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Increased striatal activity in adolescence benefits
learning

S. Peters'2 & E.A. Crone'?

Adolescence is associated with enhanced striatal activity in response to rewards. This has
been linked to increased risk-taking behavior and negative health outcomes. However, striatal
activity is also important for learning, yet it is unknown whether heightened striatal responses
in adolescence also benefit cognitive learning performance. In this longitudinal fMRI study
(736 scans spanning 5 years in participants ages 8-29), we investigate whether adolescents
show enhanced striatal activity during feedback learning, and whether this enhanced activity
is associated with better learning performance. Here we report that neural activity indicating
sensitivity to informative value of feedback peaks in late adolescence and occurs in dorsal
caudate, ventral caudate, and nucleus accumbens. Increased activity in dorsal and ventral
caudate predicts better current and future learning performance. This suggests that enhanced
striatal activity in adolescents is adaptive for learning and may point to adolescence as a
unique life phase for increased feedback-learning performance.
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umerous studies have demonstrated that adolescents
show increased striatal activity compared to children and
adults when receiving monetary rewards!. This increased
reward-related striatal activity in adolescence has been linked to
negative consequences such as risk-taking behavior and alcohol
use®3. However, it is possible that heightened striatal activity has
not only negative, but also positive consequences in adolescence?.
Given that adolescence is a natural transition period of increased

exploration and adaption to changing environments®, a crucial

a Feedback learning task

question is whether elevated striatal responses provide benefits for
learning.

Much of our learning takes place by adjusting behavior fol-
lowing feedback, and research in adults has revealed an important
role of the striatum in feedback learning®. The striatum consists
of several subregions, such as the dorsal caudate, ventral caudate,
and nucleus accumbens, with different cortical connections and
functional specializations’. Traditionally, more dorsally located
regions in the striatum are associated with cognitively complex
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Fig. 1 Mixed-model analyses for development of striatal subregions. a Feedback-learning task, b predicted trajectories for feedback-learning
performance (dotted lines represent 95% confidence intervals), € anatomical ROIs in striatal subregions (dark blue = dorsal caudate, light blue = ventral
caudate, red = nucleus accumbens), d predicted trajectories for sensitivity to learning signals (contrast learning > application). A quadratic age effect was
the best fit for dorsal caudate (no age: Akaike Information Criterion (AIC) = 2337; linear: AIC = 2339, log-like p = 0.606; quadratic: AIC = 2335, log-like p
=0.020), ventral caudate (no age: AIC =2370; linear: AIC = 2355, log-like p < 0.001; quadratic: AIC = 2339, log-like p < 0.001) and nucleus accumbens
(no age: AIC =2082; linear: AIC = 2056, log-like p < 0.001; quadratic: AIC =2050, log-like p=0.004). e Predicted trajectories for sensitivity to valence
(contrast positive > negative learning). The best model for dorsal caudate revealed no age-related changes (no age: AIC = 2744; linear: AIC =2746,
log-like p=0.662; quadratic: AIC =2748, log-like p=0.487), a linear age effect for ventral caudate (no age: AIC =2826; linear: AIC = 2820, log-like
p=0.007; quadratic: AIC =0.2819, log-like p=0.082), and a quadratic age effect for nucleus accumbens (no age: AIC =2536; linear: AIC = 2521, log-like

p < 0.001; quadratic: AIC = 2516, log-like p=10.013) (N =736 scans)
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Fig. 2 Individual data at three time points for neural activity in dorsal caudate (center-of-mass coordinates (x, y, 2): 1, 7, 15), ventral caudate (0, 16, 2), and
nucleus accumbens (-1, 12, =7) for sensitivity to informative value (learning > application) and sensitivity to valence (positive > negative learning)

(N=736)

instrumental learning and more ventral regions to less complex
Pavlovian learning®. Currently little is known about how
learning-related activity in these subregions changes from child-
hood to adulthood. This can only be tested using a longitudinal
study design, as such designs allow for the investigation of within-
person developmental trajectories and reduce cohort-related
confounds’.

