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Despite the popularity of the continuous performance test (CPT) in the diagnosis of
attention-deficit/hyperactivity disorder (ADHD), its specificity, sensitivity, and ecological
validity are still debated. To address some of the known shortcomings of traditional
analysis and interpretation of CPT data, the present study applied a machine learning-
based model (ML) using CPT indices for the Prediction of ADHD.Using a retrospective
factorial fitting, followed by a bootstrap technique, we trained, cross-validated, and
tested learning models on CPT performance data of 458 children aged 6–12 years
(213 children with ADHD and 245 typically developed children). We used the MOXO-CPT
version that included visual and auditory stimuli distractors. Results showed that the
ML proposed model performed better and had a higher accuracy than the benchmark
approach that used clinical data only. Using the CPT total score (that included all four
indices: Attention, Timeliness, Hyperactivity, and Impulsiveness), as well as four control
variables [age, gender, day of the week (DoW), time of day (ToD)], provided the most
salient information for discriminating children with ADHD from their typically developed
peers. This model had an accuracy rate of 87%, a sensitivity rate of 89%, and a specificity
rate of 84%. This performance was 34% higher than the best-achieved accuracy of
the benchmark model. The ML detection model could classify children with ADHD with
high accuracy based on CPT performance. ML model of ADHD holds the promise of
enhancing, perhaps complementing, behavioral assessment and may be used as a
supportive measure in the evaluation of ADHD.

Keywords: attention-deficit/hyperactivity disorder, continuous performance test, machine learning,
prediction, children

INTRODUCTION

Attention-deficit/hyperactivity disorder (ADHD) is one of the most common neurodevelopmental
disorders (Barkley, 2015), with an estimated prevalence of 9.4% in USA children (Centers for
Disease Control and Prevention, 2018). The rates of ADHD diagnoses have been rising in recent
decades. In 2003, 7.8% of the USA children were diagnosed with ADHD, compared to 9.5%
in 2007 and 11% in 2011–2012 (Danielson et al., 2018). ADHD is characterized by symptoms
of inattention and/or impulsivity and hyperactivity, which can adversely impact the behavioral,
emotional, and social aspects of life. In approximately 80% of children with ADHD, symptoms
persist into adolescence and may continue into adulthood (Faraone et al., 2003).
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Because early behavioral and developmental interventions for
ADHD could improve outcomes (Sonuga-Barke and Halperin,
2010; Halperin et al., 2012), there is a need for reliable diagnostic
ADHDmarkers that can be identified early in life.

ADHD diagnosis is based on the criteria of the Diagnostic
and Statistical Manual of Mental Disorders (DSM), which
are clinically judged and therefore are subjective to clinician
and reporter’s bias (Rousseau et al., 2008; Berger, 2011).
Diagnostic criteria bias may reflect socio-cultural influences
on symptom manifestation and diagnostic procedures (for
review see Slobodin and Masalha, 2020) as well as the
substantial overlap between ADHD symptoms and other
psychiatric, developmental and neurological conditions (e.g.,
learning disabilities, depression, anxiety; Nikolas et al., 2019).
Thus, predicting ADHD impairment using objective, easy-to-
collect variables by noninvasive methods might be useful as
a supportive measure in the evaluation of ADHD and other
neurological/psychiatric disorders (Na, 2019).

Using CPT in the Diagnosis of ADHD
The continuous performance test (CPT) is one of the most
popular objective measures of ADHD-related inattention and
impulsivity (Edwards et al., 2007). CPTs usually include a
serial presentation of visual or auditory target and non-target
stimuli (numbers, letters, number/letter sequences, or geometric
figures). Failing to respond to a target stimulus (‘‘omission
error’’) is assumed to measure inattention. A response to
a non-target stimulus (‘‘commission error’’) is considered to
measure impulsivity. Other standard measures of CPT responses
include the number of correct responses, the response time (RT),
and the variability in RT.

