlying SUD.

Social Reward and Social Decision Making

A wide range of rewards, including drugs of abuse, are sought and experienced in social 

contexts, including sharing with peers. Moreover, negative social events, such as peer 

rejection, often trigger relapse [50]. Further, recent research indicates that corticostriatal 

connectivity to social regions such as the OFC may be associated with substance use 

[19,51]. Despite these observations, little is known about how striatal responses to social 

reward (e.g., peer rejection/acceptance) and social context (e.g., sharing a reward with a 

peer) are linked to reward sensitivity and substance use.

A growing body of literature suggests that the striatum plays a crucial role in processing 

social information. For example, studies of inequity [52], and social comparison [53,54] 

have found that the striatum has a key role in integrating social information. The striatum 

may accomplish this by integrating social information through coding social context and 

rewards [55]. For example, higher VS activation is associated with self-disclosure [56], 

coding social learning signals and reciprocation from a close friend in a trust task [57]. 

Additionally, elevated vs activity was related to positive feedback and integrating the social 

context of receiving such feedback [58]. Finally, dysregulated striatal responses to social 
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information processing have been implicated in symptoms of poor social competence, which 

are common in SUD.

Our real-world choices are often influenced by social information, which requires us to 

evaluate thoughts and intentions of other individuals [59,60]. These processes engage a 

network of brain regions, including the temporal-parietal junction (TPJ), the posterior 

cingulate cortex (PCC), and the medial prefrontal cortex (mPFC). This constellation of brain 

regions has been labeled the “social brain” and overlaps anatomically with the DMN [61]. 

Neural activation can also be biased by social context. For example, striatal reward value 

signals are enhanced in the presence of a peer [17,62,63]. This heightened engagement is 

linked with greater risk-taking behavior, which, in turn, increased the likelihood of 

maladaptive consequences [14,64]. Although social context can influence the way we 

respond to nonsocial rewards (e.g., money), the reward system is also independently 

responsive to social reward outcomes, such as social acceptance [65,66]. Social comparison, 

such as when there are differences in payoffs between pairs of participants simultaneously 

completing a simple estimation task, is associated with variation in VS activation [54]. 

Finally, receipt of social reward has been shown to modulate connectivity between regions 

comprising reward circuitry (e.g., striatum and VMPFC) and social brain regions such as the 

TPJ [67,68] and OFC [18]. Substance use may affect corticostriatal connectivity between 

these social regions, with findings indicating altered striatal connectivity and putamen OFC 

connectivity in chronic ketamine users [19] and problematic substance use in psychiatric 

patients [51].

Despite these observations, very little is known about how responses to social reward and 

social context are linked to substance use, where social factors frequently play a critical role 

in consumption behavior [20,69]. For example, drugs of abuse are often consumed in social 

settings (e.g., binge drinking with friends), and negative social experiences (e.g., loss of a 

relationship or social isolation) can trigger relapse among individuals recovering from SUD 

[50]. These observations suggest that substance use may depend, in part, on how individuals 

respond to social experiences, including social reward itself, as well as social contexts 

associated with consumptive behavior. While social context and processing of social rewards 

likely contribute to substance use, it remains unclear how striatal responses to social rewards 

are associated with reward sensitivity and substance use, respectively.

Substance use may impact the engagement of brain regions associated with social decision 

making, further contributing to maladaptive or suboptimal behavior among individuals with 

SUD. Social decision making often requires meta-cognition—an understanding of how 

one’s own choices can affect others. When bargaining with others, for example, people must 

often balance a desire to maximize their own earnings with the possibility of their offer 

being rejected by their partner. One underexplored factor that may increase a participant’s 

earnings in a bargaining situation could be emotional intelligence, which is related to self-

interested behavior in social contexts [70,71]. Other factors that enhance a participant’s 

bargaining effectiveness included greater reward sensitivity [72], or higher levels of 

executive function [73], which may serve to moderate impulsivity. Another perspective as to 

what may drive bargaining behavior includes a participant’s attitudes toward punishment and 

norm compliance; factors which have been associated with activations in the lateral OFC 
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and right dorsolateral prefrontal cortex (dlPFC) [74]. However, this explanation is 

confounded with the possibility that subjects are motivated through maximizing their 

earnings rather than desiring to minimize the possibility of punishment. Little is known 

about how psychological factors such as emotional intelligence and impulsivity and their 

respective neural correlates interact to maximize earnings in bargaining situations. In 

summary, social incentive processing components such as strategic behavior, reward 

anticipation, social reward, and social context could inform how addiction impairs decision 

making. Although substances are often consumed in social contexts, it remains 

underexplored how these variables are associated with SUD. Further while reward 

sensitivity has been associated with substance abuse and psychopathology, it remains 

unclear whether this relationship is mediated or moderated through these social variables 

(see Figure 1).

SPECIFIC AIMS

Hyposensitivity and hypersensitivity to reward both have been implicated in substance use 

behavior. Recent studies suggest that the pathophysiology underlying addiction may be tied 

to reactivity of and connectivity between the striatum and orbitofrontal cortex (OFC) [8]. 

The way reward sensitivity may mediate or modulate these neural relations remains 

unknown. In addition, corticostriatal responses to reward are highly sensitive to social 

context (i.e., the presence of a peer) [14,15]. Despite this, addiction neuroscience rarely has 

tested the relations between social context and reward processing [20]. It is critical to 

address this gap given that a wide range of rewards, including drugs of abuse, are sought and 

experienced in social contexts, including sharing with peers.