In this study we collected functional magnetic resonance
imaging (fMRI) data in a large longitudinal sample with three
biannual measurement waves (age 8—25 years at the first wave).
Participants performed a feedback-learning task previously found
to predict reading and mathematics performance 2 years later!”.
Research in adults suggests that the striatum is sensitive to both
the informative value for learning and valence of feedback'!, so
we accordingly focused our analyses on the striatal response to
both the informative value and the valence of feedback. The
results from this study show that feedback-related activity in
dorsal caudate, ventral caudate, and nucleus accumbens peaks in
late adolescence/early adulthood (between ages 17 and 20)
compared to children, younger adolescents, and adults. Moreover,
increased activity in dorsal and ventral caudate predicts better
current and future learning performance.

Results

Whole-brain neural activity during feedback learning. Partici-
pants performed a feedback-learning task while fMRI images
were collected. This happened in three measurement waves (total
N=1736 scans, age 8-25 years at time point 1 (TP1), 51% female).
On each trial, they viewed three squares with a stimulus presented
below the squares. They were instructed to sort stimuli in the
correct square and to use positive and negative feedback to learn
the correct sorting rule for all three squares (Fig. la). Striatal
sensitivity to learning signals was determined on a trial-by-trial
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basis by comparing activity for feedback with informative value
(feedback early in the learning process which was still informative
for learning) and feedback without informative value (feedback
during rule application, when associations were already learned).
Sensitivity to valence was measured by comparing activity after
positive and negative feedback during rule-learning. We first
tested—on a whole-brain level—whether the striatum was indeed
activated during feedback learning in our sample. We focused on
the contrast learning > application (sensitivity to informative
value) and positive > negative learning (sensitivity to valence),
which are two different processes and may therefore have distinct
developmental trajectories'>. The whole-brain results show
widespread activity including in the striatum, dorsolateral pre-
frontal cortex, parietal cortex, and anterior cingulate/supple-
mentary motor area (SMA), and survive a family-wise
error (FWE)-corrected threshold at p<0.05 (max T-values
reached 29.31 for learning > application and 12.94 for positive >
negative learning). See Supplementary Fig. 1 for the whole-brain
results per contrast and Supplementary Table 1 for the brain
coordinates at each time point.

Developmental trajectories of striatal activity. Next, we inves-
tigated the longitudinal development of neural activity in three
regions-of-interest (ROIs) in the striatum (dorsal caudate, ventral
caudate, and nucleus accumbens) based on the Harvard-Oxford
Subcortical Atlas. Given that numerous studies ascribed different
functions to dorsal and ventral caudate”!"!3, we split the ana-
tomical caudate into a dorsal and ventral part following recom-
mendations by Postuma & Dagher!'* (z> 7 = dorsal) (Fig. 1c; see
Supplementary Table 2 for N, mean, and SD per ROI, contrast
and time point). We corrected for multiple comparisons (MC)
with a Bonferroni method adjusted for correlated variables, which
resulted in @=0.027 (Methods). Reliability over time in these
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ROIs was confirmed by moderate intra-class correlation (ICC)
values (Supplementary Table 3). Individual data for activity in
these ROIs over three time points are presented in Fig. 2.

To investigate the longitudinal trajectory of striatal sensitivity
to learning signals and valence, we used mixed-model analyses to
compare a model with no age effect, a model with a linear age
effect, and a model with a quadratic age effect. A linear model
indicates monotonic development and a quadratic model
indicates an adolescent-specific effect!>1°. First, we focused on
neural sensitivity to learning signals. The modeling results
indicated that a quadratic trajectory with a peak in late
adolescence (between ages 17 and 20) was the best fit for all
regions. That is, the AIC value was lowest for a quadratic age
effect compared to no age effect or a linear age effect in dorsal
caudate (no age: AIC=2337; linear: AIC=2339, log like
p=0. 606 quadratic: AIC=2335, log-like p=0.020; age' B=
0.54, age’ B=-2.88, N="736), ventral caudate (no age: AIC=
2370; linear: AIC=2355, log like p<0. 001 quadratic: AIC=
2339, log-like p < 0.001; age! B=5.24, age? B=-520, N=736),
and nucleus accumbens (no age: AIC =2082; linear: AIC= 2056
log-like p < 0 001; quadratic: AIC = 2050, log-like p=0.004; age!
B=5.47, age? B=-2.95, N=736). See Fig. 1d for the predicted
trajectories. For sensitivity to valence (positive > negative learn-
ing), the modeling results indicated that the best model for dorsal
caudate was one with no age-related changes (no age: AIC=2744;
linear: AIC=2746, log-like p=0.662; quadratic: AIC=2748,
log-like p=0.487; N=736). For ventral caudate, there was a
linear decrease with age for positive > negative learning (no age:
AIC=12826; linear: AIC=2820, log like p=0.007; quadratic:
AIC=2819, log-like p=0.082; age’ B=-4.63, N=736). For
nucleus accumbens, the best model was a quadratic decrease
with age in nucleus accumbens activity for positive > negative
learning (no age: AIC=2536; linear: AIC=2521, log- hke
p <0.001; quadratlc AIC=2516, log-like p=0.013; age!
B=-5.80, age> B=3.40, N=736). See Fig. le for the predicted
trajectories.

