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Abstract

Topographic maps are an often-encountered feature in the brains of many species, yet there are no standard, objective
procedures for quantifying topography. Topographic maps are typically identified and described subjectively, but in cases
where the scale of the map is close to the resolution limit of the measurement technique, identifying the presence of a
topographic map can be a challenging subjective task. In such cases, an objective topography detection test would be
advantageous. To address these issues, we assessed seven measures (Pearson distance correlation, Spearman distance
correlation, Zrehen’s measure, topographic product, topological correlation, path length and wiring length) by quantifying
topography in three classes of cortical map model: linear, orientation-like, and clusters. We found that all but one of these
measures were effective at detecting statistically significant topography even in weakly-ordered maps, based on simulated
noisy measurements of neuronal selectivity and sparse sampling of the maps. We demonstrate the practical applicability of
these measures by using them to examine the arrangement of spatial cue selectivity in pallid bat A1. This analysis shows
that significantly topographic arrangements of interaural intensity difference and azimuth selectivity exist at the scale of
individual binaural clusters.
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Introduction

Topographic neural maps of the body or features of the sensory

environment are a near-ubiquitous phenomenon in the brains of

many species. Topographic maps are found in the visual [1],

auditory [2], somatosensory [3] and motor [4] areas, in many

subcortical structures, and even in areas of cortex associated with

higher functions [5]. The widespread occurrence of topographic

maps, and the fact that they are in many cases conserved through

multiple stages of neural processing, strongly suggest that they are

associated with some significant evolutionary advantage.

Many experimental techniques have been used to observe

topographic maps, including single-electrode [1] and multi-

electrode [6] electrophysiology, optical intrinsic signal imaging

[7], fMRI [8], calcium imaging [9] and microstimulation [3].

Topography of intrinsic neuronal properties has also been

observed using intracellular recording techniques (see [10] for a

review). These methods vary in spatial resolution, and in the

number of points (neurons or assemblies of neurons) at which

response properties can be measured simultaneously.

Intuitively, the defining property of a topographic map is that,

within the map, anatomically proximate locations are occupied by

neurons with similar functional properties. However, distilling this

intuitive understanding into a more rigorous definition of

topography is not straightforward [11]. Any formal definition of

topography rests upon how similarity of both functional properties

and anatomical location are quantified; different methods of

measuring difference or distance lead to different definitions of

topography. Concordant with the prevalence of a loosely-defined

notion of topography, neural topographic maps are normally

identified subjectively and described qualitatively, and surprisingly

few attempts have been made to quantify the degree of topography

in experimentally-observed maps. Whilst the subjective and

qualitative treatment of neural maps has well-established utility,

some situations demand a more rigorous approach. Topography

on a scale close to the resolution limit of the observation technique

may be difficult to identify, as the spatial density of measurements

required to characterize the map becomes difficult to achieve.

Also, map measurement techniques that rely on serial measure-

ments (e.g. single-electrode electrophysiology) limit the number of

points that can be measured in any one experimental subject. In

cases such as these, we suggest that detecting the presence of a

topographic map is a non-trivial task. It is also difficult to reliably

estimate the degree of topographic organization by visual

inspection [12], and the method used to visualize the map can

affect the perceived degree of topography (see Figure 1; the

method used in panel A might be considered advantageous as its

lack of interpolation avoids any implicit assumptions about the

properties of neurons between the measured locations). An

objective method of detecting significant order would be

advantageous, as it would eliminate the need to rely upon

subjective judgement. Topographic maps are known to be

sensitive to both biological and environmental factors and a
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well-understood quantitative measure of topography would be of

broad utility for making objective comparisons between maps.

Measures that quantify the local consistency of neuronal

selectivity have been used to analyze experimental data; for

example the Local Homogeneity Index [13], and the Local

Coherence Index [14]. These methods assign high scores where

neighboring cells are similarly tuned, but they do not quantify

topography in the sense of a broader preservation of neighborhood

relations. Kaschube and collaborators have published several

quantitative analyses of maps in primary visual cortex (V1), using

quantities such as ocular dominance column spacing [15] and

orientation pinwheel density [16], but again these measures do not

quantify topography as such. Polley et al. [17] and Bandyopad-

hyay et al. [18] illustrated tonotopic maps by producing scatter

plots of characteristic frequency against position on the rostrocau-

dal axis of the primary auditory cortex (A1), and this approach was

extended by Zheng [19], who quantified maps by computing

correlation coefficients (also between frequency and position on

the rostrocaudal axis of A1). Zheng [19] also computed average

pairwise distances between nth-nearest neighbor cells with

matching characteristic frequencies and used this measure in a

bootstrap analysis to demonstrate statistical significance. Guo et al.

[20] used a vector averaging approach to make spatially resolved

estimates of tonotopic map precision in several regions within the

mouse auditory cortex, and used nonparametric statistical tests to

compare tonotopy across regions and a number of different

experimental conditions. Alvarez et al. [12] defined measures of

topographic organization and lateral asymmetry for retinotopic

maps, but these were based on differences from a predefined

reference pattern; this is only a viable approach if such an ideal

map can be defined. In cases where the dimensionality of the map

matches the dimensionality of the space that it represents (such as

in a retinotopic map) it is trivial to define an ideal mapping, but

this is not the case where there is a difference in dimensionality

between map and feature spaces – there is no unique ideal map.

Willshaw [21] measured the emergence of topography in a model

of retinocollicular map development by quantifying receptive field

size and overlap, making use of the fact that in a mature, ordered

map, receptive fields tend to be local and less-overlapping.

Willshaw et al. also went on to quantify topography in one-to-

one retinocollicular maps by computing the size of the largest map

subdomain within which neighborhood relations were perfectly

preserved [22]. However, similarly to the approach of Alvarez

et al., this method depends on the existence of a well-defined ideal

mapping.

The literature on iterative map generation methods, such as self-

organizing feature maps, contains a wealth of information on

quantifying the ‘goodness’ of topographic mappings (for reviews,

see [11,23,24]) and much of this is applicable to biological maps.

In this article, we examine seven map measures drawn from the

map development modeling literature (Pearson distance correla-

tion, Spearman distance correlation, Zrehen’s measure, topo-

graphic product, topological correlation, wiring length and path

length), with the aim of establishing an objective, quantitative

method for comparing experimentally characterized maps and

detecting statistically significant topography. We first assess the

statistical power of each measure when applied to the detection of

different types of map: linear gradient; convoluted, similar to maps

of orientation in V1; and maps composed of randomly arranged

homogeneous clusters. Based on the results of these simulations,

we found that six of the measures were well suited to detecting

topography and only one (wiring length) was less useful due to low

statistical power.