To investigate these relations, we are assessing individual differences in reward sensitivity in 

a healthy college-aged sample using the Behavioral Inhibition System/Behavioral Activation 

System (BIS/BAS) Scales [39] and Sensitivity to Punishment (SP)/Sensitivity to Reward 

(SR) Questionnaire (SPSRQ) [40] in conjunction with task-based fMRI to probe responses 

to social and nonsocial reward. Our project is addressing two aims through exploring the 

relationship of trait reward sensitivity, substance use, and social context (see Figure 1).

Our first aim is to quantify how reward-dependent corticostriatal connectivity contributes to 

substance use. Although prior studies have established that aberrant responses on the BAS 

and SR are associated with substance use [41,46], it remains unclear whether reward-

dependent corticostriatal connectivity explains additional variance in substance use. To 

investigate this issue, healthy young adults (ages 18–22) who vary in their reward sensitivity 

(as assessed by BAS and SR) and substance use patterns (as assessed by clinical interviews) 

will engage in well-characterized tasks that probe reward consumption [75] and reward 

anticipation [76]. We hypothesize that the degree of substance use will be greater in 

individuals who are either hyposensitive or hypersensitive to reward. We also hypothesize 

that reward hyposensitive individuals will exhibit blunted striatal responses to reward and 

enhanced striatal-OFC connectivity. Reward hypersensitive individuals will exhibit 

enhanced striatal responses to reward and blunted striatal-OFC connectivity.
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Our second aim is to quantify whether striatal responses to social reward and social context 

contribute to substance use. Drugs of abuse are often tied to social interactions [69]; and 

negative social events (e.g., romantic rejection) can trigger relapse in individuals with 

substance use disorders [50]. Despite these links between social processes and substance 

use, little is known about the relations between substance use, reward sensitivity (as assessed 

by BAS and SR), and striatal responses to social reward and social context. To investigate 

this issue, our participants are engaging in tasks developed by our investigative team that 

probe responses to social context [62] and social reward [65,77]. We hypothesize that 

individuals reporting the highest levels of substance use will show exaggerated striatal 

responses to social reward (e.g., peer acceptance relative to rejection) and social context 

(i.e., sharing a monetary reward with a friend relative to a stranger), independent of self-

reported reward sensitivity. In addition, we predict that elevated striatal responses to social 

reward/social context will be associated with enhanced connectivity with regions modulated 

by social information (e.g., temporal-parietal junction).

Overall, this National Institute on Drug Abuse (NIDA)-funded project will help characterize 

the links between substance use, reward sensitivity, and neural responses to social and 

nonsocial rewards. Assessing whether corticostriatal connectivity is associated with 

substance use would allow for a more sophisticated and nuanced understanding of the 

physiological mechanisms contributing to addiction. Moreover, assessing the relation 

between neural responses to social reward and social context and substance use could 

delineate social mechanisms of addiction. Understanding the psychological and 

physiological relations underlying substance use would inform future theoretical and 

experimental work in addiction research, and ultimately, could contribute to interventions 

and therapies for substance use disorders.

APPROACH

Grant Structure and Timeline—In 2019, we were awarded an Imaging—Science Track 
Award for Research Transition (I-START) grant from the National Institute on Drug Abuse 

(NIDA). The I-START grant is a 1-Year R03 mechanism that is intended to support a small, 

proof of concept project that facilitates the transition to conducting neuroimaging studies 

that examine the mechanisms underlying drug use. One of the major goals of the grant is to 

develop pilot data that can be used in a future R01 submission to NIDA (see Summary, 

Limitations, and Long-Term Outlook).

To address this goal, we have assembled a study team that is led by Principal Investigator 

David Smith and includes four Co-Investigators from Temple University and a consultant 

from Adelphi University. Dr. Smith is an expert in neuroeconomics and functional 

neuroimaging, with extensive methodological expertise in brain connectivity analysis 

approaches [78,79]. Co-Investigator Lauren Alloy has over three decades of clinical 

experience in areas that are directly relevant to the proposal (e.g., clinical implications of 

aberrant reward sensitivity [6,41]. Co-Investigator Jason Chein has experience with imaging 

paradigms that examine the effects of social context (e.g., peers) on decision making and 

reward processing [14,64]. Co-Investigator Johanna Jarcho is an expert in social 

neuroscience and has substantial expertise in neuroimaging paradigms that examine social 
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interactions, including the social/nonsocial reward paradigm used in the proposal [77]. Co-

Investigator Michael McCloskey is a clinical psychologist with substantial expertise in 

substance use disorders [80]. Consultant Dominic Fareri is an expert in social neuroscience 

and pioneered the shared reward task used in the proposal [62]. Finally, we note that project 

coordination and data collection will be led by Angelique Frazier and Caleb Haynes. In 

addition, task-specific components of data analysis and dissemination will be spearheaded 

by Caleb Haynes (all tasks), Daniel Sazhin (Ultimatum Game; see Section Ultimatum game 

task), Camille Johnston (Social Doors; see Section Social doors task), Iris Ka-Yi Chat 

(Monetary Incentive Delay; see Section Monetary incentive delay task), Jeffrey Dennison 

(Monetary Incentive Delay; see Section Monetary incentive delay task), and Corinne Bart 

(Monetary Incentive Delay; see Section Monetary incentive delay task).

Given that data collection was active for only a few months prior to the COVID-19 outbreak, 

this grant report is primarily focused on providing an overview of our experiments and 

plans. Depending on when we can resume data collection, we hope to present preliminary 

results at spring conferences, such as Social and Affective Neuroscience. Following these 

presentations, we hope to submit manuscripts tied to each experiment. Authorship on all 

manuscripts will follow guidelines proposed by the International Consortium of Medical 

Journal Editors [81,82]. Following publication, all neuroimaging data will be made publicly 

available on OpenNeuro (https://openneuro.org) and all analysis code and stimuli will be 

made available on PI Smith’s lab GitHub site (https://github.com/DVS-Lab). Each 

publication will also include a link to a NeuroVault.org [83] repository that contains both 

thresholded and unthresholded statistical maps.

