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Abstract

Post-translational modification (PTM) sites have become popular for predictor development.

However, with the exception of phosphorylation and a handful of other examples, PTMs suf-

fer from a limited number of available training examples and sparsity in protein sequences.

Here, proline hydroxylation is taken as an example to compare different methods and evalu-

ate their performance on new experimentally determined sites. As a guide for effective

experimental design, predictors require both high specificity and sensitivity. However, the

self-reported performance may often not be indicative of prediction quality and detection of

new sites is not guaranteed. We have benchmarked seven published hydroxylation site pre-

dictors on two newly constructed independent datasets. The self-reported performance is

found to widely overestimate the real accuracy measured on independent datasets. No pre-

dictor performs better than random on new examples, indicating the refined models do not

sufficiently generalize to detect new sites. The number of false positives is high and preci-

sion low, in particular for non-collagen proteins whose motifs are not conserved. As hydrox-

ylation site predictors do not generalize for new data, caution is advised when using PTM

predictors in the absence of independent evaluations, in particular for highly specific sites

involved in signalling.

Author summary

Machine learning methods are extensively used by biologists to design and interpret

experiments. Predictors which take the only sequence as input are of particular interest

due to the large amount of available sequence data and high self-reported performance. In

this work, we evaluated post-translational modification (PTM) predictors for hydroxyl-

ation sites and found that they perform no better than random, in strong contrast to per-

formances reported in their original publications. PTMs are chemical amino acid

alterations providing the cell with conditional mechanisms to fine tune protein function,

regulating complex biological processes such as signalling and cell cycle. Hydroxylation

sites are a good PTM test case due to the availability of a range of predictors and an abun-

dance of newly experimentally detected modification sites. Poor performances in our
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results highlight the overlooked problem of predicting PTMs when best practices are not

followed and training data are likely incomplete. Experimentalists should be careful when

using PTM predictors blindly and more independent assessments are needed to establish

their usefulness in practice.

This is a PLOS Computational Biology Benchmarking paper.

Introduction

Post translational modifications (PTMs) are alterations of the primary protein structure,

including both new covalent links and cleavage events. Almost every protein in the cell under-

goes modification during its lifetime [1] and more than 600 different amino acid modifications

are catalogued in UniProtKB [2]. PTMs provide a way to expand the spectrum of protein func-

tions as well as an additional layer for pathway regulation [3]. They are catalyzed by enzymes

that identify a specific site in the substrate protein, with a plurality of PTM motifs residing in

intrinsically disordered regions in order to facilitate enzyme accessibility [4]. Over the last few

years, a deluge of methods have been proposed to predict PTM sites from sequence, for a

recent review see e.g. [5]. The reasons for this popularity are broadly twofold. Given the pau-

city of experimental data for PTMs and their relevance for cellular regulation, there is a legiti-

mate expectation that computational methods should fill in the experimental void.

Computational methods can become hypothesis generators for an effective design of PTM

experiments. Their implementation is straightforward due to the sequence specificity and

peculiar physico-chemical properties of PTM motifs. This simplicity makes PTM prediction

from sequence easily accessible to machine learning methods, but also presents several poten-

tial pitfalls [6]. In order to be useful for experimentalists, PTM predictors should provide good

performance and be robust. Performance should be high enough to limit false positives to a

minimum, while ensuring sufficient amount of correct predictions (true positives). Perhaps

more importantly, the method should be robust enough to maintain performance across a

range of different datasets, as it is often not clear which experimental conditions may intro-

duce biases. On both accounts, PTM predictors may be problematic as they are rarely assessed

by independent third parties. Indeed, their ability to identify new modification sites has been

questioned [7] and effective results have been obtained only for a few PTM types [5]. The

problem of validating machine learning methods has already been raised and best practices

have been proposed [6]. Self-reported accuracy may be overestimated, with PTM predictors

overfitting and not performing better than random when adopting the wrong training strategy

[7]. Generalizing models for PTM site recognition is difficult as the number of experimental

observations is low and many new types of motifs are still poorly characterized.

In this work, proline hydroxylation is taken as a case study to answer the question of how

useful PTM predictors, especially those trained on small datasets, are to design experiments.

Hydroxylation is one of the most abundant PTMs in the cell [8]. However, despite improve-

ments in mass-spectrometry (MS) techniques, likely only a small fraction of all hydroxylated

sites has so far been experimentally detected.

Proline hydroxylation (PH) is a PTM carried out by prolyl hydroxylases, catalyzing the

addition of a hydroxyl group to the sidechain pyrrolidine ring at the gamma position. This
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modification is crucial for correct folding of the collagen triple-helix, which contains the con-

served xPG motif. PH also plays a crucial role in signaling, in particular in oxygen sensing

pathways, angiogenesis [9] and tumor cell proliferation [10, 11]. An example is HIF1α, the

main target of the von Hippel-Lindau (pVHL) E3 ubiquitin ligase complex [12]. In normoxia,

the prolyl hydroxylase domain-containing enzymes (PHDs) hydroxylate HIF1α, promoting its

degradation through pVHL binding [13]. Under low oxygen concentration, the PHDs are

inactivated and HIF-1α translocates into the nucleus to activate vascular proliferation and

angiogenesis genes [14].