Several studies have supported the utility of the CPT in
the diagnostic process of ADHD (for review, Hall et al.,
2016). For example, a recent study in the U.K. found that the
QbTest (a computerized CPT combined with an infra-red
camera to detect motor activity; Qbtech Limited) increased
the speed and efficiency of ADHD clinical decision making
without compromising diagnostic accuracy. Furthermore,
the economic analysis revealed that the QbTest could
increase patient throughput and reduce waiting times
without significant increases in overall healthcare system
costs (Hollis et al., 2018).

Despite its popularity, the utility of the CPT in the diagnostic
process of ADHD has been long debated, due to its limited
specificity, sensitivity, and ecological validity (Nigg et al., 2005;
Toplak et al., 2013). Most of the methods used to discriminate
between children with ADHD and typically developed children
were based on standard statistical techniques, such as analysis
of variance that were run on the data obtained from CPT
measurements. These methods have led to inconsistent results
between the researchers in the studies of ADHD children
and adolescents (Hall et al., 2016). For example, an analysis
of eight CPT studies revealed a wide variety in measures
of sensitivity (9–88%) and specificity (23–100%) to ADHD
(Pan et al., 2007). Similarly, a meta-analysis of 47 studies
of CPT performance in children with ADHD found that
the large effect sizes identified in previous research were

significantly attenuated by unidentified true moderators or
uncorrected artifacts, such as sampling error and measurement
unreliability (Huang-Pollock et al., 2012). Traditional data
analytic methods of CPT considerably limit the number of
variables that can be used in a given analysis and, especially,
the analysis of interactions. These methods of analysis also
have limited ability to shed light on causality when the data
are not based on randomized experimental designs (Deshpande
et al., 2013). Most importantly, although standard approaches
to CPT may distinguish clinical and non-clinical populations,
they do not guarantee predictive optimality or parsimony in
a data analysis-independent manner (Saxe et al., 2017). Taken
together, the above findings emphasize the need to develop
reliable validation techniques for both the clinical and research
implications of CPT.

Machine learning (ML) is a rapidly emerging field that
has allowed the exploitation of large datasets to generate
predictive models. In ‘‘supervised learning,’’ machines develop
ways of linking a target outcome from a set of predictors
(‘‘features’’) in existing data. Such models may generalize
to novel predictor data. In contrast to traditional statistical
approaches, ML focuses on prediction rather than explanation
(Hatton et al., 2019).

Availability and affordability of data collecting devices
have opened doors for the use of ML to predict the likelihood
of individuals developing a set of mental disorders such
as depression, anxiety, autism, dementia, brain tumors,
schizophrenia, psychosis, et cetera (Sen et al., 2018; Sakai
and Yamada, 2019; Vieira et al., 2019). A growing number of
supervised ML studies have been carried out on discriminating
ADHD from control groups using the data obtained from
electroencephalogram (EEG; Tenev et al., 2014), brain
structural magnetic resonance imaging (MRI; Peng et al.,
2013), MRI and functional magnetic resonance imaging
(fMRI; Sen et al., 2018), Near-infrared spectroscopy (NIRS;
Yasumura et al., 2017), and a combination of subjective
and objective measures of ADHD (Emser et al., 2018). ML
was also used to predict methylphenidate response in youth
with ADHD using environmental, genetic, neuroimaging,
and neuropsychological data (Kim et al., 2015). Although
these models showed promising results in discriminating
children and adults with ADHD from controls or other
clinical conditions (e.g., autism spectrum disorders), their
limited availability, high costs, and invasiveness hindered their
widespread use.