General Methods

Participants, Recruitment, and Sample Characteristics.—Our study is intended as 

a foundational project that will be extended in a subsequent R01 submission. Although we 

were initially aiming to collect imaging data from 100 participants between the ages of 18 

and 22 years, we may have to adjust this target based on constraints imposed by the 

COVID-19 pandemic. Participants attended two appointments, consisting of a diagnostic 

interview, battery of psychometric surveys, and a mock scan, followed by a second 

appointment which consisted of the fMRI scan and behavioral tasks.

Participants are recruited based on scores on two self-report measures of trait reward 

sensitivity: BIS/BAS [39] and SPSRQ [40]. The total BAS reward scale and the Sensitivity 

to Reward (SR) subscale of SPSRQ are reliable and valid measures of reward sensitivity that 

Co-I Alloy has previously used to select participants with different levels of reward 

sensitivity [84,85]. Moreover, Co-I Alloy recently demonstrated that reward sensitivity, as 

assessed by both measures, is best characterized by dimensional, not a categorical 

vulnerability to bipolar disorder [86]. We are screening approximately 1000 participants on 

demographics and these two measures. Based on both the total BAS and SR (r = 0.40) 

scales, we will recruit participants from each quintile of reward sensitivity. In order to be 

included, participants must be in the same quintile on each measure of reward sensitivity. 

This procedure mirrors our prior work (e.g., Ref. [41]) and increases confidence that 

participants responded truthfully since scoring similarly on both measures would be unlikely 
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with random or inattentive responses. If we achieve a total sample of N = 100 across five 

quintiles (low to high) of reward sensitivity then each quintile will have 20 participants. This 

design ensures both that we will have the full dimension of reward sensitivity represented in 

the sample and that we will have adequate numbers of participants at risk for substance use 

disorders (bottom quintile and top quintile), as well as participants in the middle (control 

participants) at low risk for substance use. The state of recruitment prior to COVID 

restrictions suspended collections as of March 3rd 2020 consisted of 1472 people screened, 

382 people deemed eligible, and 69, 67, 65, 75, 106 participants recruited across five 

quintiles (low to high) of reward sensitivity. At this stage, 236 participants completed 

appointment 1, 10 participants were subsequently scanned in the 1, 1, 3, 5, 0 quintiles of 

reward sensitivity.

Diagnostic and Symptom Measures.—Participants with aberrant reward sensitivity 

are at increased risk for mood disorders and exhibit mood symptoms that could confound 

analyses that link substance use to brain responses to social and nonsocial reward. Thus, 

lifetime and family history of mood and substance use disorders based on DSM-5 criteria 

and Research Diagnostic Criteria (RDC) [87] will be assessed with The Structured Clinical 

Interview for DSM-5 (exp-SCID-5) diagnostic interview [88] by interviewers blind to 

participants’ reward sensitivity. Complementing the mood symptom ratings in the exp-

SCID-5, depression symptoms also will be assessed with the Beck Depression Inventory-II 

(BDI-II) [89] and the 7Down subscale of the 7Up7Down Scale (7U7D) [90]. Hypo/mania 

symptoms will be assessed with the Altman Self-Rating Mania Scale (ASRM) [91] and 7Up 

subscale of the 7U7D. These scales comprehensively assess depression and hypo/mania 

symptoms across a range of severity, allowing us to control for mood symptoms (via 

regression) and exclude participants with existing mood disorder on the exp-SCID-5.

Assessments of Substance Use.—In addition to assessing DSM-5 substance use 

disorder criteria for alcohol and non-alcohol substances via the SCID-5, we also will 

administer the Timeline Follow-Back for Alcohol (TLFB-A) and non-alcohol Drugs (TLFB-

D), to obtain a more nuanced assessment of current substance use frequency and patterns 

[92,93]. Next, we will assess substance use using the Drug Use Disorders Identification Test 

(DUDIT) [94], Adolescent Alcohol and Drug Involvement Scale (AADIS) [95], and the 

Alcohol Use Disorders Identification Test (AUDIT) [96]. These assessments have been used 

extensively by Co-I McCloskey, an expert in substance use disorders. For alcohol and non-

alcohol substance use separately, estimates of both current substance use (TLFB) and history 

of problematic substance use (number of substance use criteria endorsed) will be considered 

in the primary analyses. However, if it is found that the two measures are collinear, TLFB 

and DSM-5 measures will be z-transformed and combined into a single variable. To control 

for the possibility that the individual may be currently under the acute effects of alcohol or 

illicit substance, or otherwise experiencing acute withdrawal from such a substance, we will 

exclude individuals with a current substance use disorder that includes symptoms of physical 

dependence (i.e., tolerance or withdrawal). Physical dependence is assessed through the 

Structured Clinical Interview for DSM. Further exclusion criteria include if a participant’s 

self-reported AUDIT score is greater than 17 or if their response on DUDIT Q1 was greater 
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than 3. Further, we excluded participants with current substance influence by administering 

a urine test and a breathalyzer test prior to behavioral and fMRI study procedures.

Social Functioning.—Additional self-report measures are being administered to assess 

preference for social engagement and social cognitive abilities. The Adult Autism Quotient 

[97] assesses levels of autistic traits through items measuring constructs such as social skills, 

communication and attention to detail, among others. The Interpersonal Reactivity Index 

[98] assesses individual differences in empathy and mentalizing abilities via items 

measuring perspective taking abilities and empathic concern. The trait Emotional 

Intelligence (EI) questionnaire (TEIQe) measures individual differences in trait empathy, 

emotion regulation and perspective taking in emotional contexts [99]. The AAQ, IRI, and EI 

measures are being used as exploratory covariates to help clarify relations between 

substance use, reward sensitivity, and responses to social stimuli.