The first hydroxylation predictor [15] was trained to predict only collagen modifications.

Several further PH predictors exist as web servers: HydPred [16], PredHydroxy [17], RF-Hy-

droxysite [18], iHyd-PseAAC [19] and iHyd-PseCp [20]. The latter has not been considered in

our analysis as the server proved unstable, with frequent freezes. The stand-alone PH software

OH-Pred [21], ModPred [4] and AMS3 [1] are also available. All are potential tools for large-

scale analysis, taking only the protein sequence as input. Implementations include standard

machine learning algorithms like Support Vector Machines, artificial Neural Networks and

Random Forests, as well as alternative techniques like logistic regression and probabilistic clas-

sifiers. All methods were trained on SwissProt [22] annotation, with varying strategies to

define positive and negative examples and different approaches to evaluate model quality.

None of the PH predictors used a real independent dataset for validation, i.e. unaffected from

SwissProt biases.

Here, we evaluate PH methods considering separately collagen and signalling examples as

well as single proteins versus high throughput mass-spectrometry (MS) experiments. The

majority of new hydroxylated prolines (Hyp) come from two MS recently published experi-

ments, one on HeLa cells and another from a large experiment involving multiple tissues and

samples [23–25]. These datasets are unseen for the PH predictors being tested, as they were

not yet available in public databases when the predictors were trained. The number of MS

hydroxylated sites is comparable to the entire SwissProt database and the new datasets allowed

us to perform an unbiased blind test. A Naïve HMM predictor trained including MS data has

also been implemented to simulate the effect of integrating new examples. The analysis pre-

sented here provides a starting point for a critical discussion on the problem of reliably pre-

dicting new PTMs.

Results

The intended users of PTM predictors are experimentalists working intending to make better

use of their limited time and budget. While prediction tools have the potential to make experi-

ments more effective, they need to work much better than random. In the case of PTMs,

where the fraction of modified residues is low, the false positive rate (i.e. fraction of false posi-

tives among predictions made) should be minimized. Due to the low coverage of PTM evi-

dence in public databases, predictors also need to generalize well, i.e. identify new motifs never

seen before. In the following, different PH predictors are evaluated against new hydroxylation

sites and various problems related to PTM prediction are discussed. In order to provide an

objective evaluation we considered “old” examples from the SwissProt database at the time of

PH method training (Literature) and “new” examples coming from two different mass-spec-

trometry experiments (MS-Kim, MS-HeLa). Since collagen is a recurrent PH substrate with

well-defined sequence pattern, “new but easy” examples (MS-collagen) are a subset of the

“new” examples found in collagen proteins similar to the “old” collagen motifs used for train-

ing PH methods. Table 1 shows the main splits used in this paper. For methods which provide

a confidence score, the Precision-recall and ROC curves are reported in Fig C-H in S1 Text.
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Predictor performance

As a starting point, Table 2 shows details about the evaluated predictors, including self-

reported performance. Self-reported performance is taken from the corresponding publica-

tions selecting values calculated on independent validation sets where possible, i.e. excluding

training examples. The performance considering manually curated examples from single pro-

tein experiments (Literature) is shown in Fig 1 to simulate the evaluation provided by the

method publications. The majority of “Literature” examples in fact come from SwissProt and

were already available at the training time. While ModPred, HydPred and OH-Pred perform

as declared, ASM3, PredHydroxy and RF-Hydroxysite all show a decrease. The RF-Hydroxy-

site performance is worse than random with a negative MCC, probably because its web server

suffers from a software bug. For the best methods, sensitivity and specificity are both high

(Table A in S1 Text). Methods providing a confidence threshold can modulate the precision

(PPV) correctly, with the exception of PredHydroxy which at high confidence (0.9) has a sensi-

tivity of zero and behaves like a random predictor.

Table 1. Datasets. Negative clusters (“Negative”) contain only clusters with non-hydroxylated sites. Other datasets

have clusters with both positive and negative examples, but negatives are completely removed during evaluation (�).

Negative sites (^) considered during evaluation are always resampled for each replica, based on the size of the positive

dataset.