The Current Study
Behavioral diagnosis of ADHD is a time-consuming, multi-
informant procedure that can be complicated by the overlaps in
symptomatology. This complexity may lead to delayed diagnosis
and treatment (Duda et al., 2016). Given the variation in causes
and behavioral consequences of ADHD, there is no single test
used to diagnose the disorder. Therefore, a diagnostic model
of ADHD based on CPT performance holds the promise of
enhancing, perhaps complementing, behavioral assessment. This
study aimed to apply a ML-based model using a CPT for the
prediction of ADHD.
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MATERIALS AND METHODS

Participants and Procedure
Participants were 458 children aged 6–12 years (mean = 8.68,
SD = 1.77), 267 were boys (59%) and 191 girls (41%). Of them,
213 children were diagnosed with ADHD, and 245 were typically
developed, children. No age differences were found between
the ADHD and the non-ADHD groups (M = 8.62, SD = 1.83,
and M = 8.72, SD = 1.71, respectively, p = 0.94). However,
the rate of boys was significantly higher in the ADHD group
than in the non-ADHD group (67% vs. 51%, respectively;
χ2
(1,458) = 10.84, p< 0.001).
Participants in the ADHD group were clinic-referred children

recruited from out-patient pediatric clinics of a Neuro-Cognitive
Centre, based in a tertiary care university hospital. Children
were referred for ADHD evaluation by their pediatrician, general
practitioner, teacher, mental health professional, or by their
parents. All participants in the ADHD group met the criteria for
ADHD, according to DSM-5 (American Psychiatric Association,
2013), as assessed by a certified pediatric neurologist. The
diagnostic procedure included an interview with the patient
and parents, medical/neurological examination as described by
the American Academy of Pediatrics (AAP) clinical practice
guidelines (Wolraich et al., 2011), and completing ADHD
symptoms scales (DuPaul et al., 2016). All children were
drug naïve.

Participants in the control group were randomly recruited
from regular primary schools. Inclusion criteria for participants
in the control group were: (1) the child scored below the
clinical cut off point for ADHD symptoms on ADHD DSM
Scales (American Psychiatric Association, 2013; DuPaul et al.,
2016); and (2) an absence of academic or behavioral problems
based on parents’ and teachers’ reports. Exclusion criteria
for all participants were: intellectual disability, chronic use of
medications, and primary psychiatric diagnosis (e.g., depression,
anxiety, and psychosis).

All children were administered with the MOXO-CPT. The
test was administered to children with ADHD during the process
of clinical evaluation. In the non-ADHD group, the test was
delivered by a member of the research team at the child’s school
or home.

All participants agreed to participate in the study, and
their parents provided written informed consent to the study,
approved by the Helsinki Committee (IRB) of Hadassah-Hebrew
University Medical Center Jerusalem, Israel. Participants were
not compensated for their participation in the study.

Measures
CPT performance—the current study used the MOXO-CPT1

version (Berger and Goldzweig, 2010). The MOXO-CPT
(Neuro-Tech Solutions Limited) is a standardized computerized
test designed to diagnose ADHD-related symptoms. The
MOXO-CPT task requires the child to sustain attention over a

1The term ‘‘MOXO’’ derives from the world of Japanese martial arts and means
a ‘‘moment of lucidity.’’ It refers to the moments preceding the fight, when the
warrior clears his mind from distracting, unwanted thoughts, and feelings.

continuous stream of stimuli and to respond to a prespecified
target. However, in contrast to other existing CPTs, the test
includes visual and auditory stimuli serving as measurable
distractors. The test’s validity and utility in distinguishing
children and adolescents with ADHD from their typically
developing peers were demonstrated in previous studies (Berger
et al., 2017; Slobodin et al., 2018).

The test consisted of eight stages (levels). Each level consisted
of 53 trials (33 target and 20 non-target stimuli) and lasted
114.15 s. The total duration of the test was 15.2 min. In each trial,
a stimulus (target or non-target) was presented in the middle
of the computer screen for durations of 0.5, 1, or 3 s and was
followed by a ‘‘void’’ of the same duration (Figure 1). This
method enabled us to distinguish accurate responses performed
in ‘‘good timing’’ (quick and correct responses to the target
performed during stimulus presentation) from accurate but slow
responses (correct responses to the target performed after the
stimulus presentation; during the void period). These two aspects
of timing correspond to the two different deficiencies typical to
ADHD; responding quickly and responding accurately (National
Institute of Mental Health, 2012). The child was instructed to
respond to the target stimulus as quickly as possible by pressing
the space bar once and only once. The child was also instructed
not to respond to any other stimuli but the target, and not to press
any other key but the space bar.