We then go on to illustrate the use of map measures to detect

topography in experimental data. The recently identified

systematic arrangement of azimuth selectivity [25] and corre-

sponding binaural selectivity (interaural intensity difference [26])

in A1 of the pallid bat (Antrozous pallidus) is an example of a very

small map that has been identified using single unit recordings.

Because the systematic representation covers only a small area of

cortex (,3mm2) and because of the limited time available for

making serial single-neuron recordings in each animal, Razak

[25] identified the systematic map based on relatively few

recordings (between 14 and 36 cells per animal). Here we

quantify the topography in characteristic frequency, source

azimuth and interaural intensity difference (IID) selectivity in

A1 of the pallid bat. In addition to the well-known tonotopy, we

find that the arrangements of source azimuth and IID selectivity

have significant topography at the scale of single binaural clusters

in all eight bats studied. This analysis demonstrates the feasibility

of objective quantification of topography and detection of

statistically significant topography in experimentally character-

ized neural maps.

Figure 1. Three visualizations of the same sparsely sampled
cortical map data. The perceived orderliness of a topographic map
can vary depending on how the data is presented. This figure shows
identical mapping data (an azimuth map in pallid bat A1) plotted in
three ways: (A) no interpolation, (B) Voronoi tessellation (nearest
neighbor interpolation), and (C) linear interpolation. Color indicates the
value of the mapped tuning parameter and color scaling is continuous
and consistent across panels. Scale bar is approximately 0.5 mm.
Analysis results for this map (measure values and Benjamini-Hochberg
corrected p-values; see Results): CPC~0:25,p~0:013; CSC~0:27,
p~0:0039; CZ~0:23,p~0:0039; CWL~0:88,p~0:28; CPL~0:59,p~
0:002; PT ~0:2,p~0:032; CTC~0:22,p~0:0053.
doi:10.1371/journal.pone.0087178.g001
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Methods

Before discussing map measures it is useful to establish a formal

definition of a map and define some terminology. Here the word

‘map’ refers only to the arrangement of neuronal properties in

physical space; no topography is implied. In order to observe a

map, it is necessary to identify a number of anatomical elements,

the nature of which depends on the experimental technique used.

These can be individual neurons in the case of single-unit

electrophysiology or multiphoton calcium imaging, local neuronal

populations in the case of multi-unit recordings, or local

haemodynamic response in the case of fMRI or intrinsic imaging.

The units can be arranged in a regular grid (e.g. fMRI voxels) or

scattered (e.g. single neurons). The positions of the units in map

space (i.e. within the brain) are measured. Often these positions

are 2-dimensional, as in cortical maps, but 3-D positions could also

be used. Each unit is assigned a label based on its functional

properties; typical examples are the characteristic frequency of

auditory neurons or the preferred orientation of visual neurons.

We refer to the space that the labels are defined within as feature

space. Both characteristic frequency and orientation feature spaces

are 1-D, but 2-D (e.g. visual neuron receptive field centers) or

higher dimensional spaces are possible. For concreteness, all the

examples in this article involve a 2-D map space and 1-D feature

space (see Figure 2).

Map measures
A variety of map measures have been used to assess iterative

models of topographic map development (see reviews:

[11,23,24,27]). Many of these can be directly applied to

experimentally measured maps, but some have inherent limitations

that prevent this. Some map measures rely on the existence of a

known training data set from which the map is derived or learned

(e.g. the measure proposed by [28], and the topographic function of

[29]), some assume that neurons lie on a regular grid, and some are

only applicable where the feature space has the same dimensionality

as the map (the directional product measure [24] relies upon the

latter two assumptions). For the purposes of this article, we have

selected seven measures that can be calculated based on receptive

field data alone, and that are flexible with regard to the

dimensionality of the feature space and the map space.

When defining a map, we assume that there are N units

(neurons), the coordinates of the ith unit in map space (e.g. on the

cortical sheet) are denoted mi~(xi,yi), and the position in the one-

dimensional feature space (e.g. the preferred stimulus) is denoted

zi. Bold type in equations indicates vector quantities.

Goodhill and Sejnowski [23] described a mathematical frame-

work that unifies a number of different measures of topography.

The basis of this framework is the generic measure C:

C~
XN

i~2

Xi{1

j~1

F(i,j)G(i,j) ð1Þ

where F is a distance function in feature space and G is a distance

function in map space. This form, the product of two corresponding

pairwise distances summed over all possible pairings of neurons, is

the basis for most of the measures described in this article.

Pearson distance correlation (PC). The simplest variants

of the C measure are based on Euclidean distances in both feature

and map spaces, in this case:

FE(i,j)~Dzj{zi D ð2Þ

GE(i,j)~DDmj{mi DD ð3Þ

It is useful to normalize the measure so that maps of different

scales or with differing numbers of cells can be compared directly.

This can be achieved by computing the Pearson correlation

between pairwise distances in feature space and map space

(Equation 4). This measure was mentioned by Bezdek and Pal

[30], but no results were reported. This measure is also related to

the sample distance correlation proposed by Szekely [31], but the

latter measure uses centered distances (see reference for details).

The Pearson distance correlation is given by:

CPC~

PN
i~2

Pi{1
j~1 ½FE(i,j){�FFE �½GE(i,j){�GGE �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i~2

Pi{1
j~1½FE(i,j){�FFE �2

Pn
i~2

Pi{1
j~1½GE(i,j){�GGE �2

q ð4Þ

Where �FFE and �GGE are the mean pairwise distances, for example:

�FFE~
2

N(N{1)

XN

i~2

Xi{1

j~1

FE(i,j) ð5Þ

With the Pearson correlation measure it is possible to combine

data from different individuals as long as the scale of the map is

consistent, as is often the case with subjects of the same age and

species. With combined data, it doesn’t make sense to compute

distances in map space between cells from different subjects, as the

coordinate systems may not be aligned and the map shape or

orientation may be different. In this case we redefine CPC as:

Figure 2. Elements of a topographic map. Fundamental elements
of a map from a 1-dimensional feature space to a 2-dimensional map
space. Dashed lines represent the link between the positions of neurons
in feature space with their positions in map space. Here two neurons i
and j are shown together with their map space (anatomical) and feature
space (characteristic stimulus) coordinates.
doi:10.1371/journal.pone.0087178.g002
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CPC~

PQ
q~1

PNq
i~2

Pi{1
j~1 ½FE (q,i,j){�FFE �½GE (q,i,j){�GGE �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPQ

q~1

PNq
i~2

Pi{1
j~1 ½FE (q,i,j){�FF E �2

PQ
q~1

PNq
i~2

Pi{1
j~1 ½GE (q,i,j){�GGE �2

q ð6Þ

Where Q is the number of subjects, Nq is the number of neurons in

the qth subject and the mean distances are also computed across

all pairs in all subjects. The revised distance functions are:

FE(q,i,j)~Dzq
j {z

q
i D ð7Þ

GE(q,i,j)~DDmq
j {m

q
i DD ð8Þ

Here z
q
i and m

q
i denote the positions of the ith neuron from the

qth subject.