Dataset Clusters Evaluated sites Filtered negative sites�

Collagen 5 243 4,517

Literature-collagen 4 152 4,588

MS-collagen 4 95 4,508

Literature 167 877 13,481

MS-HeLa 198 324 14,982

MS-Kim 625 1,694 24,692

MS 705 2,002 26,631

Negative 493 7,875^ -

https://doi.org/10.1371/journal.pcbi.1007967.t001

Table 2. Methods overview. Self-reported performance is taken from the corresponding method publications preferring values reported from independent validation

sets, i.e. not used in the training. The “Type” column indicates the type of hydroxylated residue predicted, proline (P), lysine (K) and tyrosine (Y). “Window” indicates the

number or neighbour residues considered for a prediction. Self-reported performance includes specificity (Sp), sensitivity (Sn), accuracy (acc), Matthew’s Correlation

Coefficient (MCC) and the area under the ROC curve (AUC).

Method Implementation Availability Training set available Type Window Self-reported performance

Sp Sn Acc MCC AUC

AMS3

Basu et al. 2010
Neural network Stand alone no P,K 9 - 0.95 - - 0.97

HydPred

Li et al. 2016
Random forest Web service yes P,K 13 0.89 0.71 0.85 0.60 -

iHyd-PseAAC

Xu et al. 2014
Vector similarity Web service yes P,K 13 0.79 0.71 0.75 0.52 -

ModPred

Pejaver et al. 2014
Logistic regression Stand alone yes P,K,Y 21 0.90 0.54 0.72 - 0.83

OH-Pred

Shi et al. 2015
Support Vector Machine Stand alone no P,K 15 0.82 0.76 0.81 0.52 -

PredHydroxy

Jia et al. 2017
Support Vector Machine Web service yes P,K 13 0.87 0.96 0.92 0.83 -

RF-Hydroxysite

Ismail et al. 2016
Random forest Web service no P,K 13 0.96 0.97 0.96 0.93 -

https://doi.org/10.1371/journal.pcbi.1007967.t002
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All methods do not seem to generalize well and have low sensitivity on the new MS exam-

ples. Even if there are substantial differences in the MS site detection protocol between the

MS-HeLa and MS-Kim datasets, predictor behavior is very similar (Figs 2 and 3 and Tables

B-C in S1 Text). Both absolute values and predictor rankings change significantly when mea-

suring the performance on new MS examples (Table D in S1 Text). High specificity combined

with low sensitivity, e.g. PredHydroxy, is critical in particular for unbalanced and incomplete

datasets like PTMs. In this context, it simply means the predictor is classifying the majority of

sites as negatives. Since the positive to negative ratio for PH in the human genome is less than

10%, negative examples might become positive as new experimental evidence is collected. This

would result in an increased false negative rate and decreased sensitivity. Such a behaviour is

typical of overfitted models trained on biased datasets, which are unable to generalize. All pre-

dictors have a balanced accuracy close to 0.5, indicating a random behavior. Notably, only

ModPred is better than random for the MS-HeLa dataset (Fig 2 and Table B in S1 Text),

achieving the highest MCC, 0.13 in MS-Kim (Fig 3) and 0.32 in MS-HeLa (Fig 2), which is still

not sufficient for practical use by experimentalists. For example, considering the merged MS

dataset, only 62% of positive hydroxylation site predictions will be correct (precision) and 65%

of modified residues undetected (false negative rate) (Table D in S1 Text). We explored the

possibility of reducing false positives by implementing a consensus predictor based on a

Fig 1. Performance on literature examples. The evaluation is performed only considering hydroxylated sites detected by single protein experiments

(Literature dataset). Error bars are the standard deviation calculated over 1,000 replica sets. The consensus baseline method is the majority vote across

all predictors. Suffix numbers in the method names indicate increasing quality threshold as defined by developers.

https://doi.org/10.1371/journal.pcbi.1007967.g001
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majority vote. In all evaluations the consensus is in line with the method average. This again

highlights how methods are unable to generalize, with predictors agreeing only on a very small

subset of positive sites, shown by the low sensitivity in the MS dataset. Overall, it is fair to say

that the predictors do not work well on the new datasets. The NaÏve-HMM baseline (see Mate-

rials & Methods), is trained as an upper estimate for predictor performance using also new

examples. Since its training set overlaps the benchmarking set it behaves like a perfect predic-

tor. However, while its ability to generalize is not proven, it demonstrates how negative sites

are significantly different from positives and predictors can benefit from incorporating new

sites in training.

Collagen

A case of special interest may be collagen, which accounts for very specific hydroxylation

motifs. In collagen, hydroxylation affects different locations corresponding to different sites

and molecular meanings. Collagen presents the canonical Xaa-Yaa-Gly pattern with the Pro-

Hyp-Gly triplet found in 10.5% of collagen motifs [26]. Xaa is a Proline in 28% and Yaa is Hyp

in 38% of the cases. The Hyp position matters, as in Xaa it prevents the formation of the tropo-

collagen (TC) triple helix [27]. Collagen motifs are conserved, well studied and easier to pre-

dict compared to signaling hydroxylation. Both the Literature and MS datasets include 152