Striatal activity and learning performance. Next, we tested
whether enhanced striatum activity was linked to better learning
performance. Feedback-learning performance was defined as the
percentage of feedback during the learning phase, which was
successfully used on the next trial (stay for positive feedback,
switch for negative feedback). The analyses were performed
without behavioral outliers (N=5; Supplementary Fig. 2) to
ensure we included only participants who understood the task.
First, we used mixed-model analyses to assess the developmental
trajectory for learning performance by comparing a model with
no age effect, a model with a linear age effect and a model with a
quadratic age effect. The results indicated that the model with a
quadratic age effect (peaking around late adolescence/early
adulthood around age 20-21) was the best fit (no age: AIC=4371;
linear: AIC=4287, log like p<O0. 001 quadratic: AIC=4250,
log-like p <0.001; age! B=47.84, age? B=-30.12, N=731). See
Fig. 1b for the predicted trajectory.

Subsequently, we tested the relationship between striatal
activity and learning performance in two ways: (i) using mixed-
model analyses, we tested whether learning performance was
predicted by striatal activity at three time points, including
within-subject changes in learning performance and within-
subject changes in striatal activity over time, and (ii) using
regression analyses, we tested whether striatal activity had
predictive value for current learning performance and for
performance 2 or 4 years later. First, we used mixed-model
hierarchical regression analyses to test whether learning perfor-
mance was best predicted by a model with a quadratic age effect
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Table 1 Predicting learning performance above a quadratic
effect of age from neural sensitivity to informative value
(learning > application) (N =731)

Model B SE t p-value
parameter

Intercept 94.62 0.21 458.31 <0.001
Age' 48.90 513 9.54 <0.001
Age? -29.86 474 -6.30 <0.001
Dorsal caudate 0.51 0.16 3.09 0.002
Intercept 94.62 0.21 458.00 <0.001
Age! 48.50 513 9.46 <0.001
Age? -29.87 4.75 -6.30 <0.001
Ventral caudate  0.44 0.16 2.71 0.007

Dorsal and ventral caudate predicted learning performance. When adding striatal activity to the
model, we used the regression residuals from the best age model for that region

alone, or whether adding striatal activity resulted in a better
prediction of learning performance. When adding striatal activity
to the model, we used regression residuals from the best age
model for that region, e.g., when adding nucleus accumbens
activity, we added the regression residuals for nucleus accumbens
predicted by a quadratic age effect. The results indicated that for
sensitivity to learning value, learning performance was predicted
over age” by dorsal caudate (B=0.51, p=0.002, N=731) and
ventral caudate (B=0.44, p=0.007, N=731), such that higher
sensitivity to learning signals was associated with better learning
performance (see Table 1 for the regression parameters and
Fig. 3a for an illustration of the longitudinal relation between
learning performance and striatal activity). Nucleus accumbens
activity did not predict behavioral performance (B=0.19,
p=0.257, N=731). For sensitivity to valence, better performance
was predicted by more activity for negative > positive learning in
ventral caudate (B=-0.34, p=0.036, N=731, but note that this
result does not survive a Bonferroni MC correction threshold
adjusted for correlated variables; see Supplementary Table 4 for
regression parameters). Better performance was not predicted by
more activity for negative > positive learning in either the dorsal
caudate (B=-0.21, p=0.183, N=731) or nucleus accumbens
(B=-0.20 p=0.217, N="731).