Spearman distance correlation (SC). As an alternative to

the Pearson correlation, Bezdek and Pal [30] used Spearman’s

rank correlation coefficient. This is sensitive to the ordering of data

and not their absolute values, which means that the measure we

denote as CSC quantifies topology preservation and is not sensitive

to distortion of the map unless it results in reordering of the

neurons relative to their ordering in feature space. The Spearman

distance correlation is given by:

CSC~

PN
i~2

Pi{1
j~1 ½f (i,j){�ff �½g(i,j){�gg�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i~2

Pi{1
j~1 ½f (i,j){�ff �2

PN
i~2

Pi{1
j~1 ½g(i,j){�gg�2

q ð9Þ

Where f (i,j) and g(i,j) are the tie-corrected ranks of FE(i,j) and

GE(i,j) respectively, and �ff , �gg are the mean ranks.

Topological correlation (TC). The topological correlation

[32] is another closely related measure, but is based on graph

theoretic rather than Euclidean distances. This makes it similar to

CSC in that it measures similarity of ordering rather than absolute

position. To calculate the distances, it is necessary to construct

Delaunay triangulations (see e.g. [33]) in both map and feature

spaces. The geodesic distance in map space Ggraph(i,j) between

units i and j is the number of edges in the shortest path connecting

them in the Delaunay triangulation. For the 1-D feature space the

Delaunay triangulation is undefined, so rank difference is used

instead:

Frank(i,j)~Dfj{fi D ð10Þ

Where fi is the tie-corrected rank of zi. The topological correlation

CTC is then defined as:

CTC~

Pn
i~2

Pi{1
j~1 ½Frank(i,j){�FF rank �½Ggraph(i,j){�GGgraph�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i~2

Pi{1
j~1 ½Frank(i,j){�FFrank �2

Pn
i~2

Pi{1
j~1 ½Ggraph(i,j){�GGgraph�2

q ð11Þ

Again, �FFrank and �GGgraph are the mean distances over all pairs of

cells.

Wiring length (WL). The minimum wiring measure (CWL) is

designed to estimate the length of axonal ‘wiring’ required to

connect all pairs of cells that are neighbors in feature space (e.g.

are selective for neighboring stimuli). This measure is a normalized

version of the ‘minimum wiring’ objective function used by

Goodhill and Sejnowski [23]. In this case the distance functions

are defined as:

Fneighbor(i,j)~
1 : i,j neighboring

0 : otherwise

�
ð12Þ

GE2(i,j)~GE(i,j)2~DDmj{mi DD2 ð13Þ

Neighboring units are defined as those with identical or adjacent

positions in feature space. CWL is then defined as:

CWL~
N(N{1)

2
PN

i~2

Pi{1
j~1 GE2(i,j)

PN
i~2

Pi{1
j~1 Fneighbor(i,j)

XN

i~2

Xi{1

j~1

Fneighbor(i,j) GE2(i,j) ð14Þ

Path length (PL). The path length measure CPL is the same

as wiring length, but the roles of map and feature spaces are

reversed. The distance measures are:

FE2(i,j)~jzj{zij2 ð15Þ

Gneighbor(i,j)~
1 : i,j neighboring, i:e: Ggraph(i,j)~1

0 : otherwise

�
ð16Þ

For the purposes of this article, we define neighboring in terms

of the Delaunay triangulation as the neurons are not located on a

regular grid as was the case when this measure was investigated by

Goodhill and Sejnowski [23]. As with the wiring length, the path

length measure is normalized to make it independent of map size

or measurement units. CPL is defined as:

CPL~
N(N{1)

2
PN

i~2

Pi{1
j~1 FE2(i,j)

PN
i~2

Pi{1
j~1 Gneighbor(i,j)

XN

i~2

Xi{1

j~1

FE2(i,j) Gneighbor(i,j)

ð17Þ

Zrehen measure (ZM). This measure quantifies local

consistency in maps and is a normalized version of the measure

proposed by Zrehen [34]. It measures the separation in feature

space of neurons that are neighbors in map space. Although

originally applied to model neurons arranged in a regular grid,

here we use the Delaunay triangulation to determine which

neurons are neighbors. The distance measures used are Gneighbor

(Equation 16) and a modified version of Frank that counts the

number of interposing ‘intruders’ in feature space between the

neighboring neurons:

Fintruder(i,j)~
0 : Frank(i,j)ƒ1

Frank(i,j){1 : otherwise

�
ð18Þ

(6)

(11)

(14)

FE2(i,j)~jzj{zij2
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The measure CZ is then defined as:

CZ~
1

N
PN

i~2

Pi{1
j~1 Gneighbor(i,j)

XN

i~2

Xi{1

j~1

Fintruder(i,j) Gneighbor(i,j)

ð19Þ

Topographic product (TP). Bauer and Pawelzik’s topo-

graphic product [35] is the only measure examined in this article

that does not fit into the C framework of Goodhill and Sejnowski

(Equation 1). The topographic product PT is a measure of the

preservation of neighbor relations based on Euclidean distances.

Bauer and Pawelzik first defined nG
k (i) as the index of the kth

nearest neighbor of neuron i, in terms of distance in map space

GE(i,j) (Equation 3), and nF
k (i) as the kth nearest neighbor of cell i

in feature space (i.e. in terms of FE(i,j), Equation 2). They then

defined the ratios:

QF (i,k)~
FE ½i,nG

k (i)�
FE ½i,nF

k (i)� ð20Þ

QG(i,k)~
GE ½i,nG

k (i)�
GE ½i,nF

k (i)� ð21Þ

The geometric mean over all neighbors within a given

neighborhood size k is given by:

P(i,k)~ P
k

j~1
QF (i,j) QG(i,j)

� �1=2k

ð22Þ

If a map is perfectly ordered and all neighborhood relations are

preserved, then P(i,k)~1 V i,k. The topographic product PT is a

measure of the deviation of P from 1 (by taking logarithms),

averaged over all neurons and all possible neighborhood sizes

(Equation 23). Our definition of PT differs slightly from that of

Bauer and Pawelzik in that we take the absolute value of

log P(i,k) before averaging; this makes TP non-negative and more

suitable for use in a permutation test.