Fig 2. Performance on the MS-HeLa datasets. The evaluation is performed only considering hydroxylated sites detected by a mass-spectrometry

experiment (MS-HeLa dataset). Consensus and errors are calculated as in the previous figure. Suffix numbers in the method names indicate increasing

quality threshold as defined by developers.

https://doi.org/10.1371/journal.pcbi.1007967.g002
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and 95 collagen sites respectively (Table 1), all grouped into only 5 different clusters (Fig B in

S1 Text). Unsurprisingly, considering Literature collagen motifs, predictors stand out achiev-

ing a maximum MCC of 0.81 and accuracy of 0.94 (Table C in S1 Text). The situation is similar

when considering collagen examples from the MS dataset (Fig 4), indicating the quality of the

MS data is comparable to the Literature data. Comparing these results with the MS dataset per-

formance, it can be concluded that methods were trained for predicting collagen sites rather

than hydroxylation sites in general. With the exception of ModPred, the low sensitivity on the

MS collagen dataset indicates methods were not trained following the best practices, resulting

in an overfitting of the predictors.

Dataset characterization

Given the difference in performance across datasets, we tried to characterize better potential

differences in the datasets. Hydroxylation is known to be linked to angiogenesis and tumor

growth and hydroxylases have been observed to be particularly active [28] with changing colla-

gen patterns in cancer cells [29]. Therefore, we distinguished between examples from single-

protein experiments described in the literature and hydroxylation observed in tumor cells

from MS experiments. MS experiments are not free from bias [30] and enriched in flexible

peptides [31]. One of the two MS experiments has also been performed using an anti-

Fig 3. Performance on the MS-Kim datasets. The evaluation is performed only considering hydroxylated sites detected by a mass-spectrometry

experiment (MS-Kim dataset). Consensus and errors are calculated as in the previous figure. Suffix numbers in the method names indicate increasing

quality threshold as defined by developers.

https://doi.org/10.1371/journal.pcbi.1007967.g003
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hydroxyproline antibody which may induce a sequence bias. The analysis was therefore lim-

ited to high confidence sites with at least 80% experimental score probability. Considering

sequence site similarity, the Literature dataset is a subset of the MS dataset. 122 out of 165 Lit-

erature clusters (74%) have at least one MS site (intersection). These clusters include 92% of

the total Literature examples (13,196 sites). On the other hand, 583 clusters including 15,437

sites have only MS examples representing the real new hydroxylation motifs. In order to assess

non-specific proline binding, a comparison between the MS and Literature datasets is reported

in Fig 5. The residue frequencies around the modified proline (Panel A) decay exponentially

for the MS dataset while Literature sites have a peak at 25%, with a distribution shifted towards

enriched sites. This is probably due to a stronger contribution of highly repeated collagen pat-

terns. A supposed bias towards polyproline detection by MS experiments is however not

observed. The number of hydroxylated sites per protein (Fig 5F), despite being similar for the

two datasets, shows more sites per protein in Literature which might also be related to collagen

abundance. The expected over-hydroxylation of MS sites is again not observed. Three quarters

of the sites are hydroxylated 100% of the time according to the MS results, but we do not have

this information for the Literature dataset. As previously observed for several PTM types [4],

hydroxylation also has a preference for intrinsically disordered regions (Fig 5C) rather than

for secondary structure elements (Fig 5D and 5E) or low complexity regions (Fig 5B). In

Fig 4. Performance on MS-collagen examples. The evaluation is performed only considering hydroxylated sites detected by mass-spectrometry

experiments and belonging to collagen proteins (MS-collagen dataset). Consensus and errors are calculated as in the previous figure. Suffix numbers in

the method names indicate increasing quality threshold as defined by developers.

https://doi.org/10.1371/journal.pcbi.1007967.g004
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summary, even if the distributions are statistically different, no particular evidence was found

for a specific sequence-based bias in the MS dataset compared to Literature examples. This

suggests that the predictors, if properly trained, should be able to generalize sufficiently to pre-

dict MS hydroxylation sites.

Discussion

We assessed hydroxylation site predictors as a paradigm for common situations arising with

sequence-based machine learning methods [6]. Our analysis using unbiased testing data set

suggests that predictors perform no better than random when predicting hydroxylation PTM

on new examples, which make them unsuitable for experimental biologists. This is in strong

contrast to the self-reported performances on independent datasets. Bad performance on new

examples can be explained by one of two reasons. First, a bad training protocol and second, an

intrinsic problem of machine learning methods able to detect only patterns highly similar to

training examples. For the hydroxylation predictors assessed here, problems in the training

protocol also extend to the construction of the dataset. Some methods choose negatives from

complementary sites in hydroxylated sequences, while others randomly select negatives from

non-hydroxylated sequences. The first strategy might be more reliable, since presumably both

positive and negative sites have been tested experimentally. On the contrary, randomly

selected proteins might include modifications not observed yet. Some methods generate train-

ing sets by filtering negative sites, using solvent accessibility predictions to exclude positions

on the protein surface. This is problematic since it can introduce additional uncertainty when

surface residues are mispredicted. Another critical point is the sequence redundancy in the

training set. All methods, with the exception of ModPred, reduce redundancy at the protein

level. This is problematic since protein pairs with low global identity can share short regions

with high similarity including the hydroxylation sites. Even more problematic is the choice of