Both target and non-target stimuli were cartoon pictures
free of letters or numbers. Also, the test included six different
environmental distractors, each of them could appear as pure
visual (e.g., three birds moving their wings), pure auditory (e.g.,
birds singing), or as a combination of visual and auditory stimuli
(birds moving their wings and singing simultaneously). Each
distractor was presented on the screen for a different duration
ranging from 3.5 to 14.8 s, with a constant interval of 0.5 s
between two distractors.

For each child, four CPT indices were recorded: attention
(number of correct responses to target stimuli, including the
rate of omission errors), Timeliness (correct responses to
target stimuli conducted on accurate timing), Hyperactivity (a
measure of motor activity) and Impulsiveness (responses to
non-target stimuli, including the rate of commission errors).
Test administration time, namely, the day of the week (DoW)
and time of day (ToD), was also recorded. A full description
of the MOXO-CPT test is provided in Supplementary Material
(Appendix 1).

Data Analysis
Data analysis included four stages: (a) data exploration and
processing; (b) data partition and manipulation of training; (c)
model fitting; and (d) ADHD prediction and evaluation.

(1) Data exploration and processing—following the descriptive
data analysis outlined in the method section, two sources of
inherent biases were evident, which we denoted: across the
level and within level imbalances.

Across level imbalances—demographic and test time
variables were imbalanced. For example, the total number of
children that performed the MOXO-CPT during Mondays
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FIGURE 1 | Definition of the timeline. Target and non-target stimuli were presented for 500, 1,000 or 3,000 ms. Each stimulus was followed by a void period of the
same duration. The stimulus remained on the screen for the full duration regardless of the response. Distracting stimuli were not synchronized with
target/non-target’s onset and could be generated during target/non-target stimulus or the void period.

was significantly higher than the number of children
that performed the test during any other DoW. The
lowest number of tests was conducted on Saturdays.
Imbalanced designs concerning the number of observations
per level were shown to be highly susceptible to statistical
biases, such as heteroscedasticity (Milliken and Johnson,
2009). Moreover, our data showed significant differences
in MOXO-CPT performance across various DoW, ToD,
and child’s ages, suggesting that across level imbalances
may be associated with observed between or within-group
differences in MOXO-CPT performance. Figure 2 illustrates
different hyperactivity levels in children without ADHD as a
function of the time of the day they performed MOXO-CPT.
As seen in Figure 2, the level of hyperactivity significantly
decreased with the time of the day (F = 8.26, p< 0.01).

Within level imbalance—diagnostic class within
demographic and test time levels were also shown to
be imbalanced. For example, the ADHD group significantly
differed from the non-ADHD group in their gender
distribution, with more boys in the ADHD group than in the
non-ADHD group (χ2

(1,458) = 10.84, p < 0.001). Moreover,
for some factor levels, such as DoW and ToD, the data
included only children from one diagnostic group, but not
the other; administration of the MOXO-CPT during the
weekend was evident only among the non-ADHD group.
Also, all children in the ADHD group (with one exception)
performed the MOXO-CPT during the morning hours.

Within-level imbalance results in a statistical bias that is
closely related to the renowned self-selection bias (Heckman,
1990), a biased caused by participants choosing themselves
into treatment groups rather than assigned randomly. In
the context of the current study, the time of MOXO-CPT
administration was not randomized, and group affiliation
was not matched, leading to differences in gender, age, DoW,
and ToD distribution between groups. This imbalance may

impose a significant prediction bias if demographic and test
time controls were not matched before deploying an ML
model on the CPT data.