PT~
1

N(N{1)

XN

i~1

XN{1

k~1

Dlog P(i,k)D ð23Þ

A problem arises when two or more neurons have identical

positions in either feature or map space, as this means that the

order of neighbors is not always well defined. To resolve this issue,

we use a Monte Carlo (MC) approach: the final value of TP is

taken to be the mean of 1000 samples in each of which the order of

equidistant neighbors is randomly permuted.

Significance testing
For all of the measures described above, Monte Carlo

permutation tests were used to calculate p-values. Taking the

generic C measure as an example, the mth of M Monte Carlo

samples is given by:

Cm~
XN

i~2

Xi{1

j~1

Fshuf (i,j)G(i,j) ð24Þ

where Fshuf (i,j)~F (rm
i ,rm

j ) ð25Þ

Where rm is the mth randomly permuted instance of a vector

containing the integers f1, . . . ,Ng. In other words, for each

sample the feature space positions were randomly shuffled and the

measure computed using the shuffled values. We then compute

Mexceed , the number of samples that are more ordered than the

actual map:

Mexceed~
XM
m~1

Em where Em~

1 : Cm indicates greater order than C

0 : otherwise

( ð26Þ

The p-value is given by:

p~
Mexceedz1

Mz1
ð27Þ

All results in this article are based on MC sample sizes of

M~106 unless it was faster to perform an exact permutation

analysis (i.e. where Nƒ9). To control for multiple tests, the

Benjamini-Hochberg step-up procedure [36] was used to obtain

corrected p-values. To test significance of the multiple-subject CPC

measure, the method above was modified so that feature space

data were pooled across all subjects before shuffling.

Map models
To assess the sensitivity of the measures to different forms of

topography, three generative map models were used (see

Figure 3A–C). The map models were used to generate

501|501 arrays defining the ground truth tuning properties.

This array was then sampled at N quasi-random points and noise

was added to the samples. The map measures were then used to

quantify the order in the noisy samples.

Linear map. The simplest map was a linear gradient

intended to model maps with smooth large-scale structure (see

Figure 3A). The linear map zlin was defined as:

zlin(x,y)~axzby ð28Þ

Where a and b are drawn from a uniform distribution on the

interval ½{1,1� and x, y are both in the interval ½0,1�.
Angle map. To represent maps with a convoluted structure,

such as visual cortex orientation maps (see Figure 3B), we used

random angle maps derived from bandpass filtered white noise

[37,38]. These maps are synthesized by generating 2-D arrays zr

and zi of Gaussian white noise and convolving them with a

‘mexican hat’ bandpass filter kernel (Equation 29). Treating the

two arrays of filtered noise as the real and imaginary parts of an

array of complex numbers, the angle map is found by taking the

argument (Equation 30).
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fmex(x,y)~
1

2ps2
exp {

x2zy2

2s2

� �
{

2

ps2
exp {

2(x2zy2)

s2

� �
ð29Þ

zang(x,y)~ arg (zr � fmex)z(zi � fmex)i½ � ð30Þ

The filter scale parameter s determines the characteristic size of

the aperiodic map features. As the feature space of this type of map

is periodic, circular distance metrics and circular statistics [39]

were used when computing all map measures of angle and cluster

maps.

Clustered arrangement. This model was designed to test

the sensitivity of measures to local consistency where there was no

larger-scale topography. Clusters were generated by drawing

402~1600 quasi-random seed points from a Halton sequence

([40], Matlab implementation), and generating a Voronoi

tessellation from these points. The seed point coordinates and

tessellation were then rescaled by a factor of 40s; this yields

approximately equivalent scaling of angle and cluster maps for any

given value of the scale parameter s. The z values for each seed

point were then drawn from a uniform distribution and the pixel z

values set to the z value of the nearest seed point, thus ‘coloring’

the Voronoi tessellation. Random variation of the tessellation was

achieved by randomly setting the skip parameter (number of initial

points in the Halton sequence to be discarded) when calling

Matlab’s haltonset() function.

Spatial sampling procedure. The process of measuring a

biological map was modeled by quasi-random sampling of the

maps and the addition of noise (see Figure 3D–F). The locations

of the observation points were again drawn from a Halton

sequence with a randomly chosen skip value. Points outside the

unit disc were rejected to ensure that measure values were

independent of map orientation. To simulate random neuronal

variability and measurement error, Gaussian noise was added to

the z values of each sample. The variance of the noise was

defined in terms of the signal to noise ratio (SNR). For periodic

feature spaces, the variance was computed using the CircStat

toolbox [39].

z~zcleanzg ð31Þ

where g*N (0,
s2

z

SNR2
) ð32Þ

Where sz is the standard deviation of the feature space

coordinate z across the whole map.

Pallid bat auditory cortical maps
The pallid bat echolocates for general orientation and obstacle

avoidance and listens to prey-generated noise to localize and hunt

terrestrial insects [41]. A1 in the pallid bat consists of two

subregions, one that is specialized for the processing of frequency

modulated echolocation calls and a second that responds to

Figure 3. Map models and spatial sampling. Three map models were used to investigate the sensitivity of map measures to different forms of
topography: (A) linear map, (B) angle map and (C) clusters (latter two with scale parameter s~0:2). The sampling process is illustrated in the lower
three panels: (D) raw angle map (scale parameter s~0:3) with quasi-random sample locations marked (number of points N~80), and sampled
‘neurons’ before (E) and after (F) noise was added (SNR = 3).
doi:10.1371/journal.pone.0087178.g003
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broadband, noise-like sounds. This second region is likely to be

important for passive detection and localization of prey [26]. The

passive hearing subregion is further divided into at least two

clusters of neurons based on IID selectivity: the ‘peaked’ cluster

and the binaural inhibition (EI) cluster (following the nomencla-

ture of [25]). The peaked cluster is made up of neurons that

respond to sounds arriving with similar amplitude at both ears,

and have bell-shaped azimuth tuning functions, while the EI

cluster consists of neurons that are excited by input from the

contralateral ear and inhibited by the ipsilateral ear, which leads to

sigmoidal azimuth tuning functions.

All data were collected as described by Razak [25]. In this article

we analyze source azimuth, IID and frequency selectivity mapping

data from four bats (corresponding to the maps shown in figures 4–6

of [25]) together with source azimuth and frequency selectivity data

from a further four bats. For the tonotopic maps, characteristic

frequencies were determined as described by Razak [25].