Fig 5. Features distribution for MS and Literature sites. Content refers to the fraction of residues in the site sequence associated with a given feature. Density refers

to the fraction of proteins in the dataset with a given number of sites.

https://doi.org/10.1371/journal.pcbi.1007967.g005
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the validation set. When both the training and validation sets include the same bias, predictors

will over-weight biased features and perform poorly on new examples. Besides technical prob-

lems related to machine learning, predicting PTMs is particularly difficult as different modifi-

cation patterns can be observed in different cells as well as in response to environmental

conditions or disease states. Hydroxylation apparently does not escape this paradigm and pre-

dictors are not able to provide novel hypotheses. While new data generated by MS experiments

will improve predictor accuracy and sensitivity, at the moment it is hard to estimate the

amount of examples necessary to represent the entire PTM motif space. This is particularly

critical for PTMs in general as they are heavily involved in the regulation of biological pro-

cesses/signaling and have an extremely dynamic turnover.

In conclusion, we have provided a thorough independent assessment of previously pub-

lished hydroxylation site predictors. Our results do not bode well for the field, suggesting that

self-reported performance is often overestimated and difficult to replicate. This should be seen

as an example for the common pitfalls associated with many of the current PTM predictors.

Knowing how well training sets cover the real PTM distribution is crucial. Experimentalists

should be careful when using PTM predictors until more independent assessments are able to

establish the true state-of-the-art.

Materials and methods

Dataset

Hydroxylated substrate sequences were retrieved from SwissProt [32] (version 2018_03) con-

sidering all organisms. The dataset is further filtered by retaining only manually curated anno-

tations with evidence code “experimental evidence used in manual assertion” (ECO:0000269)

or “curator inference used in manual assertion” (ECO:0000305). UniProtKB provides a con-

trolled vocabulary of all PTM types, of which the following terms are considered for our PH

analysis: 4-hydroxyproline (1,033 sites), hydroxyproline (220 sites), 3-hydroxyproline (27

sites), 3,4-dihydroxyproline (5 sites) and (3R,4R)-3,4-dihydroxyproline (1 site). Additional PH

sites are retrieved from the literature [33–36] including two large scale MS experiments, one

on HeLa cells [23] and another based on 30 normal human samples including almost all tissues

[24], reanalysed with a new software, TagGraph (PRIDE accession PXD005912) [25]. MS

experiments provide the majority of new examples currently not included in SwissProt. HeLa

examples are filtered to retain only sites with a confidence probability of 0.8 to minimize

assignment errors. Compared to the original analysis [24], TagGraph on average tripled the

number of identified sites with a degree of variability depending on the tissue type [25]. Even

though some PH methods predict lysine and tyrosine hydroxylation, only prolines are consid-

ered in the assessment in order to reach statistical significance given the paucity of data for

other PTMs. All predictors identify modified residues exploiting the sequence context (sur-

rounding residues) with the assumption that it encodes sufficient information for molecular

recognition. The maximum window size adopted by the methods used in this study is 21

residues.

The final dataset includes 1,419 proteins with at least one hydroxylated proline and output

for all predictors. Only 10% of all prolines are hydroxylated (3,771 out of 37,670). Sites are

defined considering a window of 13 residues centered on the proline. The evaluation of predic-

tors has been performed on a subset of sites selected as follows (Fig 6). Both positive and nega-

tive sites are clustered together based on sequence similarity using a distance matrix

representing the pairwise sequence divergence between all sites. The distance is computed as

the inverse of the similarity score, which is calculated elementwise for each pair of residues of

the two sequence sites. The score of a single pair is taken from the Blosum62 matrix, with a
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penalty of -5 for gap opening and -1 for gap extension. Gaps are introduced to substitute non-

canonical residues or to pad the site sequence to reach the window size when a proline is too

close to sequence ends. Fig A in S1 Text shows the dendrogram of hierarchical clustering cal-

culated with the UPGMA algorithm implemented in the SciPy library. Negative examples too

similar to positive examples are removed, i.e. when falling inside clusters containing at least

one hydroxylated proline (positive site). The evaluation of the predictors is performed on

1,000 different balanced replica sets, each built by random picking 70% of the available positive

sites and the same number of negatives.

The evaluation is provided for different subsets of positive examples. Namely, sites from

single protein experiments (Literature) and mass-spectrometry (MS-Kim, MS-HeLa). The two

mass-spectrometry datasets were also merged for some of the presented analysis (MS dataset).