We performed additional mixed-model hierarchical regression
analyses excluding participants who scored 100% on learning
performance (N=15 at TP1, N=27 at TP2, and N=69 at TP3;
resulting in N=620), because the task was designed to be
relatively easy to strike a balance between young children
achieving sufficient learning success and adults not reaching
ceiling performance. The mixed-model hierarchical regressions
indicated that sensitivity to 1nf0rmat1ve value still predicted
learning performance over age’ in dorsal caudate (B=0.67,
p <0.001, N=620) and ventral caudate (B=0.50, p=0.005, N=
620). Sensitivity to valence no longer predicted learning
performance over age? for negative > positive learning in ventral
caudate (B=-0.34, p=0.058, N=620).

We also explored whether striatal activity could be used to
predict future learning performance 2 and 4 years later.
Regression analyses showed that for sensitivity to informative
value, TP1 striatum activity predicted TP2 learning performance
2 years later in dorsal caudate (f=0.19, p=0.006, N=211) and
ventral caudate ($#=0.19, p=0.005, N=211). TP2 striatum
activity also predicted TP3 learning performance in ventral
caudate (f=0.19, p=0.010, N=195) but not in dorsal caudate
(f=0.14, p=0.056, N=195) and nucleus accumbens (f=0.14,
p=0.053, N=195). TP1 striatum activity could not predict TP3
learning performance 4 years later. For sensitivity to valence,
TP1 striatum activity did not predict future TP2 or TP3 learning
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Fig. 3 The relation between striatal activity and learning performance. a Scatterplot of the relation between learning performance and sensitivity to
informative value in dorsal caudate (B=0.51, p=0.002) and ventral caudate (B=0.44, p=0.007) (N=731). The regression residuals for learning
performance predicted by age? and dorsal/ventral caudate predicted by age? are plotted. b Schematic overview of the cross-sectional and longitudinal
regression analyses demonstrating that sensitivity to informative value in dorsal and ventral striatum activity predicts learning performance at the same
time point. Activity in dorsal and ventral caudate predicts learning performance 2 years later

performance. See Fig. 3b for an overview of the significant cross-
sectional and longitudinal regression analyses.

Developmental trajectories of cortical activity. One of the
mechanisms through which this adolescent-specific increased
striatal sensitivity to informative value might benefit learning
performance is by increasing the recruitment of cognitive control
regions in the frontoparietal network. These regions were also
involved during this feedback-learning task (Supplementary
Fig. 1)!7. To test whether frontoparietal activity also showed an
adolescent peak for sensitivity to informative value, we extracted
ROI values from anatomical ROIs (Harvard-Oxford Cortical
Atlas) in middle frontal gyrus (MFG), anterior cingulate cortex
(ACC), SMA, and superior parietal lobule (SPL) (Fig. 4a). Note
that data from these regions for the first two time points have
been reported earlier'”. Longitudinal mixed-model analyses were
used to compare a model with no age effect, a linear age effect,
and a quadratic age effect. The analyses revealed that, similar to
the striatum, a quadratic trajectory (peaking in late adolescence/
early adulthood between ages 16—20) was the best fit for MFG (no
age: AIC=2649; linear: AIC = 2651, log-like p=0.841; quadratic:
AIC=2643, log-like p=0.001; age! B=-0.82, age? B=-501,
N=736), SMA (no age: AIC=3017; linear: AIC=3012, log-like p
=0.010; quadratic: AIC=3009, log-like p=0.020; age! B=5.50,
age? B=-4.70, N=736), and SPL (no age: AIC=2717; linear:
AIC=2717, log-like p=0.155; quadratic: AIC=2710, log-like
p=0.004; age! B=-2.95, age? B=—4.80, N="736). ACC, however,
showed no age-related changes (no age: AIC=2441; linear: AIC
=2442, log-like p=0.403; quadratic: AIC=2443, log-like p=
0.416; N=736). See Fig. 4b for the predicted developmental tra-
jectories. Mixed-model regression analyses revealed that
enhanced activity in MFG (B = 0.45, p=0.007) and SPL (B=0.46,
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p=0.007) predicted better learning performance over a quadratic
age effect alone.