Azimuth labeling. To allow interpolation between the 15u
azimuth spacing of the raw data, parametric tuning functions were

fitted to the data (Figure 4). For each EI cell, Gaussian (Equation

33) and sigmoidal (Equation 34) curves were fitted; further

analyses were based on the better fitting of the two. Peaked cells

were fitted with Gaussian tuning functions (Equation 33). The

functions are defined as:

fG(w)~A exp {
(w{w0)2

2s2
G

" #
ð33Þ

fz(w)~
A

1z exp {
w{wT

sz

� � ð34Þ

Where w is the source azimuth, w0 and wT are preferred azimuth

(azimuth eliciting maximum response) and transition azimuth

(azimuth of maximum gradient) respectively, and A defines the

maximum response (normalized spike count). The width param-

eters sG and sz define the azimuth range over which the neuron

responds in the Gaussian case, and the slope of the transition in

the sigmoidal case respectively. Minimum values (sG§150,

sz§50) were imposed on the width parameters to avoid over

fitting.

For peaked cells, the azimuth label is simply the azimuth

eliciting maximum response w0. For EI cells, the azimuth label w50

was defined as the ipsilateral (up-crossing) point where the tuning

function is equal to 50% of its maximum. For sigmoidal tuning

functions this is simply w50~wT . For EI cells with Gaussian fitted

tuning functions w50 is given by:

w50~w0{sG

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2 log 2

p
ð35Þ

IID labeling. IID data was treated in a similar way to the

source azimuth data. In this case the parametric tuning functions

are:

fG(DI)~A exp {
(DI{DI0)2

2s2
G

" #
ð36Þ

fz(DI)~
A

1z exp {
DI{DIT

sz

� � ð37Þ

Where DI is the IID, and DI0 and DIT are the IIDs associated

with maximum response (Gaussian) and maximum tuning

function gradient (sigmoidal). The width parameters were

constrained (sG§5dB, sz§3dB) to avoid over fitting. Again,

the feature space labels for EI cells were defined as DI50~DIT for

sigmoidal and DI50~DI0{sG

ffiffi
(

p
2 log 2) for Gaussian tuning

functions, and the labels for peaked cells were defined as DI0, the

IID corresponding to the maximum response.

Results

Detection power of map measures
We assessed the sensitivity of seven map measures by using them

to quantify the topography in artificial ‘electrophysiological’ (i.e.

spatially scattered) mapping data. The measures are: Pearson

distance correlation (PC), Spearman distance correlation (SC),

Figure 4. Tuning functions and characteristic stimuli. Examples of typical tuning functions of (A) EI cells and (B) peaked cells in pallid bat
primary auditory cortex. Parametric tuning functions (solid lines) were fitted to the measured responses. EI neurons were assigned characteristic
azimuth labels (indicated by dashed lines) where the fitted tuning function was equal to 50% of the maximum response. For Peaked neurons, the
characteristic azimuth was defined as the peak of the fitted tuning function. IID tuning functions and characteristic stimuli were determined similarly.
doi:10.1371/journal.pone.0087178.g004
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Zrehen measure (ZM), wiring length (WL), path length (PL),

topographic product (TP) and topological correlation (TC); see

Methods for definitions. Mapping data was generated by sampling

an underlying map at spatially scattered locations, then adding

random noise to the feature space coordinates of the samples (see

Figure 3D–F). By varying the signal-to-noise ratio (SNR) and the

number of points at which the map was sampled, we examined the

relationship between the strength of the map (in terms of SNR)

and the number of points needed for reliable topography detection

using each measure. We defined reliable detection as a statistical

power of p~0:8 at a significance level of a~0:05 i.e. an 80%

chance of correct detection, and the number of points needed to

achieve this is denoted as N80. Nbest is the N80 of the most

powerful measure for a given SNR and map type. Additional

simulations (results not shown) showed that the findings described

in this article are robust with respect to small changes in either

significance level a or the detection threshold statistical power p.

Clearly, increasing the sample size increases the statistical power of

any test and increasing the density of measurement points

increases the ability to detect patterns at smaller scales. Here we

focus on comparing the statistical powers of the map measures to

identify which measures are most powerful and hence are likely to

be most useful for detecting topographic organization in exper-

imental datasets.

Figure 5A shows the relationship between SNR and the number

of points N80 required for reliable detection when the underlying

map is a simple linear gradient (as in Figure 3A). The more

powerful a measure is, the lower its line appears on the plot; the

most powerful measure at any given SNR is that which achieves

reliable detection with the least data and hence is the lowest line

on the plot. For linear maps, the topological correlation (TC) is the

most powerful measure for detecting maps with weak topography

(that is, maps heavily corrupted with noise: SNR v0:8), while the

Pearson distance correlation (PC) is the most powerful measure for

maps with strong topography (SNR w0:8). Four of the measures

(PC, SC, ZM and PL) have similar power across the SNR range.

WL and TP are consistently less powerful, requiring 1.6 to 4 times

as many data as the most powerful measure at any given SNR to

achieve the same statistical power (Figure 5B).

Figure 5. Comparison of the statistical power of seven map measures (PC: Pearson distance correlation, SC: Spearman distance correlation,
ZM: Zrehen measure, WL: wiring length, PL: path length, TP: topographic product, TC: topological correlation) when detecting (A) linear maps, (C)
angle maps and (D) clusters. Power is summarized by the quantity N80, the mean number of points (e.g. neurons, voxels) required to achieve a
statistical power of 80%; this is shown as a function of the SNR. Panel B shows the relative powers of the measures for linear map detection; here N80

is normalized by Nbest, the N80 of the most powerful measure for a given map type and SNR. For the angle maps and clusters the scale parameter
s~0:4 and the insets show examples of the corresponding map type and scale. All axes have logarithmic scales. Missing data indicate that N80 is
outside the range 7ƒNƒ200. Uncertainty is depicted by shaded regions of +1 StdErr.
doi:10.1371/journal.pone.0087178.g005
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Neural maps generally have structures more complex than a

linear gradient. We next assessed the statistical power of the same

seven measures for detecting two forms of nonlinear map:

convoluted angle maps similar to V1 orientation maps

(Figure 5C), and clustered arrangements where there is no overall

topography, but tuning properties are locally homogeneous

(Figure 5D). The nonlinear maps are only locally consistent, so

higher sampling densities are required in order to detect the map.