Both the Literature and MS datasets can be further divided into collagen and non-collagen

entries by recognizing the collagen motif from Pfam domain annotation PF01391 [37]. The

corresponding collagen site datasets are respectively called Literature-collagen and MS-colla-

gen. The tested examples are resampled as described above for each subset and each replica.

To further characterize the dataset sequences, secondary structure (helix/sheet propensity) is

predicted using FELLS [38], functional disorder with MobiDB-lite [39] and low complexity

with SEG [40]. All predictors were executed on full protein sequences. The fraction of residues

assigned to a given feature (content) is calculated for each site. Proline content is calculated as

the fraction of prolines in the site irrespective of any hydroxylation modification.

Fig 6. Dataset generation. Negative (blue dots) and positive sites (red dots) are clustered based on sequence similarity. Positive clusters

(gray background) contain at least one hydroxylation site and negative examples falling inside positive clusters are removed. 1,000

replica sets are created by random sampling 70% of the positive sites and the same number from the negatives.

https://doi.org/10.1371/journal.pcbi.1007967.g006
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Prediction

We evaluated seven different PH predictors on entire protein sequences, implemented as

either stand-alone software or web server. Since no web server allowed for programmatic

access, all predictions were parsed from web page results. The iHydPse-CP web server [20]

stopped working during the benchmark and was excluded from the evaluation as it was never

restored. Another method is described in the literature [41] but the software has not been

released even upon request. Some methods are designed to predict different modification

types. Our evaluation focuses only on proline hydroxylation in order to provide statistically

significant results. Some predictors (HydPred, ModPred, PredHydroxy, RF-Hydroxysite) esti-

mate prediction quality providing a confidence value. When different quality levels are pro-

vided, we evaluated them as different predictors. In all figures, suffix numbers in method

names indicate increasing quality threshold as defined by the developers. The random baseline

method predicts each site randomly as hydroxylated with 50% probability. We decided not to

include a separate random baseline with a probability proportional to the data imbalance,

since this probability is difficult to estimate for hydroxylation. The random baseline represents

a situation where prediction is effectively useless and predictors should achieve significantly

better results to be of any practical value for experimentalists.

Naive HMM

The “Naive-HMM” baseline method has been implemented to demonstrate that negative

examples are very different from positive sites and that they may be correctly classified by inte-

grating new information into training datasets. A database of 750 HMMs representing hydrox-

ylated motifs were built considering those clusters containing at least one positive site as seeds

using the HMMER software [42]. Naive-HMM predictions were generated by aligning all

dataset sites against the HMM database. Hits with an alignment E-value better than 1.0 are

considered positive predictions. The very permissive E-value is necessary as sequence sites are

very short compared to full Pfam domains. Less permissive E-value thresholds do not signifi-

cantly affect the performance. It should be noted that positive examples in the training and test

sets overlap completely, even if negative sites inside HMM seeds are retained. Notice that the

Naive-HMM baseline is not meant to be of any use for biologists and does not guarantee to

generalize for new sites, rather it is intended as an upper limit for predictor performance.

Evaluation

The assessment is site centric, i.e. all modified (and non-modified) prolines are considered

independent examples when belonging to the same protein. True positives (TP) correspond to

correctly predicted hydroxylation sites, whereas false positives (FP) are prolines predicted as

modified in contradiction to experimental observations. True negatives (TN) are sites pre-

dicted and observed as not hydroxylated and false negatives (FN) are negative predictions of

truly modified prolines. Sensitivity (Sn), specificity (Sp), weighted (or balanced) accuracy

(WACC), F-measure (F1), Precision or Positive Predictive Value (PREC) and Matthew’s cor-

relation coefficient (MCC) are computed using standard definitions. Even where not men-

tioned explicitly, accuracy is always balanced.

Supporting information

S1 Text. Supplementary tables and figures.

(DOCX)

PLOS COMPUTATIONAL BIOLOGY Assessing hydroxylation post translational modification

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007967 June 22, 2020 12 / 15

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007967.s001
https://doi.org/10.1371/journal.pcbi.1007967


S1 Data. Evaluation source code, predictions and reference datasets.

(ZIP)

Author Contributions

Conceptualization: Damiano Piovesan, Silvio C. E. Tosatto.

Data curation: Andras Hatos, Federica Quaglia, Alexander Miguel Monzon.

Investigation: Damiano Piovesan, Andras Hatos, Giovanni Minervini, Silvio C. E. Tosatto.

Methodology: Damiano Piovesan.

Software: Damiano Piovesan.

Writing – original draft: Damiano Piovesan, Andras Hatos, Silvio C. E. Tosatto.

Writing – review & editing: Damiano Piovesan, Andras Hatos, Alexander Miguel Monzon,

Silvio C. E. Tosatto.