Discussion

Taken together, the results presented here show that striatal
activity indicating heightened sensitivity to learning signals peaks
in late adolescence, and that enhanced striatal activity can predict
better current and future learning performance. These findings
are based on a large-scale longitudinal design, which is crucial for
investigating developmental trajectories because the results are
based on within-person changes over time and are robust to
inter-individual differences.

Adolescents showed elevated striatal activity for feedback when
they learned new rules compared to feedback that occurred when
they applied known rules. The degree to which the striatum—
including dorsal caudate, ventral caudate, and nucleus accumbens
—was sensitive to the informative value of the feedback was
highest in late adolescence (between ages 17 and 20) and pre-
dicted better learning performance. Similarly, neural activity in
cortical regions including the MFG, parietal cortex, and SMA also
showed a peak in activity related to informative value around this
age (between 16 and 20). Together with the behavioral results,
which demonstrated a peak in feedback-learning performance in
late adolescence/early adulthood, our data suggest that this
developmental phase may be an optimal period for feedback
learning. Enhanced learnin§ gerformance in adolescence has been
reported in prior studies'®" but has not yet been related to
striatal activity in a longitudinal study.

Interestingly, research has also suggested that risk-taking is
most prevalent in late adolescence and early adulthood?!. Possi-
bly, late adolescence is an adaptive life period during which the
brain is optimally responsive to learning signals and new
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Fig. 4 Mixed-model analyses for development of cortical regions in the
frontoparietal network. a Anatomical ROIs (Harvard-Oxford Cortical Atlas).
Center-of-mass coordinates were (x, y, z): middle frontal gyrus (MFG)
(=4, 22, 43); superior parietal lobule (SPL) (7, -48, 63); supplementary
motor area (SMA) (0, -2, 58); anterior cingulate cortex (ACC) (1, 20, 24).
b Predicted developmental trajectories for sensitivity to learning signals. A
quadratic age effect was the best fit for MFG (no age: AIC =2649; linear:
AIC = 2651, log-like p=0.841; quadratic: AIC =2643, log-like p=0.001),
SMA (no age: AIC =3017; linear: AIC =3012, log-like p = 0.010; quadratic:
AIC =3009, log-like p=0.020), and SPL (no age: AIC =2717; linear:

AIC =2717, log-like p=0.155; quadratic: AIC = 2710, log-like p=0.004).
ACC showed no age-related changes (no age: AIC =2441; linear:

AIC = 2442, log-like p=0.403; quadratic: AIC =2443, log-like p=0.416)
(N=736)

environments, which may explain both of these findings. This
idea fits with prior research showing that enhanced exploration
and novelty seeking are not unique to adolescent humans, but are
also present during adolescence in other mammalian species
(such as rats and mice)?2. Our results also resonate with recent
theories of adolescent development that emphasize adaptive
flexibility, highlighting that adolescence is not only a period of
negative health consequences, but also a unique period for
exploration and adaptation®?3.

With regard to potential specific functions of striatal sub-
regions, we found that dorsal caudate, ventral caudate, and
nucleus accumbens all showed an adolescent peak (between ages
17 and 20) in neural responses to feedback with informative value
for learning. While increased activity in dorsal and ventral cau-
date was linked to better learning performance, activity in nucleus
accumbens was not. Dorsal and ventral caudate activity also
predicted learning performance 2 years later, marking the first
steps toward using striatal activity to investigate future learning
potential®®, Aside from sensitivity to informative value of feed-
back, we also investigated how neural reactions to positive and
negative feedback change across development. These analyses
showed that dorsal caudate remained consistently more active

6
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after negative compared to positive feedback across ages (829
years), which fits with research linking activity in dorsal caudate
to punishment-based learning?. Ventral caudate and nucleus
accumbens activity became stronger for negative relative to
positive feedback with increasing age. This is in accordance with
prior studies showing age-related neural changes in performance
monitoring, such as larger event-related negativity in scalp
responses after errors?®. There was relatively more activity after
positive feedback in the nucleus accumbens in childhood, whereas
in early adulthood there were no longer valence differences in
activity. This finding is similar to prior research in adults®’, and
suggests that the nucleus accumbens responds to cognitive
learning signals regardless of whether they are presented as
positive or negative feedback. However, this is not true for the
ventral caudate, which showed increased responses to negative
compared to positive feedback. These increased responses were
associated with better learning performance. Taken together,
these findings provide evidence for dissociable contributions of
striatal subregions to learning and underline the importance of
considering these subregions individually.