When used for the detection of these nonlinear maps, the statistical

power of the measures depends primarily upon the spatial scale of

the map, as well as the SNR and number of points; the effect of

map form (angle map versus clusters) is relatively minor (Figure 6).
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Figure 6. Relative power of measures for detecting maps of various scales and types. For each map measure, the plots show the number
of data needed for reliable detection of angle maps (A, C, E) and clusters (B, D, F). To show the relative power more clearly, N80 is normalized by Nbest ,
the N80 of the most powerful measure for a given map type and SNR. The more powerful the measure, the lower it appears on the plots. It can be
seen that the map type i.e. angle map vs. clusters, has little effect upon the relative powers of the measures; the ordering of the measures in terms of
power is similar for both forms of map. All axes have logarithmic scales. Missing data indicate that N80 is outside the range 7ƒNƒ200. Uncertainty is
depicted by shaded regions of +1 StdErr.
doi:10.1371/journal.pone.0087178.g006
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The parameter s controls the spatial scale of the model maps and

hence the density of measurements required to resolve the map.

Maps with larger features (greater s) can be detected with fewer

measurements than smaller-scale maps, as can be seen in Figure 7.

The most powerful measures for detecting smaller-scale nonlinear

maps (s~0:4) are the path length and topographic product

(Figures 6A and 6B), despite the fact that the topographic product

is one of the least powerful measures for detecting linear maps (see

Figure 5B). For detecting both angle maps and clusters at larger

scales (s§0:6), the most powerful measures are the Pearson and

Spearman distance correlations, path length, and the topographic

product for cluster maps at very high SNR (Figure 6C–F). The

Zrehen measure also has relatively high power for detecting

nonlinear maps, particularly at smaller scales, but it is never the

most powerful measure.

To summarize, the relative power of the measures varies

according to both the type (mainly linear versus nonlinear) and

scale of the map, as well as the SNR. The conventional correlative

measures (Pearson and Spearman distance correlations) are the

most powerful for detecting large scale topography i.e. linear maps

and larger-scale nonlinear maps (approximately sw0:6). An angle

map on an infinitely large scale is equivalent to a linear map, so it

is not surprising that the same measures are most effective at

detecting linear and large-scale nonlinear maps. The path length

and topographic product are the most powerful for detecting the

localized topography in smaller-scale nonlinear maps (sv0:6).

Pallid bat A1 maps
To illustrate how statistical tests can be used to objectively

determine the existence of neural topographic maps, we quantified

the topography of three different neuronal tuning properties in

pallid bat A1. Using data gathered from 211 cells in the EI and

peaked clusters of eight bats (see Methods and [25]), we tested for

the existence of significant maps of frequency (tonotopy), IID and

source azimuth. IID and azimuth labels corresponding to steeply

sloping regions of the tuning curves, rather than maxima, were

chosen because cells in the EI cluster generally have sigmoid-like

tuning curves without clearly defined maxima. This means that the

IID and azimuth maps in the EI cluster differ from typical place

maps (as in e.g. the superior colliculus) where the locus of activity

directly reflects the value of the stimulus variable. In the peaked

cluster, the azimuth labels were located at the peaks of the tuning

curves. For the purposes of this article, we have used the term

‘tuning curve’ to refer to any function that relates an arbitrary

stimulus to a response firing rate; it does not imply sound

frequency selectivity in particular. The pallid bat data was

analyzed directly; there was no subsampling or other preprocess-

ing of the data aside from determining the characteristic stimulus

labels (see Methods).

Significant topographic maps of characteristic frequency were

detected in all 8 bats (Table 1). In all 8 bats significant tonotopy

was also detected when the EI clusters were considered in

isolation. Tonotopy was also significant within the peaked cluster

in 3 of 4 bats for which data from the peaked cluster was available.

These results are consistent with the tonotopic arrangement of

auditory cortex found in many species.

Systematic cortical maps of IID and source azimuth selectivity

are present within the EI cluster in the pallid bat [25,42]. Our

results confirm the presence of a systematic arrangement of IID

and azimuth tuning within the EI cluster. Significant topography

in IID maps was detected in the EI cluster in 3 of 4 bats for which

IID data were available, but no significant IID topography was

found in the peaked cluster (Table 1). Significant azimuth maps in

EI were detected in all eight bats, but in the peaked cluster

topography was much weaker (as in [25]), being marginally

significant (0:02vpv0:05 after Benjamini-Hochberg correction)

in 3 of 4 animals from which data were available (Table 1).

The Pearson distance correlation measure allows us to combine

data from multiple animals into a single statistic to assess the

strength of topography across the population (see Methods). This

population analysis provides additional confirmation of highly

significant tonotopy and highly significant topographic arrange-

ment of IID and azimuth selectivity (see Table 2). Although the

azimuth map is only marginally significant in 3 of 4 animals for

which peaked cluster data is available, it is clearly significant

(p~0:0024) when the data from the four bats are combined. This

analysis is also useful because the Benjamini-Hochberg procedure

used to correct for multiple tests in the individual analysis is not

very conservative and can, at best, be expected to give a false

discovery rate of 0.05, equivalent to approximately 8 tests wrongly

identified as significant. Combining the data into a single statistical

test, or a much smaller number of tests, avoids the difficulties

associated with correcting for large numbers of tests.

Figure 7. The effect of map scale on nonlinear map detection. Larger scale maps can be detected with fewer data. Panel A shows Nbest (N80 of
the most powerful measure) for angle maps and clusters at three different scales: s~f0:4,0:6,0:8g. Panel B shows the detectability of each type and
scale of nonlinear map relative to a linear map with the same SNR i.e. Nbest normalized by Nbest for a linear map. All axes have logarithmic scales.
Missing data indicate that N80 is outside the range 7ƒNƒ200. Uncertainty is depicted by shaded regions of +1 StdErr.
doi:10.1371/journal.pone.0087178.g007
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One possible explanation for the systematic arrangements of

IID and azimuth selectivity is that they are somehow a

consequence of tonotopy. To test this hypothesis we calculated

the correlation between characteristic frequency and 50% IID,

and between characteristic frequency and 50% azimuth. In the EI

cluster, only one significant correlation was found, between

characteristic frequency and azimuth in bat PAL28 (Pearson

r~0:67, p~0:0006). There was no significant correlation

between characteristic frequency and azimuth in the EI cluster

when data from all 8 animals was combined, or between IID and

characteristic frequency in any bat or across all bats. In the peaked

cluster there was no significant correlation between azimuth and

characteristic frequency. There is, however, a significant negative

correlation between IID and characteristic frequency in the

peaked cluster at the population level (Pearson r~{0:31,

p~0:035). Interestingly, this correlation does not result in the

significant tonotopy also manifesting as a significant IID map (see

Table 2). In summary, the systematic arrangements of azimuth

and IID selectivity do not appear to be a consequence of tonotopy.