References
1. Basu S. and Plewczynski D. (2010) AMS 3.0: prediction of post-translational modifications. BMC Bioin-

formatics, 11, 210. https://doi.org/10.1186/1471-2105-11-210 PMID: 20423529

2. Farriol-Mathis N., Garavelli J.S., Boeckmann B., Duvaud S., Gasteiger E., Gateau A., Veuthey A.-L.

and Bairoch A. (2004) Annotation of post-translational modifications in the Swiss-Prot knowledge base.

Proteomics, 4, 1537–1550. https://doi.org/10.1002/pmic.200300764 PMID: 15174124

3. Sims R.J. and Reinberg D. (2008) Is there a code embedded in proteins that is based on post-transla-

tional modifications? Nat. Rev. Mol. Cell Biol., 9, 815–820. https://doi.org/10.1038/nrm2502 PMID:

18784729

4. Pejaver V., Hsu W.-L., Xin F., Dunker A.K., Uversky V.N. and Radivojac P. (2014) The structural and

functional signatures of proteins that undergo multiple events of post-translational modification. Protein

Sci., 23, 1077–1093. https://doi.org/10.1002/pro.2494 PMID: 24888500

5. Eisenhaber B. and Eisenhaber F. (2010) Prediction of posttranslational modification of proteins from

their amino acid sequence. Methods Mol. Biol. Clifton NJ, 609, 365–384.

6. Walsh I., Pollastri G. and Tosatto S.C.E. (2016) Correct machine learning on protein sequences: a

peer-reviewing perspective. Brief. Bioinform., 17, 831–840. https://doi.org/10.1093/bib/bbv082 PMID:

26411473

7. Schwartz D. (2012) Prediction of lysine post-translational modifications using bioinformatic tools.

Essays Biochem., 52, 165–177. https://doi.org/10.1042/bse0520165 PMID: 22708570

8. Khoury G.A., Baliban R.C. and Floudas C.A. (2011) Proteome-wide post-translational modification sta-

tistics: frequency analysis and curation of the swiss-prot database. Sci. Rep., 1.

9. Gatenby R.A. and Gillies R.J. (2004) Why do cancers have high aerobic glycolysis? Nat. Rev. Cancer,

4, 891–899. https://doi.org/10.1038/nrc1478 PMID: 15516961

10. Melillo G. (2006) Inhibiting hypoxia-inducible factor 1 for cancer therapy. Mol. Cancer Res. MCR, 4,

601–605. https://doi.org/10.1158/1541-7786.MCR-06-0235 PMID: 16940159

11. Semenza G.L. (2002) HIF-1 and tumor progression: pathophysiology and therapeutics. Trends Mol.

Med., 8, S62–67. https://doi.org/10.1016/s1471-4914(02)02317-1 PMID: 11927290

12. Tabaro F., Minervini G., Sundus F., Quaglia F., Leonardi E., Piovesan D. and Tosatto S.C.E. (2016)

VHLdb: A database of von Hippel-Lindau protein interactors and mutations. Sci. Rep., 6, 31128. https://

doi.org/10.1038/srep31128 PMID: 27511743

13. Minervini G., Quaglia F. and Tosatto S.C.E. (2015) Insights into the proline hydroxylase (PHD) family,

molecular evolution and its impact on human health. Biochimie, 116, 114–124. https://doi.org/10.1016/

j.biochi.2015.07.009 PMID: 26187473

14. Chowdhury R., McDonough M.A., Mecinović J., Loenarz C., Flashman E., Hewitson K.S., Domene C.

and Schofield C.J. (2009) Structural basis for binding of hypoxia-inducible factor to the oxygen-sensing

prolyl hydroxylases. Struct. Lond. Engl. 1993, 17, 981–989.

15. Yang Z.R. (2009) Predict Collagen Hydroxyproline Sites Using Support Vector Machines. J. Comput.

Biol., 16, 691–702. https://doi.org/10.1089/cmb.2008.0167 PMID: 19432539

PLOS COMPUTATIONAL BIOLOGY Assessing hydroxylation post translational modification

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007967 June 22, 2020 13 / 15

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007967.s002
https://doi.org/10.1186/1471-2105-11-210
http://www.ncbi.nlm.nih.gov/pubmed/20423529
https://doi.org/10.1002/pmic.200300764
http://www.ncbi.nlm.nih.gov/pubmed/15174124
https://doi.org/10.1038/nrm2502
http://www.ncbi.nlm.nih.gov/pubmed/18784729
https://doi.org/10.1002/pro.2494
http://www.ncbi.nlm.nih.gov/pubmed/24888500
https://doi.org/10.1093/bib/bbv082
http://www.ncbi.nlm.nih.gov/pubmed/26411473
https://doi.org/10.1042/bse0520165
http://www.ncbi.nlm.nih.gov/pubmed/22708570
https://doi.org/10.1038/nrc1478
http://www.ncbi.nlm.nih.gov/pubmed/15516961
https://doi.org/10.1158/1541-7786.MCR-06-0235
http://www.ncbi.nlm.nih.gov/pubmed/16940159
https://doi.org/10.1016/s1471-4914(02)02317-1
http://www.ncbi.nlm.nih.gov/pubmed/11927290
https://doi.org/10.1038/srep31128
https://doi.org/10.1038/srep31128
http://www.ncbi.nlm.nih.gov/pubmed/27511743
https://doi.org/10.1016/j.biochi.2015.07.009
https://doi.org/10.1016/j.biochi.2015.07.009
http://www.ncbi.nlm.nih.gov/pubmed/26187473
https://doi.org/10.1089/cmb.2008.0167
http://www.ncbi.nlm.nih.gov/pubmed/19432539
https://doi.org/10.1371/journal.pcbi.1007967