Longitudinal Effects.—Since data collection has been temporarily suspended due to 

COVID restrictions, we have added several longitudinal measures to assess changes in 

substance use and anhedonia over time. We are conducting a remote followup survey 

administered at 6, 12, and 18 months following the scan and/or initial screening. This survey 

assesses mood symptoms (SevenUp, SevenDown), levels of substance use (AADIS, DUDIT, 

AUDIT), and coping/motives through the Drinking Motives Questionnaire, Revised (DMQ-

R) [100] Marijuana Motives Questionnaire (MMQ) [101], and the Distress Tolerance Scale 

(DTS-8) [102].

Neuroimaging Methods and Analysis

Data acquisition—Neuroimaging data are being collected at the Temple University Brain 

Research & Imaging Center (TUBRIC), which houses a Siemens Prisma 3T scanner and is 

directed by Co-I Chein. We are acquiring T1-weighted structural images to facilitate brain 

normalization. Functional data are being collected using a multiband EPI sequence. See 

Table 1 for details regarding imaging parameters.

FMRI preprocessing—At the conclusion of data collection, preprocessing will be 

performed using the long-term support version of fMRIPrep (20.2.0). Our preliminary 

analyses have utilized fMRIPrep 1.5.3 [103] which is based on Nipype 1.3.1 [104,105]. 

Relevant boilerplate methodological details are described below.

Anatomical data preprocessing.: The T1-weighted (T1w) image will be corrected for 

intensity non-uniformity (INU) with N4BiasFieldCorrection [106], distributed with ANTs 

2.2.0 [107] and used as T1w-reference throughout the workflow. The T1w-reference will 

then be skull-stripped with a Nipype implementation of the antsBrainExtraction.sh workflow 

(from ANTs), using OASIS30ANTs as target template. Brain tissue segmentation of 

cerebrospinal fluid (CSF), white-matter (WM) and gray-matter (GM) will be performed on 

the brain-extracted T1w using fast [108]. Volume-based spatial normalization to two 

standard spaces (MNI152NLin2009cAsym, MNI152NLin6Asym) will be performed 

through nonlinear registration with antsRegistration (ANTs 2.2.0), using brain-extracted 

versions of both T1w reference and the T1w template. The following templates were 
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selected for spatial normalization: ICBM 152 Nonlinear Asymmetrical template version 

2009c [109], FSL MNI ICBM 152 non-linear 6th Generation Asymmetric Average Brain 

Stereotaxic Registration Model [110] (RRID:SCR_002823; TemplateFlow ID: 

MNI152NLin6Asym).

Functional data preprocessing.: For each of the BOLD runs per participant (across all 

tasks and sessions), the following preprocessing steps will be performed: First, a reference 

volume and its skull-stripped version will be generated using a custom methodology of 

fMRIPrep. A B0-nonuniformity map (or fieldmap) will be estimated based on a phase-

difference map calculated with a dual-echo GRE (gradient-recall echo) sequence, processed 

with a custom workflow of SDCFlows inspired by the epidewarp.fsl script and further 

improvements in HCP Pipelines [111]. The fieldmap then will then be co-registered to the 

target EPI (echo-planar imaging) reference run and converted to a displacements field map 

(amenable to registration tools such as ANTs) with FSL’s FUGUE and other SDCflows 

tools. Based on the estimated susceptibility distortion, a corrected EPI (echo-planar imaging) 

reference will be calculated for a more accurate co-registration with the anatomical 

reference. Then, the BOLD reference will be co-registered to the T1w reference using 

FLIRT [112] with the boundary-based registration [113] cost-function. Co-registration will 

be configured with nine degrees of freedom to account for distortions remaining in the 

BOLD reference. Head-motion parameters with respect to the BOLD reference 

(transformation matrices, and six corresponding rotation and translation parameters) will be 

estimated before any spatiotemporal filtering using mcflirt [112] BOLD runs will be slice-

time corrected using 3dTshift from AFNI 20160207 [114]. The BOLD time-series 

(including slice-timing correction when applied) will be resampled onto their original, native 

space by applying a single, composite transform to correct for head-motion and 

susceptibility distortions. These resampled BOLD time-series will be referred to as 

preprocessed BOLD in original space, or just preprocessed BOLD. The BOLD time-series 

will be resampled into several standard spaces, correspondingly generating the following 

spatially-normalized, preprocessed BOLD runs: MNI152NLin2009cAsym, 

MNI152NLin6Asym.

Automatic removal of motion artifacts using independent component analysis [115] will be 

performed on the preprocessed BOLD on MNI space time-series after removal of non-steady 

state volumes and spatial smoothing with an isotropic, Gaussian kernel of 6mm FWHM 

(full-width half-maximum). In addition, several confounding time-series are calculated 

based on the preprocessed BOLD. Notably, three signals will be extracted within the CSF, 

WM, and whole-brain masks. These additional regressors add an extra layer of protection 

when removing residual variance associated head motion [116]. All resamplings can be 

performed with a single interpolation step by composing all the pertinent transformations 

(i.e., head-motion transform matrices, susceptibility distortion correction when available, 

and co-registrations to anatomical and output spaces). Gridded (volumetric) resamplings will 

be performed using [dummy_not space] antsApplyTransforms (ANTs), configured with 

Lanczos interpolation to minimize the smoothing effects of other kernels [117]. Non-gridded 

(surface) resamplings will be performed using mri_vol2surf (FreeSurfer).
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Many internal operations of fMRIPrep use Nilearn 0.6.0 [118], mostly within the functional 

processing workflow. For more details of the pipeline, see the section corresponding to 

workflows in fMRIPrep’s documentation.