An important remaining question is how the striatum connects
to other brain regions to support enhanced learning performance.
Potentially, enhanced striatal activity leads to an upregulation of
cognitive control regions, such as the MFG and parietal cortex,
and consequently an increase in cognitive performance?®. In
agreement with this idea, we found that regions in the fronto-
parietal network—including the MFG, SMA, and SPL—also
showed a late adolescent peak (between ages 16 and 20) in sen-
sitivity to informative value. However, as we did not perform
causal connectivity analyses, we cannot identify whether or not
this is the exact mechanism by which these effects occur. In
addition, different methods such as probabilistic learning tasks
and computational approaches could further our understandin
of learning differences between adolescents and adults'®230,
Other important remaining questions are whether these findings
are similar for more complex cognitive tasks, as well as whether
they are relevant for school learning and whether there are dif-
ferences between supervised and unsupervised learning across
development!®3!, When interpreting our findings, it should be
taken into account that, as is inherent with longitudinal designs,
there may be a learning effect due to performing the task
repeatedly. However, because we used an accelerated longitudinal
design (with different starting ages) rather than following a single
cohort, there is overlap between age and wave (i.e., practice),
thereby we control for possible age differences in practice effects
over sessions™“.

In conclusion, our findings make an important contribution to
theoretical models of adolescence. Classic dual-systems models of
adolescent development emphasized vulnerabilities of the ado-
lescent brain due to heightened affective responses combined with
immature cognitive control***%, Our results support more recent
theories, which expand upon classic models and emphasize the
intertwined nature of cognitive and affective brain systems in
adolescence™?3. For instance, increased activity in motivational
brain regions such as the striatum may result in increased
recruitment of the control system depending on motivational
salience. This study provides a neurobiological explanation for
this effect by demonstrating that enhanced striatum sensitivity
may underlie an adolescent-specific window of opportunity for
feedback learning.

Methods

Participants. At the first time point (TP1), a total of 299 participants between ages
8 and 25 years participated in this MRI study. About 28 participants were excluded
for the following reasons: N=4 did not complete MRI session, N=1 disclosed
ADD diagnosis, N=22 movement >3 mm, N=1 reported medicine use. In total,
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data from 271 participants were included at TP1. At TP2 2 years later, 254 par-
ticipants were scanned (most dropout was due to braces, N=33). Of these 254
participants, there were several exclusions: N=12 movement > 3 mm,

N=5 scanner artifact, N=2 data processing error, N=1 disclosed ADD diagnosis,
N=1 reported medicine use. In total, 233 participants were included at TP2. At
TP3, 2 years after TP2, 243 participants were scanned (dropout due to braces:
N=11). Of these, several were excluded: N=3 did not complete MRI session, N=4
movement >3 mm, N=2 data processing error, N=1 disclosed ADD diagnosis,
N=1 reported medicine use. In total, 232 participants were included at TP3. The
grand total of included data was 736 scans.

Participants were not allowed to participate if they reported current use of
psychotropic medication or a psychiatric diagnosis. IQ was estimated at the first
two time points with two subtests of the WISC-III (participants under 16; TP1: N=
195; TP2: N=119) or WAIS-III (participants 16 and older; TP1: N=76; TP2: N=
114): Similarities and block design at TP1, and vocabulary and picture completion
at TP2. Estimated IQ scores were within the normal range at both TP1 (80-143, M
=110.00, SD=10.34, N=271) and TP2 (80-147.50, M =108.36, SD=10.44, N=
233). IQ was not related to age, suggesting no intelligence differences across our
ages (Pearson’s correlation r=—0.74, p=0.200 at TP1, N=271). All participants
and their parents (for participants < 18 years) provided written informed consent
and the study was approved by the Medical Ethical Committee at Leiden University
Medical Center. Children received presents for their participation and their parents
received payment meant for travel costs. Adult participants (218 years) received
payment for participating in the study. All anatomical scans were reviewed by a
radiologist and no clinically relevant abnormalities were reported.