16. Li S., Lu J., Li J., Chen X., Yao X. and Xi L. (2016) HydPred: a novel method for the identification of pro-

tein hydroxylation sites that reveals new insights into human inherited disease. Mol. BioSyst., 12, 490–

498. https://doi.org/10.1039/c5mb00681c PMID: 26661679

17. Shi S.-P., Chen X., Xu H.-D. and Qiu J.-D. (2015) PredHydroxy: computational prediction of protein

hydroxylation site locations based on the primary structure. Mol. BioSyst., 11, 819–825. https://doi.org/

10.1039/c4mb00646a PMID: 25534958

18. Ismail H.D., Newman R.H. and Kc D.B. (2016) RF-Hydroxysite: a random forest based predictor for

hydroxylation sites. Mol. BioSyst., 12, 2427–2435. https://doi.org/10.1039/c6mb00179c PMID:

27292874

19. Xu Y., Wen X., Shao X.-J., Deng N.-Y. and Chou K.-C. (2014) iHyd-PseAAC: Predicting Hydroxyproline

and Hydroxylysine in Proteins by Incorporating Dipeptide Position-Specific Propensity into Pseudo

Amino Acid Composition. Int. J. Mol. Sci., 15, 7594–7610. https://doi.org/10.3390/ijms15057594 PMID:

24857907

20. Qiu W.-R., Sun B.-Q., Xiao X., Xu Z.-C., Chou K.-C., Qiu W.-R., Sun B.-Q., Xiao X., Xu Z.-C. and Chou

K.-C. (2016) iHyd-PseCp: Identify hydroxyproline and hydroxylysine in proteins by incorporating

sequence-coupled effects into general PseAAC. Oncotarget, 7, 44310–44321. https://doi.org/10.

18632/oncotarget.10027 PMID: 27322424

21. Jia C.-Z., He W.-Y. and Yao Y.-H. (2017) OH-PRED: prediction of protein hydroxylation sites by incor-

porating adapted normal distribution bi-profile Bayes feature extraction and physicochemical properties

of amino acids. J. Biomol. Struct. Dyn., 35, 829–835. https://doi.org/10.1080/07391102.2016.1163294

PMID: 26957000

22. The UniProt Consortium (2017) UniProt: the universal protein knowledgebase. Nucleic Acids Res., 45,

D158–D169. https://doi.org/10.1093/nar/gkw1099 PMID: 27899622

23. Zhou T., Erber L., Liu B., Gao Y., Ruan H.-B., Chen Y., Zhou T., Erber L., Liu B., Gao Y., et al. (2016)

Proteomic analysis reveals diverse proline hydroxylation-mediated oxygen-sensing cellular pathways in

cancer cells. Oncotarget, 7, 79154–79169. https://doi.org/10.18632/oncotarget.12632 PMID:

27764789

24. Kim M.-S., Pinto S.M., Getnet D., Nirujogi R.S., Manda S.S., Chaerkady R., Madugundu A.K., Kelkar D.

S., Isserlin R., Jain S., et al. (2014) A draft map of the human proteome. Nature, 509, 575–581. https://

doi.org/10.1038/nature13302 PMID: 24870542

25. Devabhaktuni A., Lin S., Zhang L., Swaminathan K., Gonzalez C.G., Olsson N., Pearlman S.M., Raw-

son K. and Elias J.E. (2019) TagGraph reveals vast protein modification landscapes from large tandem

mass spectrometry datasets. Nat. Biotechnol., 37, 469–479. https://doi.org/10.1038/s41587-019-0067-

5 PMID: 30936560

26. Ramshaw J.A., Shah N.K. and Brodsky B. (1998) Gly-X-Y tripeptide frequencies in collagen: a context

for host-guest triple-helical peptides. J. Struct. Biol., 122, 86–91. https://doi.org/10.1006/jsbi.1998.3977

PMID: 9724608

27. Shoulders M.D. and Raines R.T. (2009) Collagen structure and stability. Annu. Rev. Biochem., 78,

929–958. https://doi.org/10.1146/annurev.biochem.77.032207.120833 PMID: 19344236
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