Neuroimaging analyses—We will use FSL [119] to evaluate brain activation associated 

with each task. Each task will be modeled separately using a general linear model (GLM) 

with local autocorrelation correction [120]. All task-based regressors will consist of unit 

impulses convolved with a canonical hemodynamic response function. Each GLM will also 

include a set of nuisance regressors that account for non-steady state volumes, mean white 

matter signal, mean cerebrospinal fluid signal, and motion-related components identified 

with ICA-AROMA [115]. We also will include discrete cosine basis functions to filter out 

signals with a period exceeding 128 s.

To measure corticostriatal interactions, we will use psychophysiological interaction (PPI) 

analysis [121], which estimates simple models of effective connectivity [78,122,123]. We 

will conduct this analysis using the ventral striatum (see Ref. [124]) as a seed. Unlike 

functional connectivity methods, which only measure correlations between brain regions, 

PPI provides a better model of neuronal coupling because PPI effects are difficult to attribute 

to changes in (a) another connection, (b) response levels in one region, or (c) observational 

noise [122,125]. These features of PPI allow us to rigorously quantify corticostriatal 

interactions. We will use a novel network-based PPI (nPPI) developed by PI Smith that can 

help clarify how large-scale networks involved in substance use (e.g., DMN) interact with 

other brain regions during reward processing [126,127]. Briefly, this approach extracts 

network-level responses (i.e., timecourses) using dual-regression analysis [128,129] and 

includes those timecourses as regressors in the PPI model, thus allowing for improved 

quantification of effective connectivity [121].

To model data across participants, we will employ mixed-effects models [130] that assess 

simple main effects of each task construct (e.g., reward anticipation) and also brain-behavior 

correlations (e.g., reward anticipation and substance use). Our group-level models also will 

include nuisance regressors to account for individual differences in head motion and data 

quality, as we have done in our prior work [131,132]. Finally, we will correct for multiple 

comparisons using permutation-based analyses [133] with cluster-extent thresholding [134] 

and threshold-free cluster enhancement [135]. All statistical maps—both thresholded and 

unthresholded—will be deposited on NeuroVault [83].

Experiments

Monetary incentive delay task

Rationale.: Self-report and behavioral assessments of reward sensitivity have been 

associated with substance use [41]. However, it remains unclear if extreme levels of aberrant 

behavioral reward sensitivity (i.e., hyposensitivity and hypersensitivity) and anhedonia 

contribute to substance use through similar or distinct neural mechanisms. To investigate this 

issue, we will quantify corticostriatal activation and connectivity in participants who vary in 

trait reward sensitivity.

Sazhin et al. Page 12

J Psychiatr Brain Sci. Author manuscript; available in PMC 2020 November 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Experimental Design.: Participants will perform a well-established reward anticipation task 

called the Monetary Incentive Delay Task (MID) (Figure 2) [136]. The task will consist of 2 

runs, each with 50 trials. On each trial, the participant is presented with a cue that indicates 

the value of the current trial (−$5, −$1, $0, +$1, or +$5), which is then followed by a target 

stimulus (a triangle). To earn the reward (or avoid the punishment), participants will be 

instructed that they must respond rapidly to the target stimulus. Neuroimaging analyses 

focus on the response to the cue, which isolates anticipatory responses. We will additionally 

examine the response to feedback (hit vs miss), which provides a measure of reward 

consumption.

Primary Hypotheses.: (H1.1) Both hyposensitive and hypersensitive individuals will 

exhibit higher reported levels of substance use than individuals reporting moderate reward 

sensitivity. This hypothesis will be evaluated using t-tests comparing high/low relative to 

moderate and using regression analysis where reward sensitivity is fit with a quadratic 

function. (H1.2) Hyposensitive individuals will exhibit blunted striatal responses to reward 

consumption and anticipation and enhanced corticostriatal connectivity with OFC and the 

DMN. Hypersensitive individuals will exhibit enhanced striatal responses to reward 

consumption and anticipation and blunted corticostriatal connectivity with OFC and the 

DMN. (H2) Increased severity of anhedonia will be associated with blunted differences in 

relative motivation, defined as the difference in reaction time (RT) for large relative to small 

incentive cues (irrespective of reward and loss). (H3.1) Reward-hyposensitive individuals 

will exhibit enhanced corticostriatal connectivity with the orbitofrontal cortex (OFC) and the 

Default Mode Network (DMN) compared to individuals with moderate sensitivity. (H3.2) 

Reward-hypersensitive individuals will exhibit blunted corticostriatal connectivity with OFC 

and the DMN.

Limitations and Future Directions.: Although the behavior measured with the reward 

anticipation is limited to reaction time, cue-dependent differences in reaction time can 

provide a reliable index of relative motivation [137]. Our exploratory analyses will therefore 

consider reaction time as another factor that might help mediate the relationship between 

trait reward sensitivity and psychopathology. In addition, exploratory analyses will also 

assess whether the associations between substance use, reward sensitivity, and neural 

measures of reward are stronger for anticipation responses than consumption responses.

Social doors task

Rationale.: Substance use is often tied to social interactions (e.g., binge drinking with 

friends), and negative social events (e.g., romantic rejection) can trigger relapse in 

individuals with substance use disorders [50]. Although social factors can play a critical role 

in substance use [20,69], little is known about the relations between substance use, reward 

sensitivity, and striatal responses to social reward. More specifically, it remains unclear 

whether substance use is associated with striatal response to social reward, independent of 

self-reported reward sensitivity. However, striatal response to reward is most often probed in 

a monetary domain. The few studies to compare brain response to social and monetary 

reward have results that are difficult to compare due to different task structures or timing. 