To quantify the statistical biases in our data, we conducted
a retrospective factorial fitting (Loy et al., 2002). This
technique sorts observations into groups according to their
factor levels—a total of 7 [age]× 2 [gender]× 7 [DoW]× 3
[ToD] = 194 groups. Following the procedure proposed by
Yahav et al. (2016), we then merged groups in which the
impact of ADHD on test performance was statistically equal,
thus reducing the number of groups to 28 groups. We then
computed the number of records in each group: ni (across-
level imbalance), and the fraction of children with ADHD
pi(ADHD) (within-level imbalance). Groups in which the
fraction of children with ADHD equaled to either 0 or 1,
were removed from the dataset, as the impact ADHD on
test performance within these groups was unquantifiable.
The processed data contained 445 observations (97% of the
unprocessed data).

(2) Data partition and manipulation of training—as customary
in predictive analysis (Shmueli, 2010), we partitioned the
data randomly to training and holdout. The training set
consisted of 60% of the records and was used for model
training. The holdout set held the rest of the records (40%)
and was used for model evaluation.

We manipulated the training set to correct the inherent
biases. Specifically, we bootstrapped the inflated number
of training records (Ñ = 5,000) using bootstrap sampling
with repetition, following the principles of the Synthetic
Minority Oversampling Technique (SMOTE). SMOTE
algorithm is a kind of random oversampling algorithmwhich
generates new synthetic samples by analyzing neighbors
of minority samples (Chawla et al., 2002; He and Garcia,
2009). We set the oversampling probability per record
as inverse to its appearance in the data concerning
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FIGURE 2 | Hyperactivity as a function of time of day (ToD) in children
without attention-deficit/hyperactivity disorder (ADHD) group differences are
significant (F = 8.26, p < 0.01).

levels (1 − ni/N) and diagnosis [1 − pi(ADHD)] for
children with ADHD, and pi(ADHD) for children without
ADHD. This sampling procedure generated a training
data set that was: (1) synthetically large enough to allow
the use of robust ML techniques that operate on large
amounts of data; and (2) balanced within- and across-
levels, thus was free of statistical biases. The holdout set
remained untouched, to allow a fair evaluation of the
prediction model.

(3) Model fitting—in this stage, we trained an ML prediction
model f to the training set that mapped all or a subset of
the test performance measures (Attention, Timeliness,
Hyperactivity, and Impulsiveness) and additional
control variables (age, gender, DoW, and ToD) to the
diagnosis class:
p(diagnosis = ADHD) = f(test performance, controls)

(1)

Specifically, f in our analysis is either a random forest
(Hothorn et al., 2006) or Neural Network with cross-
validation on 100 folds2.

(4) ADHD prediction and evaluation—in this stage, we used
the training model to predict the detection of ADHD
in holdout records. That is, we computed the accuracy,
sensitivity, and specificity of our ML model comparing
to clinical diagnosis. We repeated steps 3 and 4 (data
partition and training manipulation, model fitting, and
ADHD detection and evaluation) 100 times, generating a
different training-validation random split as each repetition,
to compute conference intervals for the accuracy measures.
The detection procedure is summarized in Figure 3.

RESULTS

We examined different subsets of MOXO-CPT performance
indices (Attention, Timeliness, Hyperactivity, and

2We have also conducted analyses with additional ML models, including kNN,
Logistic regression and Adaptive boosting. The best performance was achieved
by Neural Network (overall accuracy of 0.89, compared to 0.68 of the benchmark
model), and the lowest by logistic regression (0.83, compared to 0.61).

Impulsiveness) and control variables (age, gender, Dow
and ToD) as ADHD predictors in children who were diagnosed
with ADHD, using the ‘‘gold standard’’ clinical criteria. The gold
standard of ADHD diagnosis was based on the DSM-V criteria
for ADHD (American Psychiatric Association, 2013) and the
AAP clinical practice guideline (Wolraich et al., 2011).

As a benchmark, we trained function f in Equation (1) on
a training set derived from the unprocessed (original) data.
Since the unprocessed data contained inherent statistical biases
caused by level-imbalance (within and across), it was impossible
to use the control variables as reliable predictors in the
benchmark model.