Feedback-learning task. Participants performed a feedback-learning task while
fMRI images were collected. Data on frontoparietal activity from the first two time
points have been published in prior studies'”*. On each trial, participants viewed
three squares with a stimulus presented underneath. Participants were instructed to
use performance feedback to determine which stimulus belonged to which square
(Fig. 1a). Performance feedback was presented after each choice, as a minus sign for
negative feedback and a plus sign for positive feedback. After 12 trials, or when a
criterion was reached (placing each of the three stimuli in the correct box at least
two times), a new sequence with three new stimuli was presented. This criterion
was used to strike a balance between the number of trials in the learning and the
application phase. The total number of sequences for TP1 and TP2 was

15 sequences, resulting in a maximum total of 15 x 12 =180 trials per participant.
For TP3, 10 sequences (max. 120 trials) were presented due to time constraints. All
analyses were also performed with only the first 10 sequences for TP1 and TP2,
which resulted in highly similar findings. Before the MRI session, participants
practiced the task for three sequences. The time line of trials was as follows: fixation
cross (500 ms), stimulus + response (2500 ms), feedback (1000 ms). Inter-trial
intervals were jittered and optimized using Optseq, with intervals varying between
0 and 65.

FMRI analyses. For the fMRI contrasts, we focused on the contrasts sensitivity to
informative value (learning > application; comparing feedback early in the learning
process which is still valuable for learning, with feedback for associations that were
already learned), and sensitivity to valence (positive > negative learning; comparing
positive and negative feedback, but only for feedback that is still valuable for
learning). To determine these feedback types, we distinguished between a “learning
phase” and an “application phase” using an individual trial-by-trial approach for
each stimulus. To determine whether a stimulus was in the learning or application
phase, we used trial-by-trial analyses and took into account future responses on the
next trial this stimulus was presented. Specifically, stimuli were classified into the
learning phase when participants had not yet provided the correct location for this
stimulus in prior trials, and where still using the feedback to determine the correct
location (i.e., the feedback still had informative value for learning). Trials during
the learning phase which did not result in learning, i.e., the trials where the
feedback was not successfully used on the subsequent trial (“switch” for negative
feedback, “stay” for positive feedback; at TP1: M =5.83, SD=7.39, N=271) were
excluded from further analyses. Stimuli were classified into the application phase
when the stimulus was already sorted correctly in a previous trial and continued to
be sorted correctly on the next trial. Therefore, in the fMRI contrast learning >
application we focused on neural regions distinguishing between feedback that is
valuable for learning vs. not valuable for learning (i.e., neural sensitivity to infor-
mative value).

For the fMRI contrast positive > negative learning, we could investigate valence
effects while controlling for informative value. That is, we contrasted only positive
and negative feedback during the learning phase (i.e., we excluded feedback
presented after an association had already been learned, because this may rely on
very different processes compared to feedback earlier in the learning process°). At
TP1, an average of 69.65 trials (SD =5.51, N=271) was classified as learning phase
trials (of which positive: M= 41.50, SD=4.02, N=271; of which negative:
M=128.15, SD=7.56, N=271), and an average of 59.92 trials (SD =6.56, N=271)
was classified as application phase trials. In total, participants needed an average of
139.16 trials (SD=9.98, N=271) to complete the task.

To measure feedback-learning performance, we calculated the percentage of
trials in the learning phase for which feedback was successfully used on the next
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trial (stay for positive feedback, switch for negative feedback), compared to the total
number of trials during the learning phase. Extreme behavioral outliers were
excluded for analyses with learning performance (Supplementary Fig. 2, N=5).
This resulted in N=268 at TP1 (learning performance M =93.43, SD=5.11),
N=231 at TP2 (learning performance M =94.70, SD=4.67) and N=232 at TP3
(learning performance M=96.05, SD =4.72). Feedback-learning performance
showed a weak age-controlled correlation with IQ, which was measured at TP1 and
TP2 (TP1: Pearson’s r=0.140, p=0.022, N=271; TP2: Pearson’s r=0.155,
p=0.019, N=233). There were no sex differences in feedback-learning
performance at all three time points (according to independent samples T-tests, all
ps>0.196). Learning performance showed reliability over time (ICC=0.494,
N=731).