We addressed this challenge by developing a novel fMRI-based variant of our social reward 
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task (Figure 3) [65] that is matched on trial structure, timing, and feedback stimuli with a 

well-established monetary reward task [138].

Experimental Design.: Participants are told that they are completing a social evaluation 

study and asked to provide a photo of themselves that is purportedly shared with age-

matched peers across the country. Purported peers receive a text message asking them to 

view the photo and indicate whether they would “like” (e.g., social acceptance) or “dislike” 

(e.g., social rejection) the participant. During fMRI, participants are shown two photos of 

gender-matched peers at a time and are instructed to guess which of the two peers “liked” 

them. It is implied that one out of the two peers on the screen is someone who “liked” them, 

and the second peer is someone who “disliked” them. The monetary guessing task (order 

counterbalanced) is matched on all features of the social task except that participants choose 

between two computer generated images of fractals, one containing a monetary reward (50 

cents) or a monetary loss (25 cents). The task will consist of 2 runs, each with 60 trials. Our 

preliminary data show that, on average, the striatum responds similarly to social and 

nonsocial rewards. However, individual differences in this striatal response emerge in 

relation to symptoms of anxiety and depression, which are common in the context of 

substance use. A direct comparison between neural response to social and nonsocial reward 

will be tested in relation to substance use and self-reported reward sensitivity.

Hypotheses.: Individuals reporting higher levels of substance use will show exaggerated 

ventral striatal responses to social rewards relative to monetary rewards, independent of self-

reported reward sensitivity. This hypothesis will be evaluated with double subtractions: 

(Social Acceptance > Social Rejection) > (Monetary Gain > Monetary Loss), where group-

level effects are modeled with covariates for substance use and reward sensitivity. 

Additionally, elevated ventral striatal responses to social reward, relative to monetary reward 

will be associated with enhanced connectivity with regions modulated by social information 

(e.g., ventromedial/medial prefrontal cortex to ventral striatum), independent of self-reported 

reward sensitivity.

Limitation and Future Directions.: Although our Social Reward Task permits a direct 

comparison between social and nonsocial reward and features aspects of social interactions 

(e.g., peer acceptance/rejection), it may not capture the nuances of real-life social 

interactions, which involve learning and repeated interactions over time. These processes 

may be important for understanding how social reward processing contributes to individual 

differences in substance use. We also note that responses in TPJ during social interactions 

may be tied to attention [139]. Although recent work has extended and clarified this 

interpretation [140–142] studies with more nuanced tasks will be necessary to disambiguate 

social and attentional processes.

Shared reward task

Rationale.: Substance use often occurs in social settings (e.g., binge drinking with friends) 

or as a result of negative social experiences (e.g., loss of peer relationships). Our group 

previously has demonstrated that the ventral striatal response to reward is sensitive to social 

context, with enhanced activation observed when people share a rewarding experience with a 
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close friend relative to a stranger. However, while social factors can play a critical role in 

substance use [20,69], it remains unclear whether substance use is associated with the 

striatal response to shared rewarding experiences, independent of self-reported reward 

sensitivity.

Experimental Design.: The goal and structure of this task is designed to examine how 

experiencing reward or punishment with a partner is affected by social context (Figure 4) 

[57,62], We will use three partners: a computer, an age- and gender-matched confederate, 

and a consenting close friend of the participant, represented in the experiment by their 

picture. After the task, participants will provide subjective ratings of their experiences 

winning and losing money with each partner. The task will consist of 2 runs, each with 9 

blocks containing 8 trials (i.e., 72 trials per run). This design was adapted from previous 

work [15,57,62] in consultation with Consultant Fareri.

Primary Hypotheses.: (H2.1) Individuals reporting the highest levels of substance use will 

show exaggerated striatal responses to the social context of a shared reward, independent of 

self-reported reward sensitivity. This hypothesis will be evaluated with double subtractions 

(Friend Reward > Friend Punishment) > (Confederate Reward > Confederate Punishment); 

Elevated striatal responses to rewards shared with friends relative to strangers will be 

associated with enhanced connectivity with regions modulated by social information (e.g., 

temporal-parietal junction). This hypothesis also will be examined with double subtractions 

(cf. H2.1) but using the relevant PPI regressors as inputs to the contrast vector.

Limitations and Future Directions.: Although the post-scan ratings provide insight into 

how participants subjectively experience sharing reward and punishment with each partner 

[62], the nature of the task (i.e., guessing) does not permit meaningful analyses of trial-to-

trial changes in behavior during the imaging session. Future work could extend this 

paradigm and examine trial-to-trial changes in social learning [143] or trust [57]. In addition, 

much like our Social Doors Task (Section Social doors task), we acknowledge that TPJ 

responses to social stimuli could be confounded with attention.

Ultimatum game task

Rationale.: What allows certain people to perform better in bargaining situations than 

others? It remains unclear how the neural correlates related to executive function and reward 

sensitivity affect bargaining behavior. Substance use can lead to profound changes in these 

neural systems, which may lead to maladaptive decision-making. Understanding bargaining 

behavior can inform the psychological and physiological processes that become 

dysregulated as a result of addiction.

Experimental Design.: We will examine bargaining behavior using the Ultimatum (Figure 

5) [144] and Dictator Games (Figure 5) [145] (~15 min, counterbalanced across 

participants). In the Dictator Game (DG), the participant decides how much of an endowed 

sum to share with their counterpart. In the Ultimatum Game (UG), the participant chooses a 

split; however, they also are aware that their counterpart may reject their offer. If their offer 

is rejected, neither the participant nor their counterpart earns any money for that trial. 
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Finally, the participant acts as a recipient in the UG where they can accept or reject offers. 