The results of the random forest and the Neural Network
(NN) techniques are presented in Table 1; t-tests analyses
for paired samples revealed that the differences between the
benchmark model and the proposed models (in both random
forest and NN techniques) were significant (p< 0.05). However,
no significant differences were found between the results of the
random forest technique and the NN technique (p > 0.05).
As seen in the table, NN provides, on average, higher rates of
accuracy and sensitivity to ADHD, compared to the random
forest technique. However, the confidence intervals in the NN
model are higher, indicating non-robust cases and higher risk
prediction errors. Given the increased robustness of the random
forest technique and the fact that it was not significantly different
from NN in all observed measures (overall accuracy, sensitivity,
and specificity), it was chosen as the preferred method.

As shown in the table, the best performance of the random
forest technique (over 87% accuracy, 89% sensitivity and 84%
specificity) was achieved by applying the proposed method to
predict ADHD, using the four CPT performance indices and
four controls as predictors. This performance was 34% higher
than the best-achieved accuracy of the benchmark3. Prediction
solely based on MOXO-CPT performance, without the use of
additional controls, had an accuracy of 81% (84% sensitivity
and 79% specificity), an improvement of 24.6% compared to
the benchmark. Among the four CPT performance indices,
Impulsiveness under the benchmark model had the highest
ability to rule out ADHD in children (Specificity = 89%,
significantly higher than all other models).

As an alternative to the SMOTE rebalancing technique, we
also examined the impact of the under-sampling technique
to balance between the control and the ADHD groups. This
rebalancing technique revealed an overall accuracy of 73%
(%95 CI = 63 to 83%), a sensitivity rate of 79% (%95 CI = 57
to 100%), and a specificity rate of 66% (%95 CI = 42 to
90%). As seen, there are considerable differences between the
results of the two rebalancing techniques. While both techniques
addressed the four potentially confounding variables (DoW, time
of the day, gender, and age) in the same manner (same size,
unprocessed), they differ in their ability to capture information
about the majority class. Specifically, the disadvantage of the
under-sampling technique is that removing modules may cause
the training data to lose important information related to

3The 34% improvement was calculated with respect to 65% performance level of
the benchmark.
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FIGURE 3 | Proposed detection procedure.

TABLE 1 | Accuracy, sensitivity and specificity of machine learning (ML) in attention-deficit/hyperactivity disorder (ADHD) classification.

Model’s name Diagnosis predictors Mean performance (SD)c

Overall
accuracy

(%)

95% CI Sensitivity% 95% CI Specificity (%) 95% CI

Benchmark MOXO MOXO-CPT scores: 65 59%, 71% 65 39%, 91% 65 43%, 87%
Proposed model
f = Random forest

MOXO MOXO-CPT scoresa 81 77%, 85% 84 78%, 90% 79 71%, 87%

MOXO w/Controls MOXO-CPT scores
considering control
variablesb

87 81%, 93% 89 83%, 95% 84 76%, 92%

Proposed model
f = Neural network

MOXO w/Controls MOXO-CPT scores
considering control
variablesb

89 79%, 99% 95 73%, 100% 76 26%, 100%

a In this prediction model, all four MOXO-CPT indices (z-scores) were used as independent variables. b In this prediction model, all four MOXO-CPT indices (z-scores) and four control
variables (age, gender, time of day, day of week) were used as independent variables. cThe differences between the benchmark model and the proposed models (random forest
method and NN) were all significant (p < 0.05). No significant differences were found between the results of random forest technique and the NN technique (p > 0.05).

the majority class. The SMOTE technique was proposed to
combat this disadvantage by creating artificial data based on
the feature space (rather than the data space) similarities from
the minority modules (Tantithamthavorn et al., 2018). The
advantage of the SMOTE is that it leads to no information
loss and ensures that even small-size confounding effects are
not overlooked.