MRI data acquisition. We used the same Philips 3T MRI scanner and settings for
all time points. The following settings were used: TR=2200 ms, TE =30 ms,
sequential acquisition, 38 slices, slice thickness = 2.75 mm, field of view

(FOV) =220 x 220 x 114.68 mm. We acquired a high-resolution 3D T1-FFE ana-
tomical scan after the experimental task (TR = 9.8 ms, TE = 4.6 ms, 140 slices, voxel
size=0.875 % 0.875 x 1.2 mm, FOV =224 x 177 x 168 mm, flip angle = 8). Prior to
the MRI scan, participants were placed in a mock scanner to accustom them to the
MRI environment and noise.

FMRI data analysis. We performed whole-brain analyses using SPM8 (Wellcome
Department of Cognitive Neurology, London). The following preprocessing steps
were used: slice timing correction, realignment (motion correction), normalization,
and smoothing (6 mm FWHM isotropic Gaussian kernel). T1 templates were based
on the MNI305 stereotaxic space®’. The task was an event-related design and the
events (positive learning, negative learning, and application) were time-locked with
0 duration to the moment of feedback presentation. Motion regressors were added
to the model. All other trials (i.e., trials that did not result in learning or too-late
trials) were modeled as events of no interest. These events were used as covariates
in a general linear model together with a set of cosine functions that high-pass
filtered the data. The least-squares parameter estimates of height of the best-fitting
canonical HRF for each condition were used in pair-wise contrasts. The main fMRI
contrasts were learning > application (sensitivity to informative value) and positive
> negative learning (sensitivity to valence). The contrast images were submitted to
higher-level group analyses. Whole-brain fMRI analyses were performed with an
FWE voxel-level corrected threshold at p < 0.05.

Region-of-interest analyses. ROI analyses were performed with the MarsBaR
toolbox (v. 0.42) in SPM838. ROIs (caudate nucleus and nucleus accumbens) were
based on the Harvard-Oxford Subcortical Atlas (thresholded at 50%). Numerous
studies have suggested differential functional specialization of dorsal and ventral
caudate”! 113, therefore we followed recommendations by Postuma & Dagher!*
and split the caudate ROI into a ventral and dorsal part (z> 7= dorsal). We
averaged across left and right hemispheres. Center-of-mass coordinates were

(x, y, 2): dorsal caudate (1, 7, 15); ventral caudate (0, 16, 2); nucleus accumbens (-1,
12, =7). Mean and SD values for each contrast, each ROI, and each time point are
reported in Supplementary Table 2. In the follow-up analyses, we tested for
developmental trajectories in several cortical regions: MFG, SPL, SMA, and ACC,
using atlas-based ROIs (Harvard-Oxford Cortical Atlas; thresholded at 50%).
Center-of-mass coordinates were (x, y, z): MFG (-4, 22, 43); SPL (7, —48, 63); SMA
(0, =2, 58); ACC (1, 20, 24).

Statistical analyses. We used mixed-model analyses to test the shape of devel-
opmental trajectories for behavior and neural activity'® using the NLME package in
R°. With this package, it is possible to test for fixed effects (effects that are similar
for all participants) and random effects (effects that vary across participants) of age
on brain activity. Models were compared using the Akaike Information Criterion
(AIG; lower AIC values indicate a better fit of the model to the data) and we
additionally tested with log-likelihood tests whether changes in model fit were large
enough to be significant. We first tested for each ROI which shape best described
the developmental trajectory. We started with a base model, which included a fixed
intercept and a random intercept to account for the repeated nature of the data.
This base model was tested against three models to test the shape of the grand
mean trajectory for age. We tested for a linear age effect (monotonic development)
and a quadratic effect of age (an adolescent-specific effect) by adding polynomial
functions for age to the base model!>!°. After determining the developmental
trajectory for age and neural activity, we furthermore tested whether neural activity
could predict feedback-learning performance over age alone. We started with the
best-fitting age model (quadratic) for behavioral performance ROI and tested
whether a model with both age and activity in the ROI resulted in a better model fit
compared to age alone. Results were corrected for MC using a Bonferroni method
adjusting for correlated variables (http://www.quantitativeskills.com/sisa/
calculations/bonfer.htm)*®4!, The average correlation between variables (three
ROIs, two contrasts, separately per contrast) was r=0.66, which resulted in an
adjusted significance level (2-sided adjusted) of a=0.027. We reported when
analyses were significant at p < 0.05 but did not survive correction for MC.
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