We characterize participants who switch their behavior between the two tasks as acting most 

strategically to maximize their earnings. The task will consist of 2 runs, each with 36 trials.

On each trial, the participant will be endowed with a sum of money between $15–$25. This 

will be followed by an indication of the type of trial the participant is playing through a 

target stimulus. If they are acting as the proposer in the DG, they will be presented with a 

triangle. If they are acting as a proposer in the UG, they will be presented with a square. 

Finally, if they are acting as a recipient in the UG they will be presented with a circle. 

During the decision phase as proposer, participants are presented with the option to select a 

More or Less split. During the decision phase as a recipient, participants have the choice 

whether to accept or reject the offer.

Primary Hypotheses.: Bargaining behavior is related to strategic thinking. 1) Individuals 

scoring higher on the Emotional Intelligence (EI) TEIQe [99] scale will make lower offers 

as a proposer in the DG, higher offers as a proposer in the UG, and accept more frequently 

as a recipient in the UG (H3.2): During the endowment phase of the trial, we expect that the 

response in the ventral striatum and ventromedial prefrontal cortex (vmPFC) will positively 

vary based on the endowment. (H3.3) There will be differences in neural activation during 

the decision as a Proposer in the UG and DG tasks in the following regions: dorsolateral 

prefrontal cortex (dlPFC) as defined by the middle frontal gyrus in the Harvard-Oxford atlas, 

anterior cingulate cortex, superior parietal lobule, ventromedial prefrontal cortex (vmPFC), 

and temporoparietal junction (TPJ).

We will compare the differences in activation between UG-Proposer decisions (UG-P) and 

DG-Proposer (DG-P) decisions, and expect greater dlPFC activation with lower offers in 

DG-P versus UG-P. Individual differences in strategic bargaining behavior will be associated 

with choice related responses in the ROIs noted in H2. (H3.4): During the decision phase for 

the propose conditions, we expect to find that elevated ventral striatal responses to strategic 

behavior (UG-P > DG-P) will be associated with enhanced effective connectivity with 

regions modulated by social information (e.g., ventromedial/medial prefrontal cortex to 

ventral striatum), In addition, these neural effects will be enhanced in individuals with 

higher levels of self-reported reward sensitivity (i.e., individuals with higher BAS/SR scores 

will have higher activation and connectivity).

Limitations and Future Directions.: Our secondary analyses will group participants into 

low, medium and high levels of substance use. We will conduct whole brain analyses to 

examine the effect of social context on neural response to both shared rewards and shared 

losses as a function of reward sensitivity and substance use. This strategy may provide 

insight into whether increased substance use also is associated with diminished strategic 

behavior. Although the UG and DG tasks are examples of bargaining behavior, they may not 

capture all aspects of real-life bargaining situations, especially in repeated situations. As 

such, it remains an open question to what extent such tasks generalize to behavior outside 

the laboratory.
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SUMMARY, LIMITATIONS, AND LONG-TERM OUTLOOK

The relation between reward sensitivity and substance use is poorly understood. The pilot 

grant described in this Grant Report is the first step in a research program that aims to 

explore mechanisms that may mediate or moderate the relationship between reward 

sensitivity and substance use. Although the findings generated by our pilot grant will partly 

depend on how COVID impacts our project, we hope to make progress toward quantifying 

how reward-dependent corticostriatal connectivity, striatal responses to social reward, and 

social context relate to substance use. We expect that social context and responses to social 

reward may elucidate other contributing factors to substance use behavior. We also predict 

both hyposensitivity and hypersensitivity to reward will have a stronger relationship with 

substance use than moderate reward sensitivity. Nevertheless, there are several limitations to 

this work. Given that BIS has also been linked to substance use [46], we will examine its 

contributions to our primary results in our exploratory analyses. Further, since polysubstance 

dependence is associated with alterations executive functioning such as working memory 

and response inhibition [146] we plan to control for variability associated with comorbidity 

across multiple drug types in tasks that measure social behaviors. Finally, since nicotine can 

affect reward processing [147,148], we plan to add other relevant measures of substance use 

to test whether participants are under such influence prior to scanning. Nonetheless, we 

hypothesize that striatal responses to social and nonsocial reward, and reward-dependent 

corticostriatal connectivity may serve as an early warning sign that an at-risk person may 

develop a substance use disorder in the future. For example, neural activation, particularly in 

the ventral striatum can predict individual choice [149,150].

By exploring how reward sensitivity affects substance use, it may become possible to use 

neural forecasting techniques to predict how likely it is that a person may relapse in the 

future. Although this specific question is beyond the scope of the current project, 

longitudinal research that builds off this project will enable us to follow up with participants 

to assess whether baseline striatal responses to social and nonsocial reward predict 

subsequent substance use. Previous research indicates that blunted ventral striatal activity to 

anticipated rewards predicts drug use in novelty seeking adolescents [30] and the ventral 

striatum is a significant neural marker of subsequent relapse [151]. However, it remains 

unclear how responses to social context and social reward are related with substance use. 

While this study makes early inroads into assessing these relationships, promising results 

could help identify measures that can predict future substance use in at-risk populations and 

explore the underlying neural mechanisms associated with substance use. Further, assessing 

the relation between social reward, social context and substance use can inform how an 

understudied, but possibly major etiological factor of SUD. Finally, in combining the neural 

underpinnings of these constructs, this research can inform the psychological and 

physiological relations underlying substance use. This may affect future theoretical and 

experimental work in addiction research, informing what makes one at-risk individual more 

likely to develop substance use disorder compared to another at-risk individual. Ultimately, 

this research may contribute to interventions and therapies for SUD.