It is useful to compare the pallid bat data to the map models

discussed in the previous section. Both the linear and cluster map

models are plausible candidates for the underlying form of the

pallid bat azimuth and IID maps (tonotopy is locally and

approximately linear). If it is assumed that only frontal space is

represented, or that frontal space predominates, then both the

azimuth and IID feature spaces are non-periodic and the space

maps could be linear (perhaps oriented near-perpendicular to the

tonotopic gradient). Alternatively, the space map could take the

form of clusters as this is a known organizational principle of A1

(see e.g. [43]). One approach to resolving this question is to fit the

models to the experimental data. Both the cluster and angle map

models are under-constrained by the data; for any possible set of

mapping data, there are an infinite number of possible angle or

cluster maps that would explain the data perfectly. Fitting the

linear model, however, was straightforward and allowed us to

estimate the SNR of the bat data based on the assumption of an

underlying linear map. To do this, we fitted a bilinear function

that predicts the selectivity feature z for a given location on the

cortex defined by x and y. The SNR of the data was then

estimated by calculating the proportion of the standard deviation

of z that was explained by the bilinear fit. The best frequency maps

had estimated SNRs between (approximately) 0.9 and 2, while the

IID and azimuths maps had estimated SNRs between 0.4 and 2.

The estimated SNR indicates how well the pallid bat mapping

data is explained by a linear model, and the broad range of

observed SNRs suggests that the linearity of the maps varies

considerably between animals. While the results of the permuta-

tion tests show that azimuth and IID tuning is organized non-

randomly, it is not possible to say conclusively what form the

azimuth and IID maps take; this question can only be addressed

by further mapping using a technique with higher spatial

resolution.

Discussion

We have shown that topography in the anatomical layout of

neuronal tuning properties can be quantified using measures that

do not rely on any prior knowledge about the form of the map.

These measures can be used to perform statistical tests for the

existence of significant topography. This provides an objective

method for detecting topographic maps that are unclear, for

instance where data are available from only a small number of

neurons, or the scale of map features are close to the spatial

resolution of the measurement technique. A Matlab toolbox

containing implementations of all measures and statistical tests

Table 1. Proportion of bats with significant tonotopic, IID and azimuth maps.

Frequency map IID map Azimuth map

Measure EI Peaked EI+Peaked EI Peaked EI Peaked All cell groups

PC 5/8 2/4 3/4 2/4 0/4 5/8 1/4 52.5%

SC 6/8 2/4 4/4 2/4 0/4 5/8 0/4 55.0%

ZM 5/8 2/4 4/4 3/4 0/4 7/8 1/4 62.5%

WL 6/8 2/4 3/4 1/4 0/4 2/8 0/4 37.5%

PL 6/8 2/4 4/4 3/4 0/4 6/8 3/4 70.0%

TP 8/8 3/4 4/4 3/4 0/4 4/8 0/4 62.5%

TC 5/8 2/4 4/4 3/4 0/4 5/8 0/4 57.5%

Any measure 8/8 3/4 4/4 3/4 0/4 8/8 3/4

Results of map detection analysis of pallid bat data. Each table cells shows the number of bats in which significant maps were detected/total number of bats from which
data were available. The ‘any measure’ row shows the number of bats where significant topography was detected by at least one measure. Each column relates to a
given tuning property (e.g. frequency) and group of neurons (e.g. cells from the EI cluster). The ‘all cell groups’ column gives combined detection rates for each measure
across all maps in all animals; this is a coarse indication of the relative power of the measures.
doi:10.1371/journal.pone.0087178.t001

Table 2. Map detection analysis of combined map data from
all 8 bats.

Frequency map IID map Azimuth map

EI Peaked EI+Peaked EI Peaked EI Peaked

CPC 0.27 0.52 0.34 0.25 20.019 0.30 0.33

p ,1024 ,1024 ,1024 0.0017 3.9 ,1024 0.0024

n 156 49 205 71 42 156 49

Results of the analysis of combined data from all animals. Columns indicate the
tuning property (e.g. characteristic frequency) and cell class (e.g. EI). Pearson
distance correlation CPC , p-value (Bonferroni corrected, 7 tests) and number of
neurons n are given for each candidate map i.e. combination of tuning property
and cell class. The Bonferroni method of correcting for multiple tests can lead to
corrected p-values greater than 1, as is the case for IID tuning in the peaked
cluster.
doi:10.1371/journal.pone.0087178.t002
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described in this article is available for download from GitHub

(https://github.com/StuYarrow/MapTools).

We assessed the sensitivity of seven measures (Pearson distance

correlation, Spearman distance correlation, Zrehen measure,

wiring length, path length, topographic product and topological

correlation; see Methods for definitions) to linear and nonlinear

model maps obscured by adding noise to the characteristic

stimulus values. Sensitivity was quantified by calculating the

statistical power, for map detection, of permutation tests based on

each measure. The sensitivity of measures depended on the form

(linear vs nonlinear) and scale of smoothness in the map, and on

the SNR of the characteristic stimulus labels; no one measure was

the best at detecting all maps. For detecting linear maps the

Pearson and Spearman distance correlations and the topological

correlation were the most powerful. For larger-scale nonlinear

maps the Pearson and Spearman distance correlations are among

the most powerful, while the path length and topographic product

are more powerful at detecting smaller-scale nonlinear maps.

One of the criteria used to select the measures was that they

should be flexible in terms of the dimensionality of feature and

map spaces. It is therefore a limitation of this study that only 1-D

feature spaces and 2-D map spaces were addressed. The

dimensionality of feature spaces in particular can vary greatly

depending on how the stimulus space is decomposed into features,

and how many of these features are taken into account in an

analysis. Another limitation was the way that we modeled

degradation of the map by adding random noise to the feature

space positions. In reality, natural variability of maps is likely to be

much more complex and could involve processes very different

from independent random noise, for example warping or

fracturing of the map.

Although we have focussed on the use of map measures in

statistical tests for map detection, the same measures have other

potential applications. They could be used, for example, to assess

differences in map orderliness between anatomical regions,

developmental stages or experimental groups, or changes in maps

as a result of aging or changes in properties of the environment.