A comparison of the model’s performance as a function of
data size is presented in Supplementary Material (Appendix 2).
The models are all trained on a balanced training set and
predicted into a non-balanced validation set. Notably, the
increase in the training size was synthetic and resulted
from repeating the same records several times, following

the bootstrap technique. The validation score remained
constant (40%).

Table 2 presents the random forest feature importance.
In the current study, we used the accuracy-based importance
as a measure of variable importance in the random forest.
In this measure, each tree has its out-of-bag sample that is
used to calculate the importance of a specific variable. In the
first step, the prediction accuracy of the out-of-bag sample
is measured. Then, the values of the variable in the out-of-
bag-sample are randomly shuffled, as all other variables are
kept unchanged. Finally, the decrease in prediction accuracy on
the shuffled data is measured. The mean decrease in accuracy
across all trees is reported. Variables with high importance
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TABLE 2 | Random forest feature importance.

Predicting variables Random forest feature importance

Z-score timeliness 0.170
Z-score hyperactivity 0.049
Z-score attention 0.041
Z-score impulsiveness 0.041
Gender 0.037
Day of the week 0.039
Child’s age 0.028
Time of the day 0.004

These results are not identical to variable coefficient, and the interaction between the
variables could not be observed in the RF model.

have a significant impact on the outcome values (Breiman,
2001, 2002). Notably, the displayed values indicate the relative
importance of each feature when making a prediction and not
absolute importance.

DISCUSSION

The current study applied a machine learning-based predictive
model using CPT indices for the prediction of ADHD in children
aged 6–12 years.

Our findings demonstrated that the ML proposed model
performed better and had a higher accuracy than the benchmark
approach that used clinical data only. We also found that the
CPT total score (including all four indices: Attention, Timeliness,
Hyperactivity, and Impulsiveness), and all four control variables
(age, gender, DoW, and ToD), provided the most salient
information for discriminating between children with ADHD
and their typically developed peers. This model had an accuracy
rate of 87%, a sensitivity rate of 89%, and a specificity rate of 84%.
Using this model increased the performance by 34% compared to
the benchmark approach.

The improvement in the model’s prediction accuracy after
quantifying for cross-level and within-level imbalances suggests
that such statistical biases may affect the discriminative validity
of the CPT. These findings are in line with previous research that
pointed to the influence of age (Berger et al., 2013; Slobodin et al.,
2018) and gender (for review, Hasson and Fine, 2012) on CPT
performance. Although studies focusing on the effect of time
administration on CPT performance are currently scarce, there is
evidence to support the importance of accounting for inter-day
and intraday variations when comparing CPT performance of
children with ADHD to that of their typically developed peers
(van der Heijden et al., 2010). For example, Imeraj et al. (2012)
showed that children with ADHD (with or without a co-morbid
oppositional defiant disorder) significantly differed from healthy
controls in their cortisol profiles across the day. Such variations
may underline group differences in arousal mechanisms andmay
also affect CPT performance (Wang et al., 2017).

Comparing our results to other ML methods previously used
to discriminate between ADHD and controls suggests that anML
model based on CPT data holds the promise of discriminating
children with ADHD from controls, even when compared to
more invasive or expensive approaches. For example, Yasumura
et al. (2017), who used near-infrared spectroscopy to quantify

the change in prefrontal cortex oxygenated hemoglobin during
reversed Stroop task, found an overall discrimination rate of
86.25%, with a sensitivity of 88.71% and a specificity of 83.78%.
Likewise, using MRI data, Peng et al. (2013) found an ADHD
prediction accuracy of 90.18%. Recently, Emser et al. (2018)
developed anML predictionmodel of ADHDbased on subjective
and objective measures of ADHD, including a CPT (Quantified
Behavior Test for adolescents and adults). Their results showed
that the objective measures had an overall 78% accuracy and
that the combined model accuracy of the objective and subjective
measures was 86.7%.