If we can predict what kind of neural dysfunction is associated with substance use, it may be 

possible to stimulate those regions to attenuate SUD or risk for developing SUD. Brain 
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stimulation methods have promise for clinical interventions for substance use, such as 

through transcranial electric stimulation (TES) or transcranial magnetic stimulation (TMS). 

TMS applied to left frontal pole may dampen frontal and striatal reactivity in chronic alcohol 

and chronic cocaine users to drug cues [152]. In addition, stimulating the superior frontal 

gyrus has been associated with modulating cravings for nicotine [153]. Exploring regions 

associated with substance use and their interconnectivity would help lay the foundation 

needed to develop stimulation techniques that may minimize cravings and withdrawal. 

Although current research has investigated striatal responses to nonsocial rewards and its 

association with SUD, we believe that trait reward sensitivity, social reward processing, and 

their respective association with neural activation are understudied elements of SUD. A 

deeper understanding of these underlying mechanisms may inform future clinical 

interventions.

Current methods that explore the mechanisms that promote risk and resiliency for substance 

use neglect to consider how a changing environment affects behavior. For example, does the 

prospect of substances becoming more or less available in the future affect the likelihood of 

relapse? Among future directions for the research program is to assess how people respond 

to an evolving environment. How do individuals shift their behavior as their situation gets 

better or worse over time? How do these factors relate back to classic individual differences 

that affect behavior, such as risk, losses, uncertainty and ambiguity? In dynamic situations, 

these factors may affect judgment and decision-making to a greater or lesser degree 

compared to static gambles and lotteries in which they are normally studied. We believe that 

understanding nuances in decision making in evolving environments over time may provide 

new insight into pathophysiology in addiction and relapse.
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Figure 1. 
Relationship between Trait Reward Sensitivity and Substance Abuse and 

Psychopathology.We are exploring the relationship of trait reward sensitivity with substance 

abuse and psychopathology. Constructs that may mediate or modulate this relationship 

include social reward, social context, reward anticipation, and strategic behavior. Although 

trait reward sensitivity has been associated with substance abuse and psychopathology, it 

remains unclear whether this relationship is mediated and/or moderated by responses to 

social reward, social context, reward anticipation, and strategic behavior (middle). We 

evaluated these constructs in an fMRI experiment by completing an anatomical scan, 

Monetary Incentive Delay task, Shared Reward task, Social Doors Images and Faces 

respectively, the Ultimatum and Dictator Games (see main text for details about the data 

collection protocol). Our R03 grant will allow us to quantify how reward-dependent 

corticostriatal connectivity contributes to substance use and whether striatal responses to 

social reward and social context contribute to substance use. Piecing apart the neural 

mechanisms underlying reward and their relations to reward sensitivity and other individual 

differences will provide a broad understanding of the association of reward processing, 

substance abuse, and psychopathology.
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Figure 2. 
Measuring Reward Anticipation Using the Monetary Incentive Delay Task. To measure 

reward anticipation, we will use the monetary incentive delay task. This task requires the 

subject to respond to a stimulus as quickly as possible to win or avoid losing money. Gain 

trials are represented as orange, whereas loss trials are blue. Triangles represent large 

amounts, whereas squares small amounts. The gray circle represents neither gains or losses.
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Figure 3. 
Measuring the Effect of Social Reward Using the Social Doors Task. To measure the effect 

of social reward consumption, we will use the social doors task. This task requires the 

participant to guess whether another person likes them or not. The second variant consists of 

guessing whether an image will have a prize behind it or not. Half of the trials are positive 

valence, or cases where the subject won money or received social approval and are 

represented as a green arrow in the outcome phase. The negative valence trials are 

represented with a red arrow.
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Figure 4. 
Measuring the Effect of Social Context Using the Shared Reward Task. To measure the 

effect of social context, we use the shared reward task. This task consists of a card guessing 

game, with cards containing numbers from 1–9. During the Decision Phase, the participant 

will learn who will be their partner; a friend, stranger or computer. The subject must guess 

whether the subsequent card will be greater or less than 5. During the Outcome Phase, the 

card will be revealed, with a green arrow indicating a correct guess and a red arrow 

indicating a wrong guess.
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Figure 5. 
Measuring Strategic Behavior Using the Dictator and Ultimatum Games. To measure 

strategic behavior, we use the Dictator and Ultimatum games. During the Endowment phase, 

the participant learns how much money they are given and which task they will do. A square 

indicates that the participant will be acting as the Proposer in the Ultimatum Game, or 

deciding how much money to split with a counterpart. A triangle indicates that the 

participant will act as the Proposer in the Dictator Game. Finally, a circle indicates that the 

participant will be the Recipient in the Ultimatum Game, which allows them to decide 

whether they will accept or reject an offer given to them. During the Decision Phase, the 

participant as a proposer decides to offer More or Less to their counterpart. As a recipient, 

whether to accept or reject the offer.
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Table 1.

Neuroimaging modalities and corresponding scanning parameters.

Modality Matrix Slices FOV % 
FOV 
Phase

Resolution 
(mm)

TR 
(ms)

TE 
(ms)

Flip Angle 
(degrees)

Parallel 
Imaging

Multiband 
Acceleration

T1w 224 × 224 192 224 100 1.0 × 1.0 × 1.0 2400 2.17 8 2× 
(GRAPPA)

off

fieldmap 74 × 74 58 207 100 2.8 × 2.8 × 2.8 645 4.92 
(and 
7.38)

60 off off

fMRI 80 × 80 52 240 100 3.0 × 3.0 × 3.0 1750 29 74 off 2
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