Our results confirm the presence of systematic arrangements of

spatial (azimuth) and binaural (IID) selectivity in pallid bat A1. It

has been suggested previously that topographic arrangements of

IID and azimuth selectivity exist within the EI cluster [25,26,42],

however these maps were identified only subjectively, and the

strength or clarity of the maps varies considerably between

animals. Razak showed that the overall level of activation of the EI

cluster varied systematically with source azimuth (Figure 7 of [25]),

but did not give any quantitative evidence for a systematic

relationship between tuning properties and locations of neurons.

The identification of systematic arrangements of IID and source

azimuth selectivity in the pallid bat raises the question as to

whether similar maps are also present in other species.

It is important to note that the systematic arrangements of IID

and azimuth selectivity in the pallid bat are confined to clusters of

neurons with similar patterns of binaural selectivity. Binaural

clusters are a ubiquitous organizational feature of the auditory

cortex across species. It remains unclear if systematic maps of

source azimuth are present in the intrinsic organization of binaural

clusters in other species because such studies have not yet been

conducted. In the pallid bat these binaural clusters are of the order

of 1 mm across, so measuring maps within the clusters requires a

technique with spatial resolution of the order of 0.1 mm. In

addition, the focus needs to be on mapping within binaural

clusters across isofrequency contours as most previous studies have

concentrated on mapping along isofrequency contours, potentially

spanning multiple binaural clusters. The characterization of

internal organization of binaural clusters in other species will

have significant consequences for our understanding of how

auditory spatial information is represented in the cortex and is an

important area for future research, particularly given the

availability of high-resolution techniques such as multiphoton

calcium imaging and multi-electrode arrays.

One feature of the pallid bat data that is visible in our results is

the variability in the apparent orderliness of the maps between

animals; in some bats highly significant topography is detected by

many measures, but in a few cases the map measures show only

weak topography. The results of the population analysis (Table 2)

show that there is significant topography in azimuth tuning in the

the EI (Pearson distance correlation~0:30, pv10{4, n~156)

and peaked (Pearson distance correlation~0:33, p~0:0024,

n~49) clusters, and in IID tuning in the EI cluster

(Pearson distance correlation~0:25, p~0:0017, n~71) when

the data from all bats is considered together. There are a number

of possible reasons for the observed differences between bats:

random sampling variability, measurement error in recording and

extracting tuning curves and characteristic stimuli, individual

differences in the strength of the map or in the form of the map

(e.g. warped or fractured maps).

For the purposes of this article, we have defined a topographic

map as any systematic relationship between a given tuning

property and the physical location of a neuron. This is perhaps a

broader definition than is typically used, because it is not limited to

place maps where the characteristic stimuli – the positions of the

neurons in feature space – correspond to firing rate maxima. In

the pallid bat, the arrangements of azimuth and IID tuning in the

EI cluster are examples of maps that are not ‘place’ maps; in these

cases the tuning curves have no well-defined peak and the

characteristic stimulus labels on the slopes of the tuning curves are

used. The question of what stimulus value to use to characterize or

represent a neuron is a nuanced one. Traditionally, those that

elicit the maximum response (i.e. the location of the tuning curve

peak) have been used, but this doesn’t make sense when the tuning

curve is monotonic and has no distinct maximum. One approach

would be to use the stimulus value that the neuron conveys the

most information about, but this is not easy to determine;

maximum information depends on a number of factors and can

coincide with steeply sloping regions of the tuning curve, or the

peak, or somewhere in between [44,45]. Using one characteristic

stimulus to represent the entire receptive field is clearly a

simplification, albeit one that is widely accepted. If this simplifi-

cation was to prove problematic in the future, it would be possible

to adopt new map measures using the same basic form given in

Equation 1, but using distances in the higher-dimensional space of

tuning functions rather than distances between one-dimensional

characteristic stimuli.

The measures used in our analysis were chosen for their

flexibility and can be applied to a wide variety of datasets with

different dimensionalities of map and feature spaces. Here we have

only addressed one-dimensional feature spaces and two-dimen-

sional map spaces, so further work is required to investigate the

properties of the measures in spaces with other dimensionality.

Feature spaces with more than one dimension will be of particular

interest. These methods could also be applied to grid-like mapping

data, for example fMRI data. With this type of data, the regular

spatial sampling and greater number of measurements may affect

the relative statistical power of the measures, so further

investigation of the properties of these map measures using

simulated gridded data would be valuable.
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Conclusion and recommendations
Topography in neural maps can be objectively quantified using

measures that compare the pairwise anatomical (map space)

distances between neurons with the pairwise distances in some

feature space, for example the difference in preferred stimulus.

Correlation between these two distances indicates a tendency

toward topographic arrangement of the feature. By applying a

permutation test, these measures can be used to determine

whether a suspected neural topographic map is statistically

significant; this is valuable where the topography is weak or

unclear, the measurements are noisy, the number of data is

limited, or the characteristic scale of map features is close to the

spatial resolution of the measurement technique. The way in

which map space and feature space distances are quantified

determines the type of map that the measure is most sensitive to.

Some measures (particularly the Pearson and Spearman distance

correlation) are more effective, relative to other measures, at

detecting the large-scale smoothness found in linear or larger-scale

nonlinear maps than they are at detecting localized topography in

smaller-scale nonlinear maps (see Figure 6). The opposite is true

for other measures, particularly the topographic product. The

wiring length and, to a lesser extent, topological correlation

measures had relatively low statistical power for map detection in

general.

The approach used to test for the presence of significant

topography might be guided by the investigator’s prior knowledge

about the form of the map. If the map is thought to be linear (e.g. a

tonotopic or retinotopic map), or convoluted on a scale where map

features are many times larger than the distance between

recording sites, either the Pearson or Spearman distance

correlation would be a good choice of measure. For nonlinear

maps with smaller features, the topographic product or path length

are likely to be a good choice. If the form of the map is unknown,

more than one measure might be used (e.g. the Pearson or

Spearman distance correlation together with the topographic

product) and a suitable method used to correct for multiple tests. If

the Pearson distance correlation is used, data from multiple

subjects can be combined in a single permutation test for detecting

topography, without the need for registering or otherwise

preprocessing the data. This approach offers the possibility of

detecting maps at the population level when the topography is too

weak, or insufficient data are available to support detection in

individual subjects.

The results of our analysis of pallid bat mapping data confirm

that topographic maps of source azimuth and IID exist within

binaural clusters in pallid bat primary auditory cortex. As auditory

spatial tuning properties within binaural clusters have not been

mapped in any other species with sufficient resolution to identify

equivalent maps, our findings suggest that high-resolution

mapping of spatial tuning properties in the auditory cortex is

likely to be important in understanding how auditory space is

represented in the cortex.
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