Using ML CPT-based model to predict ADHD offers several
clinical and practical advantages. First, this model provides
an easy-to-administer, affordable, non-invasiveness measure
of ADHD-related symptoms. Second, it has an extremely
fast discrimination speed and satisfactory high classification
accuracy. In particular, the observed high sensitivity rates
(89%) may improve clinicians’ ability and confidence in ruling
out ADHD. Excluding ADHD when it is not present is
very important given the complicated, time-consuming, and
expensive process of ADHD diagnosis (Hall et al., 2017). Third,
ML models can handle various demographic and procedural
variables, that may hinder CPT’s discriminative utility, to make
an objective prediction (Emser et al., 2018). Finally, the current
ML model is based on CPT performance that is obtained
under the presence of environmental distractors, thus enables
the assessment of the child’s cognitive performance in an
ecologically-valid environment (Barkley, 2015).

While this study does not support the viability of solely
CPT-based algorithms for establishing a diagnosis of ADHD,
it presents a step towards the goal of precision medicine in
psychiatry. The ML model proposed here may inform the
development of a decision-support module that utilizes the
best-performing model, thus improving the quality of care for
ADHD (Carroll et al., 2013).

Several limitations of this study should also be considered.
The current study only examined standard CPT variables,
including inattention, RT, hyperactivity, and impulsivity.
However, ADHD is associated with additional cognitive deficits
that may affect CPT performance, such as distractibility and
fatigue over time (Pelham et al., 2011; Bioulac et al., 2012).
Future investigation should use these additional variables with
the current classification method to further improve ADHD
classification performance. Also, our sample was limited to
clinically-referred children with a definite ADHD diagnosis
while excluding children with suspected ADHD (whose
symptoms may not reach the threshold for diagnosis). Given
that the time gap between initial suspicion and diagnosis could
reach a year or even more, the ability of the MLmodel to provide
preliminary risk evaluation and/or pre-clinical screening is
of considerable significance in terms of timely intervention
(Duda et al., 2016). Another limitation of the study is related
to its reliance on a single recruitment center for children with
ADHD. Although the current sample was derived from a tertiary
care university hospital that provides services to the general
population, this fact limits our ability to generalize our results to
different populations. Also, there is limited information about
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participants’ demographic, cognitive, and clinical characteristics,
such as IQ level and ADHD subtypes, which can be associated
with CPT performance (Mahone et al., 2002; Collings, 2003).
Given our limited information about participants’ cognitive
and personal characteristics, there was no way to rule out the
possibility that some participants were not motivated to optimize
their CPT performance.

Our model is also limited by the relatively small number
of candidate classification features that were tested in the
adaptive models (four CPT indices, two demographic variables,
and two condition variables). Future ML research in ADHD
prediction should expand this examination to include a
broader range of clinical, behavioral, and demographic
variables, including education, ethnicity, socio-economic
status, psychiatric-co-morbidities, and medication use. Finally,
while the predictive accuracy of ML models can be satisfactory,
a naive implementation of ML without careful validation may
have adverse consequences. An ML algorithm may replicate
past decisions, including biases around ethnicity and gender,
that may have affected the clinical judgment. Therefore, model
extrapolation should be avoided until such biases are corrected
(Saria et al., 2018).

CONCLUSIONS

Previous studies using standard, traditional analyses of CPT
data provided evidence for the ability of the test to differentiate
between children with ADHD and their typically developing
peers. Nevertheless, these approaches were limited in their
ability to optimally predict ADHD, to draw a causal inference,
and to include multiple variables in a given analysis (Saxe
et al., 2017). Thus, developing reliable validation techniques
for both clinical and research implications of CPT is of
high importance.

Our result showed that ML diagnostic model could predict
ADHD in children with high accuracy based on CPT
performance indices. This model performed better than any
achieved benchmark model to CPT. Using an ML model based
on CPT may provide good classification accuracy for supporting
ADHD diagnoses in children and encourages the use of the CPT
as a quick, cost-effective, and accurate decision-making tool in
the ADHD diagnosis process (Hollis et al., 2018).
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